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 MULTIPHOTON AMPLITUDES AND GENERALIZED LKF 

TRANSFORMATION IN SCALAR QED USING THE WORLDLINE 

FORMALISM 

N. Ahmadiniaz,1 A. Bashir,2 and C. Schubert2 UDC 530.22  

We apply the worldline formalism to scalar quantum electrodynamics (QED) to find a Bern–Kosower type 
master formula for generalized Compton scattering, on-shell and off-shell. Moreover, we use it to study the 
non-perturbative gauge parameter dependence of amplitudes in scalar QED and, as our main result, find 
a simple non-perturbative transformation rule under changes of this parameter in x-space in terms of 
conformal cross ratios. This generalizes the well-known Landau–Khalatnikov–Fradkin transformation (LKFT). 
We also exemplify how this generilized LKFT works in perturbation theory. 

Keywords: scalar QED, worldline formalism, nonlinear Compton scattering, Landau–Khalatnikov–Fradkin 
transformation. 

INTRODUCTION  

Although the one-loop correction to the matter – gauge boson vertex in gauge theory – was studied long ago, 
the full non-perturbative structure of this vertex has remained a challenge for decades, not only in quantum 
chromodynamics (QCD) but also for simpler cases as quantum electrodynamics (QED). A systematic study for spinor 
QED was initiated more than three decades ago by Ball and Chiu [1] and led to their well-known decomposition of the 
vertex into transversal and longitudinal parts. They also calculated the vertex at one-loop in the Feynman gauge. Later, 
the same vertex was calculated in the Yennie–Fried gauge [2]. The extension of the Ball–Chiu results to an arbitrary 
covariant gauge was carried out in [3]. In three dimensional spinor QED, the massive and massless vertices in an 
arbitrary covariant gauge were obtained in [4, 5, 6]. 

Landau and Khalatnikov and independently Fradkin have derived a series of transformations (LKFT) for QED 
that transforms the Green’s functions in a specific manner under a variation of the gauge [7, 8]. Later these 
transformations were rederived by Johnson and Zumino by means of functional methods [9]. These transformations are 
non-perturbative and written in coordinate space. They can be used not only to change from one covariant gauge to 
another at a fixed loop level, but also to predict higher-loop terms from lower-loop ones. However, those predicted 
terms will all be gauge parameter dependent [10]. There have been many efforts to construct the three-point vertex in 
a way that would ensure the LKFT law for the massless fermion propagator (for example, see [10–17]). 

In this contribution, which is based on our recent paper [18], we consider the less explored case of scalar QED. 
Applying the worldline formalism, we present an off-shell multiphoton amplitude master formula, as well as 
a generalization of the LKFT to arbitrary x-space amplitudes. The worldline formalism is based on Feynman’s early and 
well-known representation of the QED S-matrix in terms of first-quantized path integrals [19] whose potential for 
improving the efficiency of calculations in QED was recognized only following the work of Strassler [20] in 1992 (see 
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also [21–23]) . That work in turn was triggered by an effort by Bern and Kosower [24] who found a novel and efficient 
way to compute gauge theory amplitudes representing them as the infinite string tension limit of suitable string 
amplitudes. In particular, in this way they obtained a compact generating function for the one-loop (on-shell) N-gluon 
amplitudes, known as the Bern–Kosower master formula. The worldline formalism allows one to rederive this master 
formula in a purely field theoretical approach [20, 22]. More recently, two of the present authors have applied the 
worldline formalism along these lines to recalculate the off-shell three-gluon vertex [25], recuperating the form-factor 
decomposition originally proposed by Ball and Chiu [26] in a way that not only significantly reduces the amount of 
algebra, but also allows one to combine the scalar, spinor, and gluon loop cases. The superior efficiency of the method 
becomes even more conspicuous at the four-gluon level [27]. 

Concerning the scalar QED case, already in 1996, Daikouji et al. [28] applied the string-inspired worldline 
formalism to amplitudes in this theory, albeit only in momentum space. Here we follow a similar approach, only that for 
our present purposes it will be essential to work in x-space as well as in momentum space. We will first derive a master 
formula for nonlinear Compton scattering with an arbitrary number of photons, on-shell and off-shell. These amplitudes 
are becoming relevant these days for laser physics, for a review see [29]. Then, taking advantage of the fact that, in the 
worldline formalism, changes of the gauge parameter can be implemented by total derivative terms under the path 
integration, we derive a generalization of the LKFT to arbitrary amplitudes in scalar QED. We discuss the perturbative 
workings of this transformation, and finally exemplify both the usefulness of the master formula and of the generalized 
LKFT by a recalculation of the one-loop propagator and vertex in an arbitrary covariant gauge.  

