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RADIATIVE PROCESSES IN GRAPHENE AND SIMILAR 

NANOSTRUCTURES IN STRONG ELECTRIC FIELDS  

S. P. Gavrilov1,2 and D. M. Gitman1,3,4  UDC 530.22, 538.935 

Low-energy single-electron dynamics in graphene monolayers and similar nanostructures is described by the 
Dirac model, being a 2+1 dimensional version of massless QED with the speed of light replaced by the Fermi 

velocity vF ≃ c/300. Methods of strong-field QFT are relevant for the Dirac model, since any low-frequency 
electric field requires a nonperturbative treatment of massless carriers in the case it remains unchanged for 
a sufficiently long time interval. In this case, the effects of creation and annihilation of electron-hole pairs 
produced from vacuum by a slowly varying and small-gradient electric field are relevant, thereby substantially 
affecting the radiation pattern. For this reason, the standard QED text-book theory of photon emission cannot 
be of help. We construct the Fock-space representation of the Dirac model, which takes exact accounts of the 
effects of vacuum instability caused by external electric fields, and in which the interaction between electrons 
and photons is taken into account perturbatively, following the general theory (the generalized Furry 
representation). We consider the effective theory of photon emission in the first-order approximation and 
construct the corresponding total probabilities, taking into account the unitarity relation.  
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INTRODUCTION 

Low-energy single-electron dynamics in graphene monolayers at the charge neutrality point and similar 
nanostructures is described by the Dirac model, being a 2+1 dimensional version of massless QED with the Fermi 

velocity 610 m/sFv   playing the role of the speed of light in relativistic particle dynamics. There are actually two 

species of fermions in this model, corresponding to excitations about the two distinct Dirac points in the Brillouin zone 
of graphene (a distinct pseudospin is associated). There also is a (real) spin degeneracy factor 2. We consider an infinite 
flat graphene sample on which a uniform electric field is applied, directed along the x  axis on the plane of the sample. 
We assume that the applied field is the T-constant electric field that exists during a macroscopic large time period T 

comparing to the characteristic time scale   1/2
st = / 0.24 fsFt e E v


   , 12

st10 s >T t  . This field turns on 

to E  at in/2 =T t  and turns off to 0 at out/2 =T t . 

The electromagnetic field is not confined to the graphene surface, = 0z , but rather propagates (with the speed 
of light c ) in the ambient 3 1  dimensional space-time, where z  is the coordinate of axis normal to the graphene 
plane. Thus, we have the so-called reduced QED3.2 with distinct velocities for relativistic dynamics of charged particles 
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and clasical and quantum electromagnetic fields. Low-frequency ( 1T  ) crossed electromagnetic field is radiated in 

the direction orthogonal to the graphene plane by a mean current of pairs created from vacuum (see [1] for details). 

High-frequency ( 1T  ) emission (absorption) of a photon occures due to a particle state transition. For example, 
this can be (1) emission by an electron in initial state or (2) emission with pair creation from vacuum. 

Methods of strong-field QED are relevant for the Dirac model, since any low-frequency electric field requires 
a nonperturbative treatment of massless carriers in case it remains unchanged for a sufficiently long time interval, 

st>T t  In particular, the effect of particle creation is crucial for understanding the conductivity of graphene, 

especially in the so-called nonlinear regime. In this regime, the effects of creation and annihilation of electron-hole pairs 
produced from vacuum by a slowly varying and small-gradient electric field are relevant, thereby substantially affecting 
the radiation pattern. For this reason, the standard QED text-book theory of photon emission (relevant assuming that 
vacuum is stable) cannot be of help. 

