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FORMATION OF FIBER MATERIALS BY PNEUMATIC SPRAYING 

OF POLYMERS IN VISCOUS-FLOW STATES 

I. A. Lysak,1,2 T. D. Malinovskaya,1 G. V. Lysak,1  UDC 538.951 
A. I. Potekaev,1,3 V. V. Kulagina,1,4 and D. I. Tazin4 

Using a novel ejection spraying unit and relying on new approaches, fibers are formed by the method of 
pneumatic melt blowing of polycarbonate, polypropylene, and polyethylene terephthalate. The proposed 
approach is based on the concepts of atomization of the polymer melt flow as a preferential regime for fiber-
material formation. From the analysis of the values of numerical characteristics in the zone of atomization and 
the physical background of the criteria under study a conclusion is drawn that the essential role in destruction 
of the jet belongs to the formation of a boundary layer in the melt under the action of friction forces, followed 
by its separation. An assumption is made on the prevailing action of the separating destruction of the melt jet 
via the mechanism of ‘skinning’ of the boundary layer of the melt due to a shorter time of its persistence 
compared to the development of the Kelvin–Helmholtz instability. 

Keywords: fiber material, fiber formation, method of pneumatic spraying. 

INTRODUCTION 

The advances in understanding the processes taking place during the formation of synthetic fibers favor 
an extension of the product line made from them and hence their increasingly wider general application [1]. 
Conventionally, these processes rely on extrusion of the viscous-flow polymers through the dies. A considerably high 
viscosity and low elasticity of the melts make the polymer flow through the dies difficult. In this connection, new 
approaches are sought for in order to develop fiber-formation processes. A special attention is given to a promising 
technology of direct aerodynamic formation of fiber materials from the melt, which offers a possibility of designing 
materials with special functional characteristics [2, 3]. Of particular promise are the methods of fiber formation under 
direct impact of an actuating medium (gas, vapor, aerosols) on a freely flowing jet of the polymer melt formed using 
ejectors. In these devices, the fiber-forming polymer melt is sprayed due to the energy of the gas flow generally forced 
at near sonic velocities, followed by its solidification as fibers. The processes for pneumatic spraying of a freely flowing 
jet due to their technological features are most suitable for sprayingof contaminated and inhomogeneous melts [4]. On 
the other hand, there are no sufficient physical concepts for optimization of the rational spraying regimes. In view of 
this fact, attempts are made to use the fundamental principles of hydraulics and gas dynamics with a purpose of 
analyzing the process of dispersion and formation of a spray pattern. 

Thus, the purpose of this work is to perform investigation of the influence of the processes taking place during 
spraying of a freely outflowing jet of the melt on the size distribution of the resulting polymer fibers. 
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substantially affect its melt blowing. Also, the melts are thought to be pseudoplastic non-Newtonian fluids and the 
process of their dispersion is characterized by high velocities. 

If the ratio of the kinetic energies of the air and polymer flows is  
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,  (1)  

then the velocity ratio would be  
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Here ρA and ρP are the air and polymer melt densities and VA and VP are the air and melt flow velocities. It follows from 
(2) that in the case of dispersion of the PP melt (ρP = 739 kg/m3) by air (ρA = 1.205 kg/m3) the air flow velocity would 
be at least 35 times that of the melt flow velocity, and in the case of dispersion of SPET (ρP = 1100 kg/m3) by air – 43 
times higher than the melt flow velocity. 

The average gas flow velocities in the characteristic cross-sections of the ejection spray gun were found using 
a specially designed application, EJFLUENT [7], whose computational algorithm is based on the equations of gas 
dynamics for the air flow rate Q  

 2
P

Q A


 


, (3) 

where µ is the flow rate coefficient found experimentally, А is the cross-section area of the opening from which the melt 
flows, Р is the pressure difference causing flow, and  is the gas density. Then the average effluent gas flow velocity 
V would be 

 
Q

V
A

 .  (4) 

The flow regime was determined from a comparison of the pressure difference ( 0/P P  ) with the critical 

ratio 
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,  (5)  

where P and Pcr are the pressure values in the input and critical cross-sections, P0 is the input nozzle pressure, and k is 
the adiabatic exponent. Note that the critical pressure ratio does not depend on the deceleration parameters but is 
a function of the physical gas properties only. The carrier gas was air for which k = 1.4, so cr = 0.528. 

Under the subsonic regime, the average velocity of air flow from an annular convergent nozzle was determined 
by the following expression [8]: 

  0
2

1

k
V R T T

k
 


,  (6) 

and under the supersonic regime, the average velocity was assumed to be equal to the sound velocity 
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absolute value of velocity would be a Gaussian, and the velocity would be close to zero near the walls. Given this, we 
can argue that the maximum velocity would be observed in the region where the flows converge, where it will be Vmax  
100 m/s. Therefore, the values of the air flow-to-polymer melt flow velocity ratio VA/VP would lie within the interval 
from approximately 63.3 to 64.5, which is a sufficient condition for formation of a steady dispersion jet of all polymers 
under consideration. 

In fiber-material formation, a significant role belongs to the regime of the polymer-melt disintegration [6]. The 
most important role among the governing parameters affecting the disintegration regime is thought to belong to the 
Weber number Wej for a jet, which characterizes the ratio of the inertia forces to the surface tension forces 

 
 2a a p p

jWe
V V d 




.  (8)  

Here dP is the polymer jet diameter determined from the mass balance equation (4) and  is the melt surface tension. 
A considerably large value of Wej indicates that jet disintegration can follow two mechanisms. The first is separation of 
micro drops from the wave crests on the upstream face of the jet, and the second mechanism is its catastrophic 
disintegration. 

The Reynolds criterion Rej for a jet characterizes the ratio of the inertia forces to the friction (viscosity) forces 
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A considerably large value of Rej suggests a turbulent regime of air flow. 
The Laplace criterion Lpj characterizes the ratio of the surface tension forces to the friction (viscosity) forces 
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p
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.  (10)  

At small values of Lpj, a transition from the skinning disintegration, taking place according to the mechanism 
of stripping the melt boundary layer, to the mechanism of the Kelvin–Helmholtz instability development is impossible 

 4 0.4We 1.65 10 Oh   ,  (11) 

where Oh = Lp–0.5 is the Ohnesorge number. 
The generalized criterion [5] Anj for a jet includes the Weber Wej, Reynolds Rej and Lapalace Lpj criteria 
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The calculated numerical values of the main criteria controlling the regimes of the jet disintegration in the 
dispersion zone during the fiber-material formation are presented in Table 2. 

Relying on the analysis of the values of numerical characteristics in the dispersion zone and the physics behind 
these criteria, a conclusion can drawn that the dominant role in the jet disintegration belongs to the formation of 
a boundary layer in the melt under the action of friction forces and its subsequent separation. 

In the course of the experimental testing of the proposed approaches of fiber-forming materials, the relative air- 
flow and melt-jet velocities remained constant and so did the jet diameter. The polymer melt density, surface tension, 
viscosity, and temperature were varied (see Table 1). In all of the experiments, a stable dispersion of the polymer melts 
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