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ORDER PARAMETER AND KINETICS OF NON-EQUILIBRIUM 

PHASE TRANSITION STIMULATED BY THE IMPACT OF 

VOLUMETRIC HEAT SOURCE 

E. E. Slyadnikov1,3 and I. Yu. Turchanovskii2,3 UDC 536.42 

The authors formulated an understanding of the order parameter and built a kinetic model for the non-
equilibrium first-order “solid body – liquid” phase transition stimulated by the impact of the volumetric heat 
source. Analytical solutions for kinetic equations were found, and it was demonstrated that depending on the 
phase transition rate “surface” and “bulk” melting mechanisms are implemented.  
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INTRODUCTION 

As it is known, slow change in temperature of a structural unstable system leads to various equilibrium phase 
transitions, for instance magnetic, ferroelectric ones etc. [1]. It is common practice to describe spontaneous 
transformations of this type with one low-frequency and long-wavelength mode, the intensity of which is set by the 
order parameter [2]. It is possible, when intensity of heat impact is small, as far as the system has time to relax into the 
equilibrium state. When power of the heat source is large, the system does not have time to return to the equilibrium 
state and can move so far away from it that the transition process itself becomes non-equilibrium, non-linear. Such 
kinetic transformation is observed, for instance, on the surface of materials subjected to the heat impact of nanosecond 
electron-ray beams [3]. Unlike the equilibrium phase transition, description of kinetic transformation requires 
identifying several hydrodynamic modes and is developed in synergetics [4].  

The classical approach to modelling a non-equilibrium first-order phase transition [5, 6] includes tracing the 
phase interface that separates the new phase from the initial one. This requires solving the Stefan problem with a free 
phase interface, position and shape of which are part of the solution. This model does not take into account the effect of 
such a factor as finite width of the interface, inside which initial and growing phases coexist and the transformation 
process unfolds.  

Continuum models of the phase field [7], describing the process of relaxation in non-equilibrium condensed 
medium as a change in spatially non-uniform field of the order parameter characterizing the system deviation from the 
equilibrium state, take into account the finite width of the phase interface. They take into account the interrelation 
between order parameter decrease in each point of the medium and absorption of heat that self-consistently reduces the 
phase transition rate. However, they do not take into account the thermodynamic fluctuations of the order parameter, 
fluctuations of the potential relief of the atoms of the medium that play a crucial role in the vicinity of the critical phase 
transition point.  
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Publications [8, 9] suggest a kinetic model of the first-order “solid body – liquid” phase transition, stimulated 
by the impact of a volumetric heat source, taking into account both the finite width of the phase interface and the 
random processes of fluctuations of the potential relief of the atoms of the medium in the vicinity of the critical phase 
transformation point. Phenomenological parameters of the model were evaluated; typical regularities of temperature and 
order parameter on time were obtained; kinetic equations were numerically solved for transition of unstable copper 
microvolume from the solid to the liquid phase.  

The goal of the present paper is to formulate an understanding of the order parameter and carry out 
an analytical study of the kinetic model of non-equilibrium first-order phase transition stimulated by a volumetric heat 
source, as well as to identify the melting mechanisms depending on the phase transition rate.  

1. ORDER PARAMETER AND KINETIC MODEL OF THE MELTING TRANSITION 

Under the impact of intense nanosecond energy sources on the material surface, area with enhanced heat energy 
output (volumetric heat source) is formed deep inside the irradiated sample [3]. In the case of high surface density of 
energy and small pulse time of ionizing radiation, the process of substance heating is accompanied with phase 
transitions under non-equilibrium conditions [4]. Phenomenon of non-equilibrium transformation of one phase of the 
medium into another, stimulated by the impact of a heat source, is characterized by continuous distributed influx of 
energy from the outside and its dissipation. So material in the zone affected by a heat source is a dissipative structural 
unstable medium [9]. Owing to the fact that the energy flow from source to thermostat flows in the area of phase 
transformation through every physically small volume of the structural unstable medium, this microvolume is thrown 
off the heat equilibrium and acquires the ability to be bistable. 

Bistable microvolume of the structural unstable medium has two stable fixed states (low-temperature and high-
temperature phases) and can stay in each of them for an unlimited period of time. External heat impact can lead to 
transitions from one fixed state to another. In order to trigger the non-equilibrium transition, power of the heat impact 
needs to exceed the threshold level.  

