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PHYSICS OF SEMICONDUCTORS AND DIELECTRICS 

STABILITY OF QUASI-TWO-DIMENSIONAL ELECTRON-HOLE 

LIQUID IN SEMICONDUCTOR STRUCTURES OF THE TYPE-II 

A. A. Vasilchenko,1 G. F. Kopytov,2 V. S. Krivobok,3,4 D. A. Ermokhin1 UDC 538.915 

Analytical expressions are obtained for the energy of a quasi-two-dimensional electron-hole liquid (EHL) and 
the threshold value of the barrier height for electrons, above which formation of the direct EHL is impossible. 
It is shown that the state with a quasi-two-dimensional EHL can be energetically favorable in semiconductors 
with the anisotropy of masses and (or) a large number of equivalent valleys. A comparison of the calculation 
results with the experimental data for the Si/SiGe/Si structure is made. 
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INTRODUCTION 

Studying properties of electron-hole systems is one of the rapidly developing areas of modern condensed matter 
physics. At present, most attention is paid to low-dimensional electron-hole systems, in which the role of the Coulomb 
interaction increases. Theoretical and experimental works in this area are focused primarily on the systems with a finite 
number of particles (excitons [1, 2], trions [3, 4], and electron-hole complexes with the number of particles less than 10 
[5, 6]). 

Less studied are the properties of quasi-two-dimensional EHL in semiconductor structures, particularly in the 
structures with heterojunctions of the type-II. First, the possibility of the formation of a quasi-two-dimensional EHL in 
silicon MOS-structures was shown in [7, 8]. Recently, EHL was found in SiO2/Si/SiO2 quantum wells [9, 10] and in 
Si/Si1–xGex/Si heterostructures [11-15]. Si/SiGe/Si quantum wells are the structures of the type-II, in which the SiGe 
layer forms a barrier for electrons and a quantum well for holes. The barrier height at x = 0.1 is about 10 meV, and the 
well depth is of about 90 meV. 

The aim of this work is to find the energy and equilibrium density of a quasi-two-dimensional EHL. To 
calculate the energy, the density functional theory is used and to account for the exchange-correlation energy, a standard 
local density approximation is applied. Earlier, the density functional theory has been successfully applied to study the 
properties of a three-dimensional EHL in semiconductors [16, 17]. 

FORMULATION OF THE PROBLEM 

It is necessary to calculate the total energy of a quasi-two-dimensional electron-hole system 
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where Te and Th are the kinetic energies of carriers, Vc(z) is the Coulomb potential, Exc is the exchange-correlation 
energy, and Ue(z), Uh(z) are the external potentials for electrons and holes. 

The exciton system of units is used: energy is measured in the units of Ryex = e2/2kaex, and the length – in the 

units of 2 2/exa k e  , where  is the reduced mass and k is the dielectric constant. 

Varying Eq. (1) over the densities ne and nh, we get two Schrödinger equations: 
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where i = e, h. Thus, the problem is reduced to solving the two one-dimensional nonlinear Schrödinger equations for 
the particles in the first and second wells, which are described by the potentials Veff,e(z) = Vc(z)+Vxc,e(z)+Ue(z) and 
Veff,h(z) = –Vc(z)+Vxc,h(z)+Uh(z), where Vxc(z) is the exchange-correlation potential, and the electrostatic potential is 
derived from the Poisson equation: 
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The external potentials for electrons and holes are given by 
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where d is the well (barrier) width. In this choice of the external potentials, energy is measured from the band gap of the 
semiconductor creating a quantum well (barrier). Further, we consider a heterostructure of the type-II, for which Ue < 0 
and Uh > 0. 

If only the lower size quantization level is filled, the carrier densities are given by the expressions 

 2
0,( ) ( )e e en z N z  , 2

0,( ) ( )h h hn z N z  , (5) 

where Ne and Nh are the two-dimensional electron and hole densities, respectively. Below, the index “0” at variables is 
omitted. 