1. MASTER FORMULA FOR GENERALIZED COMPTON SCATTERING IN SCALAR QED  

In this section we will present a master formula for the scalar propagator to absorb and emit N  photons along 
the way of its propagation from x  to x . Feynman’s path integral representation of the scalar propagator of mass m  in 
the presence of a background ( )A x  is  

 
22 ( )= 2

1 2 1 2 210 (0)= 0 0 0

1
[ , ] = e ( )exp ( ) ( )

4 2
x T x T T Tm T
x x

e
x x dT x d x iex A x d d x D x x x

  


               
        . (1) 

The last term in the exponential gives the virtual photons exchanged along the trajectory of the scalar particle, D  is 

the x -space photon propagator, which in D  dimension and an arbitrary covariant gauge, is given by 

      /2 2( /2)/2 12

1 1
( ) = / 2 1 (1 ) / 2

24 D DD

x x
D x D D

xx

  
 

  
      

  
. (2) 

By choosing ( )A x  to be a sum of plane waves , =1( ) = e
ik xN i

ii jA x
  , each external photon is effectively represented 

by a vertex operator 

    scal lin 0 0
[ , ] ( )exp ( ) = exp ( ) ( ) | .

T TAV k d x ik x d ik x x
                  (3) 

The path integral is computed by splitting ( )x   into a background part b ( )gx  , which encodes the boundary 

conditions, and a fluctuation part ( )q  , which has the Dirichlet boundary conditions at the endpoints = 0,T :  

 b b( ) = ( ) ( ),   ( ) = ( ) / ,   ( ) = ( ) ( ) / ,   (0) = ( ) = 0g gx x q x x x x T x q x x T q q T               . (4) 
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The calculation of the path integral then requires only the knowledge of the free path integral normalization, which is  

 2 /2
0

1
( )exp = (4 )

4
T Dq d q T      

 
   , (5) 

and of the two-point correlator, given in [30, 31] 1 2 1 2( ) ( ) = 2 ( , )q q            with the worldline Green’s 

function 1 2 1 2 1 2 1 2( , ) = / | | / 2 ( ) / 2T             . The N  photon amplitude is represented as 

 

2 ( )= 2
1 1 0 (0)= 0

scal 1 1 scal0
=1

1
[ , ; , ; ; , ] = ( ) e ( )exp

4

[ , ] [ , ].

x T x TN m T
N N x x

NT A A
i N N

i

x x k k ie dT x d x

d V k V k

 


        
 

   

  









  (6) 

Substituting vertex operator (3) into Eq. (6), and applying the split in Eq. (4), one gets 

 
2

2 2
1

( ) /(4 ) 04
1 1 0 (0)= ( )=0

[ , ; , ; ; , ] = ( ) e e ( )e
T

d qN m T x x T
N N q q T

x x k k ie dT q
         

 


   

  
1 2lin( )0

=1 1
exp ( ) / ( ) ( ) / ( ) |

N

N NT
i i i i i i i i i

i i
d x x T q ik x x T ik x ik q   


                     . (7) 

After completing the square in the exponential, we obtain the following tree-level Bern–Kosower-type master formula 
in configuration space: 

 
2 2( ) /(4 ) /2
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[ , ; , ; ; , ] = ( ) e e (4 )N m T x x T D

N Nx x k k ie dT T
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i
i

d

                    
 

   


  . (8) 

According to our notation, the left and right dots indicate derivatives of the Green’s function with respect to the first 
argument and the second argument, respectively. After Fourier transforming to momentum space one gets a more 
compact form 
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i

d
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                     
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 



. (9) 

This is our final representation of the multiphoton amplitude in momentum space (see [18] for more details). It is 
important to mention that it gives the untruncated propagator, including the final scalar propagators on both ends. On-
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shell it corresponds to multiphoton Compton scattering, while off-shell it can be used for constructing higher-loop 
amplitudes by joining them together. 