All thermodynamic theories of structural phase transitions rely on the idea [2] that the process of relaxation in 
the non-equilibrium medium can be described as change in spatially non-uniform field of the order parameter 
characterizing the system deviation from the equilibrium state. Moreover, change in the order parameter is accompanied 
with change in the medium symmetry, i.e. order parameter is a measure of deviation of atomic configuration in a less 
symmetrical phase from atomic configuration in a more symmetrical phase, measure of change in the short-range order 
of atoms. For instance, “crystal – melt” transformation is a transition from periodic symmetry of the crystal to complete 
symmetry of the liquid phase.  

It is known that the structure of liquid can be called “quasi-crystalline” for the melted metal near the transition 
temperature, because it reveals a certain degree of the short-range order of the same type as in the corresponding crystal. 
In that case, one can judge about the degree of the short-range order based on the average distribution of atoms around 
each of them. Obviously, this relative distribution should not depend on the choice of a central atom and should have 
spherical symmetry in relation to it. It can be characterized by some function of density distribution ( )r , equal to the 

average number of atoms per volume unit at the distance r from the central atom. By definition, product 
24 ( ) ( )r r dr g r dr    determines the average number of atoms located at the distance of r to r+dr from the central 

atom.  
Atoms located at the same distance from the central atom form its coordination sphere. Numbers of 

coordination spheres go up, the farther they are from the central atom. For an ideal crystal, binary function of density 
distribution can be presented as a sum for individual coordination spheres. Position of atoms in a crystal can be 
described by setting a digital number of distances rs and coordination numbers ns (s = 1, 2, 3, …), in practice by two 
vectors (r1, r2, …, rs), (n1, n2, …, ns). The melt is characterized by atoms of the first coordination sphere being located at 
a certain (as in the crystal) distance r1. And starting from the second sphere, they are described not by a single distance 
from the central selected atom, but by a set of close distances, i.e. each sphere turns out to be “blurred”. Such blur 
increases, as the numbers of spheres go up. That is why when r increases, Gaussian functions start overlapping more 
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and more, finally forming the constant “background” ρ = const corresponding to the average atom concentration in the 
crystal. 

Analyzing behavior of the binary function of density distribution in various structural states of a substance, one 
can make a conclusion that for unequivocal description of structural state of the medium undergoing transformation, 
one needs to introduce the following quantitative parameters of the structure: coordination numbers, equilibrium 
interatomic distance, root mean displacement of atoms and, finally, radius of correlation of particle positions (i.e. radius 
of coordination sphere on which particle concentration equals average atom concentration in the medium).  

Obviously, phase transition occupies a certain spatial volume. Describing the phase state in the course of 
melting, one needs to construct a certain functional dependence that will, in a continuous manner, describe the change 
of structure in all three volumes (crystal, liquid, and phase transition volume). Lev Landau in [2] introduced one 
characteristic value called the order parameter, in order to provide high-quality description of the phase transition 
accompanied with change in the structural state of the medium. This value changes from one in the solid phase to zero 
in the liquid phase. It is known from the experiment that for medium in the liquid state correlations in particle positions 
disappear completely on the sixth coordination sphere. 

As for the order parameter η describing crystal – liquid transition, we suggest taking the value equal to the sum 
of squared differences of particle concentrations on the coordination sphere and average atom concentration in the 
crystal at temperature T starting from the sixth coordination sphere. This value needs to be normalized by the same sum 
at the absolute zero. In that case, at the absolute zero, the order parameter η is equal to one, and after melting transition 
it will turn into zero. 

Following [2], let us present the thermodynamic potential of the structural unstable medium in the non-
equilibrium state F  as a function of temperature T and order parameter η. One should note that while temperature can 
be set arbitrarily, equilibrium value of the order parameter η0 should stem from condition that value F  is minimal at 
the set temperature in the zero external field. Breakdown for thermodynamic potential ( , )F T   of non-uniform 

unidimensional system, experiencing non-equilibrium first-order transition and located in the random field linked to the 
order parameter, looks as [9] 

 4 3 2 2( ) {[ ( , ) / 4 ( , )(1/ 2 ) ( , ) / 4] ( , ) ( , ) ( / 2 )( / ) }F dx x t x t x t x t x t D x            ,  (1) 