The kinetic energy can be written as follows: 
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where gi is the number of equivalent valleys and md,i = (mx,imy,i)
1/2. In Eq. (6), the first term corresponds to the total 

kinetic energy of carriers along the electron-hole layer, and the second term – to the kinetic energy across the layer. For 
simplicity, further we assume that gh = 1 and the hole masses are isotropic mh = mz,h = md,h, and introduce the notations: 
mz = mz,e, md = md,e. 
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For the exchange-correlation energy, we use the local density approximation 

 [ , ] ( , )xc e h xc e hE n n dze n n  ,  (7) 

where e(ne, nh) is the exchange-correlation energy of electrons and holes per unit volume. 
Then, the exchange-correlation potentials have the form 
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In general, the form of the expression for exc is unknown. In case of neutral electron-hole plasma ne(z) = nh(z) = 
n(z), there is an approximation formula for the exchange-correlation energy /xc xce n   [18] 
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where 

1
33
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, a = –4.8316, b = –5.0879, c = 0.0152, and d = 3.0426. 

THEORETICAL MODEL AND DISCUSSION 

In general case, the system of nonlinear equations (2) - (9) must be solved numerically. In this section, a model 
is constructed that allows us to obtain analytical results for the energy of a quasi-two-dimensional EHL. 

We take 0.91 /xc sK r   , where K = 1 without taking into account the electron-hole correlations (exchange 

energy of electrons or holes). Further, we take K = 1.3 (this value follows from Eq. (9) in the vicinity of 1sr  ). Within 

the framework of this model, no Coulomb contribution to the energy is taken into account. Note that the Coulomb 
energy always increases the total energy. 

 Assume that the wave function of holes is determined only by the confinement potential Uh(z), which is 
a rectangular well with the width d. We believe the well depth Uh for holes large enough to take the wave function of 

holes in the form 1/ 2( ) (2 / ) cos( / )h z d z d   . Below, energy is measured from the energy level of holes. 

For electrons, Ue(z) = 0 at / 2z d . In this case, only the exchange-correlation potential remains in the 

Schrödinger equation. For electrons, we take the wave function with the parameter b in the form
1/ 2 1/ 2 2 2( ) (1/( )) exp( /(2 ))e z b z b    . We expand Vxc,e(z) in series and, taking into account only the quadratic term 

with respect to z, we obtain from the Schrödinger equation for electrons 3 / 5 3 / 5 3/ 5 1/ 51.45 /( )z eb m K N  . The energy 

level for electrons is 6 / 5 2 / 5 1/ 50.95 ( / )e e zE K N m   . Taking into account the electron Fermi energy

F 2 /e e dE N g m  , we obtain for the threshold value of the barrier = –Ue, above which no spatially-direct EHL 

can be formed, the following expression: 
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After all of these assumptions, we obtain as a result the energy per one electron-hole pair: 
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First term in Eq. (11) is the exchange and transverse kinetic energy of electrons, the second term is the exchange energy 
of holes, the third term is the longitudinal kinetic energy of electrons, the fourth term is the longitudinal kinetic energy 
of holes, and the last term is the energy of electrons in an external potential. For the neutral EHL, Ne = Nh = N. 

Formation of EHL is possible, if it is stable with respect to the decay into free excitons, that is, when the 
binding energy of an electron-hole pair, equal to –Eeh, is higher than the exciton binding energy. In [19, 20], it is shown 
that in the structures of the type-II at d > 1, the exciton binding energy is close to the binding energy of a three-
dimensional exciton. Let us consider the case of isotropic masses and ge = 1. In this case, the sum of the longitudinal 
kinetic energies of electrons and holes is independent of masses. In Eq. (11), the last term always reduces the energy. 
Therefore, to exclude the effect of the barrier on the energy, we take Ue = 0. For equal electron and hole masses, the 
binding energy of an electron-hole pair is less than the binding energy of an exciton (curve 1 in Fig. 1) and EHL cannot 
form. 

Note that a similar result was obtained for the three-dimensional EHL [16]. As can be seen from Eq. (11), for 
the quasi-two-dimensional EHL, the binding energy depends on the anisotropy of the electron masses. The effect of the 
anisotropy of electrons masses on the energy of an electron-hole pair is shown in Fig. 1 (curve 3). With a further 
increase in the ratio md /mz, the binding energy and equilibrium density increase. With increasing number of valleys, the 
binding energy also increases (curve 2 in Fig. 1). Thus, the state with the EHL can be energetically favorable in 
semiconductors with the anisotropy of masses and (or) a large number of equivalent valleys. 