2. GENERALIZATION OF THE LKF TRANSFORMATION  

Coming to the issue of gauge-parameter dependence, let us first consider external photons. A gauge 
transformation of the ith external photon i i ik      changes its vertex operator by boundary terms: 

 
( ) ( )

scal scal scal0 0
[ , ] = e [ , ] e = [ , ] (e e )

T Tik x ik x ik x ik xi i i i i i
i i i i i i i i i

i

V k d x V k i V k i
     




          
  . (10) 

This is just the QED Ward identity, which we need not discuss further. More interesting is the gauge transformation of 
internal photons, given by the last term in the exponential of Eq. (1). Its integrand can be written as 

      2 2 /21 2
1 2/2 2 /2 1

1 21 2

1 1
/ 2 1 / 2 2 [( ) ]

44 [( ) ]
D

D D

x x
D D x x

x x



    

     
  

 
. (11) 

This shows that a change of the gauge parameter   by   changes the integrand only by a (double) total derivative: 

  
2 22 2

1 2 1 2/2 0 0
1 2

/ 2 2 [( ) ]
32

D
T T

D

e
D d d x x

 
     

 
  . (12) 

Thus if one or both ends of the photon sit on a closed loop this term vanishes. Therefore, the gauge transformation 
properties of any amplitude in scalar QED are determined by the photons exchanged between two scalar lines, or along 
one scalar line. Thus we can discard not only all external photons but also all closed scalar loops, so that it suffices to 
study the quenched 2n  scalar amplitude. This amplitude can be written as 

 q q
1 1 1 (1) ( )( , , ; , , | ) = ( , , ; , , | )u u

n n n nSn
A x x x x A x x x x           , (13) 

where in the partial amplitude q
1 (1) ( )( , , ; , , | )u

n nA x x x x       it is understood that the line ending at ix  starts at 

( )ix . The worldline representation of this amplitude at the quenched level is [19]: 

 

( ) ( , )
02 ( )=q =1 , =1

1 (1) ( ) 0 (0)= ( )=1
( , , ; , , | ) = e ( )e

n n
l k lS Sin x T xm Tu l k ll l ll

n n l l lx xl ll
A x x x x dT x

  
 

   
   

 
    . (14) 

Here, ( ) 2
0 0

1
=

4
Tl l

l lS d x   is the free worldline Lagrangian for the path integral representing line l , and 

2
( , )

0 0
= ( )

2
T Tk l k l

i k l k l lk
e

S d d x D x x x 
        generates all the photons connecting lines k  and l . Thus, after a gauge 

change, 
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( ) ( , ) ( , )( )02 ( )=q =1 , =1
1 (1) ( ) 0 (0)= ( )=1

( , , ; , , | ) = e ( )e

n n
l k l k lS S Si in x T xm Tu l k ll l ll

n n l l lx xl ll
A x x x x dT x

   
 

   
     

 
    , (15) 

where from Eq. (12) we have  

 

 

 

2
( , )

/2

2 2 /2 2 2 /2 2 2 /2 2 2 /2
( ) ( ) ( ) ( )

/ 2 2
=

32

[( ) ] [( ) ] [( ) ] [( ) ]

k l
i D

D D D D
k l k l k l k l

e D
S

x x x x x x x x

 

   
   

 
 



          

  (16) 

Since   depends only on the endpoints of the scalar trajectories, we can rewrite Eq. (15) as  

 q q
1 (1) ( ) 1 (1) ( )( , , ; , , | ) = ( , , ; , , | )u u

n n n nA x x x x T A x x x x                , (17) 

with  ( , )
, =1expN k l

ik lT S    . This is an exact D -dimensional result. When using dimensional regularization 

around = 4D , one has to take into account that the full non-perturbative quA  in scalar QED has poles in ϵ to arbitrary 
order, so that the prefactor T , although regular, needs to be kept to all orders. Here we will consider only the leading 

constant term of this prefactor. Thus, we compute  

  ( , ) ( , )
4lim exp = ( )k l k l c

D iS r    ,  (18) 

where we have introduced the constant 2 2/ 32c e    and the conformal cross ratio ( , )k lr  associated to the four 

endpoints of the lines k  and l ,  

 
2 2

( ) ( )( , )
2 2

( ) ( )

( ) ( )

( ) ( )

k l k lk l

k l k l

x x x x
r

x x x x

 


 

  


  
.  (19) 

Thus, at the leading order, the prefactor turns into  ( , )
, =1=

cN k l
k lT r O   (ϵ). We note that for the case of a single 

propagator, = = = 1s k l , T  degenerates into  

 2 2 2 2= ( ) ( ) (( ) )
c

T x x x x x x        .  (20) 

Replacing the vanishing numerator 2 2( ) ( )x x x x    by the cutoff 2 2
min( )x , and   by  , we recuperate the original 

LKFT 

  
2 2/(4 )2 2

min( ; ) = ( ;0) /
e

F FS x S x x x
  

 . (21) 
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3. THE GENERALIZED LKFT IN PERTURBATION THEORY  

In this section we will show by an example how the non-perturbative gauge transformation presented in 
previous section and in Eq. (16) works in perturbation theory. Consider the twelve-loop contribution to the scalar six-
point function shown in Fig. 1. 