 ( , ) 0x t   , ( , ) ( , ) ( ) ( )x t x t S x x t t           .  (2) 

Axis x is chosen along the direction of electron beam propagation. Here ( , )x t  – random internal field (noise) 

emerging as a result of fluctuations of the potential relief of the atoms of the medium, ( ( ), ))T x q    – non-

equilibrium parameter of the medium, q  – volumetric density of the heat source energy, cT  – equilibrium temperature 

of initial and final phases, S  – noise intensity, ......   – averaging over random field configurations, D – mobility 
index of the order parameter. For instance, under equilibrium transition conditions, when 0q  , i.e. transition 

proceeds infinitely slowly, c c[( ) / ]T T T   , where T  – temperature of the medium overheating in relation to cT . 

Under non-equilibrium transition conditions, when q  is finite, i.e. transition proceeds infinitely quickly, non-

equilibrium parameter is determined by the rate of energy change in the elementary volume, in other words – by the 
sum of heat flow through the surface of elementary volume and volumetric density of the heat source energy. That is 
why ( / , ))T x q     , where /T x   – temperature gradient. At 0   the medium described by thermodynamic 

potential (2) has two stable states 01(0) 0  , 03(0) 1   and one unstable state 02 (0) 1/ 2  , but at * 1/ 2   the 

medium has only one physical stable state 01(1/ 2) 0  . Averaged (1) over random configurations of potential relief 

fluctuations of the atoms of the medium at first approximation can be put as ( , ) 0x t   . 

Fixed states of the medium 0i  for 1, 2, 3i   can be determined from condition 

 3 2
0 0 0 0( ) ( ) / { 3(1/ 2 ) (1/ 2) } 0i i i if F             ,  (3) 



 1469

 01( ) 0   , 02 ( ) (1/ 2) 3     , 03 ( ) 1 6      for 1/ 2 .  (4)  

Hence, values ( , )F T   in these fixed states are equal to  

 01( , ) 0F T   , 02( , ) (1/ 64) (1/8)F T     , 03( , )F T    .   (5) 

According to [2], regression of the order parameter fluctuations in the non-uniform medium to the non-
equilibrium is described by the Landau–Khalatnikov equation 

 2 2
01 02 03/ ( ) / ( )( )( ) /t F D x               ,   (6) 

 x    , 0t  , ( , ) 1t   , ( , ) 0t   , ( ,0) 1x  ,   (7) 

where   – positive coefficient that has dimensionality (1/s) and is proportionate to frequency of the atoms fluctuations 
of the medium. In order to take into account the processes of heat propagation in the unidimensional medium 
accompanied with emission (absorption) of heat, equation of the order parameter relaxation (6) needs to be 
supplemented with a heat transfer equation 

 2 2/ / ( ) ( ) /c T t T x q t f x L t         ,   (8) 

 ( , ) / 0T t x    , ( , ) / 0T t x    , c( ,0)T x T .   (9) 

Here x  – spatial coordinate chosen along the direction of electron beam propagation, t – time, T – temperature, λ – heat 
conductivity factor, J/(m·s·K), ρ – material density, kg/m3, с – specific heat capacity of material, J/(kg·K), q – volume 
density of the heat source power, J/(m3·s), L – latent heat of phase transition, J/kg. q(t) = q·H(t), H(t) = 1 at 0 < t < tim, 
H(t) = 0 at t < 0 и t > tim, tim – duration of the heat source impact, q = W/(tim·2σ), where W – surface density of the heat 
source energy, J/m2, σ – half-width of the Gaussian function f(x). Thermophysical properties of the medium were taken 
as independent from temperature and identical in solid and liquid phases. 

System of equations (6)–(9) allows for solutions of the running front type, propagating at the constant rate v  
[5], provided that the heat source is switched off after the start of melting. Physically, the sense of this condition is 
clear: the state of system in front of the running front does not change with time, i.e. substance identical in terms of 
composition, temperature and other physical properties feeds into the transformation front the entire time. If the heat 
source is not switched off, properties of the medium in front of the running front change with time and propagation of 
transformation will occur with variable distributions of temperature, order parameter and rate ( )v t . Let us suppose that 

transformation in the initial substance proceeds sufficiently slowly, then the front will slowly, in a quasi-fixed manner, 
change its rate of propagation, at each moment of time adjusting to the physical properties of the substance fed to the 
transformation front at that moment. Thus, propagation of the front goes through the substance undergoing 
transformation, in which order parameter and temperature slowly change in space.  