EFFECTIVE PERTURBATION THEORY OF THE PHOTON EMISSION 

We construct the Fock-space representation of the Dirac model, which takes exact accounts of the effects of 
vacuum instability caused by external electric fields, and in which the interaction between electrons and photons is 
taken into account perturbatively, following the general theory (the generalized Furry representation) [2]. We use 
boldface symbols for three-dimensional vectors and symbols with arrows for in-plane components, for example, 

 = ,r x y


. In the usual dipole approximation, z-dependence of the QED Hamiltonian can be integrated out and we 

obtain the Hamiltonian of the electron-photon interaction as 

 
int in

=0

ˆ( , ) ( , )
z

j t r A t d r  r
  

 ,   † 0F
in

ˆ ˆ, = ( , ), ( , )
2

ev
j t r t r t r

c 
     

    
 , (1) 

where quantum fields ˆ ( , )t r


 and †ˆ ( , )t r


 obey both the Dirac equation with the potential 
ext

( , )A t r
 

 and the 

standard equal time anticommutation relations. We decomposed quantum electromagnetic field in the interaction 

representation into terms of the annihilation and creation operators of photons, C k  and †C k :  

 ( ) † ( )

,

2ˆ ( , ) = e ei t i tt c C C
V

    
  



    
 k r k r

k k k
k

A r
 є , (2) 

where = 1,2  is a polarization index, kє  are unit polarization vectors transversal to each other and to the wavevector 

k , = ck  =k k , V  is the volume of the box regularization, and   is the relative permittivity ( = 1  for graphene 

suspended in vacuum). 

The in - and out -operators of creation and annihilation of electrons ( †
na , na ) and holes ( †

nb , nb ) are defined 

by the two representations of the quantum Dirac field ˆ ( , )t r


 as  

 †ˆ ( , ) = (in) ( , ) (in) ( , )n n n n
n

t r a t r b t r      
  

†= (out) ( , ) (out) ( , )n n n n
n

a t r b t r     
 

, (3) 

where ( , )n t r


 and ( , )n t r


 are in - and out -solutions of the Dirac equation with the potential 
ext

( , )A t r
 

 for 

given quantum numbers n  and well-defined sign of frequency   either before turning on or after turning off of a field, 

respectively. They are related by a linear transformation of the form:  
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 ( , ) = ( | ) ( , ) ( | ) ( , )n n n n nt r g t r g t r  
      

  
,    ( , ) = | ( , ) | ( , )n n n n nt r g t r g t r   
     

  
, (4) 

where g  are some complex coefficients. Here the notation ( | ) = ( | )
' '

g g  
    is used. These coefficients obey the 

unitarity relations which follow from the orthonormalization and completness relations for the corresponding solutions. 

It is known that all g  can be expressed in terms of two of them, e.g. of ( | )g 
  and ( | )g 

 . However, even the latter 

coefficients are not completely independent,  

 
2 2

( | ) ( | ) = 1n ng g 
  . (5) 

Then a linear canonical transformation (the Bogoliubov transformation) between in - and out - operators which follows 
from Eq. (3) is defined by these coefficients. 

The initial and final states with definite numbers of charged particles and photons can be generally written in 
the following way: 

    † † †| in >= in in | 0,inC b a    ,    † † †| out >= out out | 0,outC b a    . 

The   matrix or the scattering operator in the first-order approximation with respect to electron-photon interaction (it 
is exact with respect to an interaction with an external field) is  

     1 1 1
int1 , =i dt




       . (6) 

In general, the emission of a single photon by an electron is accompanied by the creation of 0M   electron-hole pairs 
from the vacuum by the quasiconstant electric field:  

 
 

            21 1 †

1 1 1
{ }

= ! 1 ! 0,out out out out out (in) | 0,inM n n m m lM M
m n

l M M b b a a C i a
 



        
 

 kk   . 

The probability of transition from the single-electron state characterized by the quantum numbers l  with the emission 
of one photon with given k  and   and production of arbitrary number of pairs from the vacuum, that is, the total 
probability of the emission of the given photon from the single-electron state, is 

 
=0

= M
M

l l
        

   
k k  . (7) 

The probability of the process with the emission of one photon with given k ,   and the production of 1M   arbitrary 
pairs from the vacuum is 

  
 
            22 1

1 1
{ }

, = ! 0,out out out out out | 0,inM n n m mM M
m n

M b b a a c i


   kk   . (8) 

The total probability of emission of the given photon from the vacuum and the production of an arbitrary number of 
pairs from the vacuum is 
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=1

, = ,M
M


 k k  . (9) 

The unitary transformation V  relates the in- and out- Fock spaces, | in = | outV  . This means that we can 

pass from the basis of the final Fock space to the basis of the initial Fock space and, for example, represent the total 
probabilty (7) as 

  
2

1= ;in
n

l w n l
         

   
k k ,      1 1 †; = 0,in in (in) | 0,inin n lw n l a C i a

 


    
 

kk . (10) 

Note that if the number of created pairs is not small, then the matrix element  1
in ( ; )w n l

 
k  is quite distinct from the 

amlitude of the relative probability for a one-particle transition with emission of a photon, 

      1 †
1 0,out out (in) | 0,in

; =
0,out | 0,in

n la C i a
w n l

 
       

kk . 