The change of the gauge should be considered for all photons (except the ones ending on a loop). For each 
photon its gauge transformation leaves a diagram without the transformed photon. The gauge transformation of the 
whole set diagrams is called   Fig. 1 which is written as  

 (1,2) (1,1) (1,3)Fig. 1 = ( 2 )Fig. 2 ( )Fig. 2 ( 2 )Fig 2i i iS a S b S c               

 (1,2) (1,1)( 2 )( )Fig. 2i iS S d        (1,2) (1,1) (1,3)( 2 )( )( 2 )Fig. 2i i iS S S e              . 

4. ONE-LOOP PROPAGATOR AND VERTEX IN AN ARBITRARY COVARIANT GAUGE  

Mathematically the LKFT is more difficult to implement in momentum than in configuration space, such that 
there is little hope for a closed-form non-perturbative formula such as Eq. (17) in momentum space. However, it 
remains true that gauge paramter changes are implemented by total derivative terms, and we will now show for the 
example of the one-loop propagator how this can be used to easily obtain an amplitude in a general covariant gauge, 
once it is known in some particular gauge. For this purpose, if we take = 2N  from our master formula and join the 
two photons in arbitrary covariant gauge using 

 2 4
21 ( (1 ) ) /q q q q           , (22) 

we get 

 
2 2 12 2 2 2 2 ( ) 1

propagator 1 20 0 0
( ) = ( ) e

(2 )

D
uT m p

D

d q
p e m p dTT du du

    


     

 2 4 2
1 2(2 )(2 ) ( ( 1) ) / exp( ( )( 2 ))p q p q q q q q T u u q p q                  . (23) 

 

Fig. 1. Feynman diagram representing six-scalar amplitude at twelve loops. 
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By using the fact that 

 
2( )( 2 )1 2

22( )( 2 )1 2
4 2 4

1 2

( 1)
(2 )(2 )( 1) e = e T u u q p qT u u q p qq q

p q p q
u uq T q

   
 

         
    

 
, 

one finally gets the following result for one-loop correction to the propagator in any covariant gauge  

 
2 2 2 2 22

propagator 2 12 2 2

( )
( ) = 1 1 2 2 ,1; ;

4 2 2 2

D

e m D m p D D p
p F

m m m

                   
 

   

 (a) Gauge transformation of photon 1.  (b) Gauge transformation of photon 2.  

   

 (c) Gauge transformation of photon 4.  (d) Gauge transformation of photons 1 and 2. 

 

(e) gauge transformation of photons 1, 2, and 4. 

Fig. 2. Gauge transformation of internal photons. 
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2 2 2 2

2 14 2

( )
(1 ) 3 ,2; ;

2 2

m p D D p
F

m m

       
 

. (24) 

Similarly, and much more non-trivially, one can use the same strategy to obtain the one-loop correction to the vertex in 
an arbitrary covariant gauge from the one in, say, Feynman’s gauge. Here, however, for lack of space we must refer the 
reader to [18]. 

CONCLUSIONS  

In this contribution we have applied the worldline formalism to obtain a Bern–Kosower type master formula 
for the scalar propagator dressed with any number of photons, on- and off-shell. We have used this formula to find the 
one-loop scalar propagator in any covariant gauge. In x -space, the implementation of changes of the gauge parameter 
through total derivatives has allowed us to obtain, in a very simple way, an explicit non-perturbative formula for the 
effect of such a gauge parameter change on an arbitrary amplitude summed to all loop orders. This formula generalizes 
the LKFT and contains it as a special case. At leading order in the ϵ-expansion it can be written in terms of conformal 
cross ratios. We also have illustrated with an example how this non-perturbative transformation works diagrammatically 
in perturbation theory. One possible extension of our results would be to the spinor case which is under study. A non-
Abelian version of the master formula has been obtained recently in [32]. 
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