Let us search for wave solutions for system (6)–(9); in the case of wave propagation at variable rate ( )v t  there 

is a transition in the crystal: from low-temperature phase with order parameter 03 1   to high-temperature phase with 

order parameter 01 0  . For that purpose, let us move to the system of coordinates associated with the transformation 

wave front propagating from right to left: 

 ( )z x v t dt   , t t .   (10) 

Argument ( )z x v t dt    generalizes the customary wave combination z x vt   for the case of variable 

transformation propagation rate ( )v t . Independent impact of time is the second argument in (10), it is associated with 
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the fact that temperature distribution in the wave propagating with variable transformation rate ( )v t  also changes with 

the change in substance state before the front. 
Taking into account (10), the system of equations (6)–(9) will look as follows:  

 2 2/ / / / /c T t c v T z T z q L t L v z                 ,   (11) 

 z    , 0t  , ( , ) / 0T t z    , ( , ) / 0T t z    , c( ,0)T z T ,  (12) 

 2 2
01 02 03/ / ( )( )( ) /t v z D x              ,  (13) 

 z    , 0t  , ( , ) 1t   , ( , ) 0t   , ( ,0) 1z  .  (14) 

2. SOLVING ORDER PARAMETER RELAXATION AND THERMAL CONDUCTIVITY EQUATIONS  

2.1. Solving the order parameter relaxation equation 

It is difficult to solve system (11)–(14) analytically. However, one can see from (11)–(14) that volumetric 
source is only in the equation for temperature, so order parameter distribution does not depend on time and only 
depends on self-simulated variable z. That is why we shall first study kinetics of the non-equilibrium transition in the 
structural unstable medium using only the evolution equation for the order parameter (13). As for non-equilibrium 
parameter  , we shall consider it an external parameter to be calculated later when solving equation (11). The main 
solution for equation (13) under condition / 0t    is a switching wave [5]; during its propagation in the crystal, 

transition occurs from low-temperature phase with order parameter 03 1   to high-temperature phase with order 

parameter 01 0  . Rate of the switching wave equals  

 1/ 2 1/ 2
01 03 02(2 ) ( 2 ) 12(2 )D D            .   (15)  

The minus sign is due to the fact that the wave propagates from right to left. One can see from (15) that the switching 
wave rate is proportionate to the value of non-equilibrium parameter ( / , ))T x q     , squared root of 

transformation rate   and mobility index of the order parameter. Stemming from the physical sense of the problem, 
value   is limited ( 1/ 2 ), so the switching wave propagation rate is also limited and has a maximum

* 1/ 26(2 )D    , which is determined only by properties of the medium.  

If the wave rate   is small, then the profile of this wave ( )z   , z x vt   differs little from the profile of 

the resting interface boundary at 0   that has a view 

 ( ) (1/ 2)[1 th( / )]z z l   , 1/ 2(2 / )l D  .   (16) 

Here parameter l  plays the role of the switching wave front width.  

One can see from (13) that fixed uniform states with order parameter 03  and 01  are always stable in relation 

to small non-uniform fluctuations of the order parameter. However, when there is a local order parameter source 
(crystal surface, grain boundary), emergence of a large (critical) order parameter fluctuation is possible, which can lead 
to formation of the switching wave front and transition from metastable state 03  to stable state 01  (see Fig. 1). I.e. 

the Stefan (surface) melting mechanism is implemented.  
However, in the case of critical level of intensity and heat source impact depth, local absolutely unstable areas 

of the crystal emerge in the sample volume (areas of overheating maximums) in relation to infinitely small new phase 
fluctuations. I.e. a different, non-Stefan, bulk mechanism of non-equilibrium transformation is implemented.  
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Values α, D are phenomenological model parameters that can be assessed using their physical sense and 
interconnection with thermophysical parameters of the medium, with characteristics of volumetric heat source of phase 
transformation ftt , temperature conductivity coefficient a:  

 ft imp[ / ] [ /( / )]t L q L W t     , /a c   , ft(1/ )t  , D a .   (17) 

Inserting characteristic thermophysical parameters for copper in the solid phase с = 0.385 J/(g·K), 
ρ = 8.36 g/cm3, L = 213 J/g, Tc = 1358 K, λ = 4 J/(s·cm·K), and for the heat source – volumetric power density 
q = 4.06·1011 J/(cm3·s) (for the electron beam W = 2 J/cm2, σ = 10–4 cm, timp = 7·10–8 s), from (17) we shall obtain 

9
ft 4.4 10t    s, 1110   s–1, a = 0.7 cm2/s, D = 10–3 cm2/s. 