CHARACTERISTICS FOR EMISSION OF A PHOTON BY AN ELECTRON 

We apply this theory to calculation of the total probability for emission of a photon by an electron in a constant 
electric field. We define an orthonormal triple 

 = (sin cos , sin sin , cos )k     k / , 1 2 1 1= e e , = /z z   k k k kk / k k kє є є є , (11) 

then 1 = ( sin ,cos ,0)  kє , 2 = ( cos cos , cos sin ,sin )      kє  for k  in the upper spatial region, and 0zk  . 

Using the parametrization, 3 2d c d d   k = , we find that the probabilty of emission per unit frequency and solid 
angle d  is 

 
 

2 22
F st

2
=

( )
=

2
'

p p '
p p k

d p v t
M

d d c







   
      

k
 

  





, 2= exp
2

'
' x x

' F
p p

p p
M v SC C i

eE
  

  
 

    

 1/2 1,0 0,1 1,1 1/2 0,0
F 10 01 11 F 00( / ) (1 ) (1 ) 2( / )' '

y y y yeE v i p Y i p Y p p Y eE v Y                  ,  (12) 

    1/2 2
F F= 2 exp / 8 , = / ( ), ='

'y p py y
C eE v S v p eE C C


   , 

where 2= /e c   is the fine structure constant, S  is the graphene area,    1 /2, 1 /2 † 0=s s
s's

U e U
 

    k

 
, and

0,0 1,1
1 1= = sin   , 1,0 0,1

1 1= = cosi    , 0,0 1,1 1,0 0,1
2 2 2 2= = cos cos , and = = cos sin .i           Here 

 'j j
Y   is the Fourier transformation of the product of the Weber parabolic cylinder functions,  

   [ (1 ) ] [ (1 ) ]ei u
' ' ' jj j j

Y D i u D i u du
 

  
     ,   (13) 
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where = , = , = , and
2 2

'
' '

' stp p
y y

i i
t

 
        . Applying the saddle-point method to integral (13), we 

establish the law of conservation of kinetic energy,  

  F 2 ='
x xv eEt p p   , (14) 

at the saddle-point, = /2u  . The wide high-frequency range follows as 1 2 1
st st st2 < < 2 , 1t t T t T      . We find the 

formation interval for emission of a photon with given k . The center of formation of the interval for the given initial 

momentum xp  is 2
st= ( / ) ( / 2)c xt p eE t    The width of the formation interval t  is determinated only by the 

electric field:   1/2 1/2 14
F= / 2.6 10 seE v a

    , where 6
0 0= , = 1 10 V/mE aE E  4and 7 10 8a   . It 

can be shown that leading contribution to probability (12) is from terms with 00Y  and 01Y . 

Taking into account that 1'   , we find the main contribution to Eq. (12) as 

    
2 22 3 /4 0,12

'

'
p p

M f e  
     ,    

 
/4

2

sh / 2
=

2 / 2 1
f e




    

 (15) 

at 1  . This is the Gaussian function of k  at fixed 0   and 0  , where /yp   is the position of the peak 

center. We see polarized emission to directions 0  ( 0yk  ) and /2   ( , 0x zk k  ). The probabilty of 

unpolarized emission per unit frequency and solid angle is 

  
22

2 3 /4F
st 2

=1,2

( )
= 1

' ykd p v
t f e

d d c k



 



                 


k



. (16) 

For any given yp  and /yk k , the maximum probabilty is realised with 0'   ( /y yk p  ). The angular distribution 

is maximal at 0yk   ( k  is in plane that is orthogonal to graphene and parallel to the electric field E . We suggest the 

emission of a photon by an electron in graphene in the presence of a constant electric field for experimental 
observations.  
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