The proposed model is well suited to the Si/SiGe/Si heterojunctions. Recent experiments [11-15] have shown 
that in such a structure, a quasi-two-dimensional EHL can be formed. The authors of [14] studied the SiGe/Si quantum 
wells with the width of 5 nm with various content of Ge and showed that the threshold value of the barrier for electrons 
is of about 7 meV, the equilibrium density is of 1012 cm–2, and the binding energy is of 19 meV for the Ge concentration 
of about 3%. In these experiments, the SiGe layer grown on the (100) silicon surface is strained, and we used the 
following parameters for the calculations [20]: ge = 4, mz = 0.19m0, md = 0.42m0, and mh = 0.19m0 (m0 is the free 
electron mass). For these parameters, we obtain from Eq. (10) 8 meVc  , which is in good agreement with the 

experimental results. Like silicon, we have taken the reduced mass 0.126  , then, 5 nmexa   and 13 meVexE  .  
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Fig. 1. Dependence of the energy per one electron-hole pair on the two-dimensional concentration 
of pairs, d = 1: mz = md = mh, ge = 1(1) , mz == md = mh, ge = 2 (2), and md = mh = 10mz, ge = 1 (3). 
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Figure 2 shows the dependence of the energy per one electron-hole pair on the two-dimensional concentration 
of pairs. In case of the strained SiGe layer (curve 1 in Fig. 2), the equilibrium carrier density N = 0.23 (about 1012 cm–2) 
and the binding energy equal to 1.15 (about 15 meV) are obtained. Equilibrium density is in a very good agreement 
with the experimental data, while the binding energy is somewhat different from those. 

At low concentrations of Ge, it should be expected that for the structure with an unstressed SiGe layer, the 
effective masses of charge carriers and the number of valleys would be the same as for silicon. Figure 2 shows the 
results of calculations for various silicon surfaces (curves 2–4). For the (100) surface, the minimum energy is achieved 
at Ne = 0.4, which corresponds to the concentration of 1.61012 cm–2. For the (110) surface, the binding energy of the 
electron-hole pair and the equilibrium density significantly increase in comparison with the results for the (100) surface. 
This result is associated with an increase both in the number of valleys and the electron density-of-states mass md. For 
the (111) surface, the binding energy is close to that for the (110) surface, while the equilibrium density of pairs 
increases slightly. The latter result is mainly due to an increase in the number of valleys. For the (111) surface, the 
equilibrium density of electron-hole pairs is Neq = 41012 cm–2. The three-dimensional density of electron-hole pairs can 

be estimated as 18 3/ 8 10 cmeqn N d    , which is more than 2 times greater than the equilibrium density of the 

three-dimensional liquid [16]. 

CONCLUSIONS 

In this paper, we proposed an original method for the approximate analytical solution of the nonlinear 
Schrödinger equation. This method allowed to analytically express the energy of the quasi-two-dimensional EHL 
through such parameters as electron and hole masses, anisotropy of masses, and the number of equivalent valleys and to 
find the value of the barrier for electrons, above which the formation of the spatially direct quasi-two-dimensional EHL 
is impossible. The influence of the anisotropy of electron masses and the number of valleys on the energy of the 
electron-hole pair is studied. It is shown that in contrast to the three-dimensional EHL, in a quasi-two-dimensional case, 
the anisotropy of the electron masses increases the electron-hole binding energy. 
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Fig. 2. Dependence of the energy per one electron-hole pair on the two-dimensional concentration 
of pairs, d = 1: the strained SiGe layer (1), the (100) surface, mz = 0.918m0, md = 0,19m0, mh = 
0.53m0, ge = 2 (2), the (110) surface, mz = 0.315m0, md = 0.324m0, mh = 0.53m0, ge = 4 (3), and the 
(111) surface, mz = 0.258m0, md = 0.358m0, mh = 0.53m0, ge = 6 (4). 
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A comparison with the experimental results is made for the Si/SiGe/Si structures with the strained SiGe layer. 
For the equilibrium density of electron-hole pairs and a critical barrier height, a satisfactory agreement between the 
model and experimental results is obtained. 

It is shown that the properties of the quasi-two-dimensional EHL depend on the anisotropy of electron masses 
and the number of valleys in silicon. The highest binding energy and pair density are obtained for the (111) silicon 
surface. The proposed model can be easily generalized to structures, in which there is a barrier for holes and a quantum 
well for electrons. The analytical results obtained can be used to estimate the parameters of the quasi-two-dimensional 
EHL in other semiconductors. 

The work was supported in part by the Russian Foundation for Basic Research and by the Ministry of 
Education and Science of the Krasnodar Region (Project No. 16-42-230280) 
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