Obtained estimates of parameters α, D allow determining the maximal rate *v  and width of the switching wave 
front l: 

 * 840v   m/s, 1/ 2 9(2 / ) 1.4 10l D      m.   (18) 

Hence the switching wave rate can change from zero to 840 m/s, and width of the phase transformation front is 
small in terms of order parameter and equals four interatomic distances. In order to calculate the switching wave front 
rate, one needs to estimate the value of non-equilibrium parameter ( / , ))T x q     , for that purpose we shall self-

consistently solve the thermoconductivity equation (11), (12).  

2.2. Solving the thermal conductivity equation 

Estimates show that thermal conductivity factor is much higher in a solid body than mobility index of the order 
parameter D ( /a c D    ). That is why width of the transformation wave front in terms of order parameter will be 

much smaller than the temperature front width, hence it can be sent to zero when solving the thermal conductivity 
equation. Then in point 0z   temperature c(0, )T t T , ( 0, ) 1t   , (0, ) 1/ 2t  , ( 0, ) 0t   , hence 

(0, ) / 0T t t   , (0, ) / 0t t   , (0, ) / ( )t z z      , as far as 
0

0

( ( , ) / ) ( 0, ) ( 0, ) 1dz z t z t t



        . 

Taking into account the latter properties, system (11)–(14) will look as follows:  

 2 2/ / / ( )c T t c v T z T z q L v z             ,   (19) 

 z    , 0t  , ( , ) / 0T t z    , ( , ) / 0T t z    , c( ,0)T z T , c(0, )T t T ,  (20) 

 ( , ) 1z t   for 0z    , (0, ) 1/ 2t  , ( , ) 0z t   for 0 z    .  (21) 

It is known [6] that system (19)–(21) is equivalent to the Stefan problem 

 2 2/ / /c T t c v T z T z q          ,   (22) 

 z    , 0t  , ( , ) / 0T t z    , ( , ) / 0T t z    , c( ,0)T z T , c(0, )T t T ,  (23) 

 ( 0, ) / ( 0, ) /L v T t z T t z q           ,  (24) 

where v – movement rate of the phase transformation boundary. Let us solve system (22)–(24) behind the 
transformation front that moves from right to left along axis z:  
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 2 2/ / /c T t c v T z T z q          , 0 z   , 0t  ,  (25) 

 c(0, )T t T , ( , ) / 0T t z    , c( ,0)T z T ,   (26) 

 ( 0, ) / ( 0, ) /L v T t z T t z q           .   (27) 

For that purpose, let us move on to dimensionless variables 

 / rt t t , / rz z z , / cT T T , / rv v v , / ra a a , / rq   ,  (28) 

where rt , rz , cT , /r r rv z t , /a с   , 2 /r r ra z t , /r c rc T t    – values characteristic for the process of non-

equilibrium phase transformation. Obviously, we can determine the characteristic time rt  as time of phase 

transformation ft /t L q  , and characteristic length rz  as depth of radiation penetration  . Then system (25)–(27) 

will look as follows:  

 2 2/ / /T t v T z a T z          , 0 z   , 0t  ,   (29) 

 (0, ) 1T t  , ( , ) / 0T t z    , ( ,0) 1T z  ,  (30) 

 c( / )[ ( 0, ) / ( 0, ) / ]v cT L a T t z a T t z           .   (31) 

Solving system (29)–(31) using the Laplace transform at 0 z   , we obtain 

     2 2

0

( , ) 1 1/ 2 erfc / 2 / 4 exp( / )erfc / 2 / 4
t

T z t t d z a v a vz a z a v a
                               

 , 

    2 1/ 2 2 2 3 / 2( 0, ) / ( / 2 ) 2 / exp( / 4 ) / 6 exp( / 4 )T t z v a t a v a t v a a v a t              .  (32) 

One can solve system (22)–(24) in analogous way in front of the transformation front that is moving from right to left 
along axis z, when 0z   :  

     2 2

0

( , ) 1 1/ 2 erfc / 2 / 4 exp( / )erfc / 2 / 4
t

T z t t d z a v a vz a z a v a
                                 

 , 

    2 1/ 2 2 2 3 / 2( 0, ) / ( / 2 ) 2 / exp( / 4 ) / 6 exp( / 4 )T t z v a t a v a t v a a v a t             .  (33) 

Inserting (32), (33) into (31), we obtain the non-linear equation for movement rate of the phase transformation boundary 

  2 1/ 2 2 2 3 / 2
c( / ) 1 4 / exp( / 4 ) / 3 exp( / 4 )v cT L a v a t v a v a t          .  (34) 

In limit 1t  , c( / ) 1cT L   dimensionless rate of the phase transformation boundary equals  

   1/ 2 3 / 21 4 / 1/ 3v a t a t       
.  (35) 
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Correspondingly, dimensional rate of the phase transformation front is equal to  

   1/ 2 3 / 2
0( ) 1 4 / 1/ 3v t v a t a t       

, 0 ( / )v q L    .   (36) 

One can see from (34), (35) that in the beginning of the transition period, rate of the phase transformation 
boundary assumes a value 0v  that equals the ratio of product of depth and bulk density of the source power and the 

product of melting heat and medium density. One can see that the front rate is non-uniform, it increases first in 
proportion to the square root of time (as far as dimensionless temperature conductivity is 1a  ), but then it becomes 
limited. The latter result enables us to equate expression for rates (15) and (36) in the limit 1t   

   1/ 2 1/ 2 3 / 2
0( ) 12(2 ) ( ) 1 4 / 1/ 3t D t v a t a t           

  (37) 

and self-consistently calculate the dimensionless parameter of the medium non-equilibrium  

   1/ 2 3/ 2
0( , ) 1 4 / 1/ 3q t a t a t         

, 1/ 2
0 ( ) ( / ) /12(2 )q q L D     .  (38) 

Therefore, there is a solution for system (11)–(14) representing the interconnected system of two fronts of order 
parameter and temperature propagating in space at a non-uniform rate (with acceleration first and then at a limited rate) 
that describes the process of non-equilibrium melting phase transition process.  

3. DISCUSSION OF RESULTS AND CONCLUSIONS 

Studying the binary function of atom distribution in the melting phase transition, one can conclude that for 
unequivocal description of structural state of the medium the following quantitative structure parameters need to be 
determined: coordination numbers, equilibrium interatomic distance, root mean displacement of atoms and, finally, 
distance at which correlations in particle positions disappear (i.e. particle concentration on the coordination sphere 
equals average atom concentration in the crystal). It is known from the experiment that for the medium in liquid state 
correlations in particle position disappear completely on the sixth coordination sphere. As for the order parameter η 
describing “crystal – liquid” transition, we take the value equal to the sum of squared differences of particle 
concentrations on the coordination sphere and average concentration of atoms in the crystal at temperature T, starting 
from the sixth coordination sphere that needs to be normalized by the same sum at the absolute zero. In that case, at the 
absolute zero, the order parameter η equals one, and after melting transition it turns to zero. 

Analysis of the kinetic model study results allows making a conclusion that the process of melting phase 
transition stimulated by a volumetric heat source occurs under non-equilibrium conditions of significant local 
overheating of the volume. It can be accompanied with formation of the locally unstable state of the microcrystal and 
proceed according to two mechanisms: surface and bulk.  

At small heating rates, the melting process is described as a system of two fronts of the order parameter (Fig. 1) 
and temperature propagating in space at a non-uniform rate (first with acceleration in proportion to root of time, and 
then at a limited rate). Crystal is in metastable state; it is stable in relation to small fluctuations. If a large critical 
fluctuation of the new phase emerges on its free side surface, melting starts that propagates to its center in the form of 
a wave switching from metastable state to stable liquid state. I.e. the “surface” mechanism of the phase transition is 
implemented. If there is a grain boundary in the crystal, melting starts from the free surface and on the grain boundary 
practically at the same time. Melting front consists of four atomic layers, and rate of melt front propagation is not 
constant for the “surface” mechanism (for instance, at volumetric density of the source q = 4.06·1011 J/(cm3·s) it is 
24 m/s), while its value is proportionate to the source intensity, but limited by physical properties of the medium (less 
than 840 m/s). 
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