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THE MECHANISM OF ORIENTATION DEPENDENCE OF CYCLIC 

STABILITY OF SUPERELESTICITY IN NiFeGaCo SINGLE 

CRYSTALS UNDER COMPRESSION 

E. E. Timofeeva,1 E. Yu. Panchenko,1  UDC 669.24’1’871-539.371:548.55 
N. G. Vetoshkina,1 Yu. I. Chumlyakov,1  
A. I. Tagiltsev,1 A. S. Eftifeeva,1 and H. Maier2 

Using single crystals of the Ni49Fe18Ga27Co6 (at.%) alloy, oriented along [001]- and [123]-directions, cyclic 
stability of superelasticity is investigated in isothermal loading/unloading cycles at Т = Af +(12–15) K 
(100 cycles) under compressive stress as a function of given strain per cycle, presence of disperse γ-phase 
particles measuring 5–10 µm, austenitic (B2 or L21) and stress-induced martensitic crystal structure (14М or 
L10). It is shown that single-phase L21-crystals demonstrate high cyclic stability during L21–14M-transitions 
with narrow hysteresises Δσ < 50 MPa in the absence of detwinning of the martensite. During the development 
of L21–14М stress-induced transformation, the reversible energy ΔGrev for these crystals exceeds the dissipated 
energy ΔGirr, and ΔGrev/ΔGirr = 1.7–1.8. A significant degradation of superelasticity is observed in [123]-
oriented crystals during the development of L21–14M–L10-transformations followed by detwinning of the L10-
martensite crystals and heterophase (B2+γ) single crystals, irrespective of their orientation during the B2–L10-
transition. In the latter case, martensitic transformations are characterized by a wide stress hysteresis 
Δσ ≥ 80 MPa and the dissipated energy exceeds the reversible energy ΔGrev/ΔGirr = 0.5. The empirical 
criterion, relying on the analysis of the reversible-to-irreversible energy ratio, ΔGrev/ΔGirr, during stress-
induced martensitic transformations, can be used to predict the cyclic stability of superelasticity in NiFeGaCo 
alloys subjected to different types of heat treatment. 

Keywords: superelasticity, cyclic stability, thermoelastic martensitic transformations, single crystals, stress 
hysteresis. 

INTRODUCTION 

Nickel-base ferromagnetic Heusler alloys with a shape-memory effect have been intensively investigated for 
the recent twenty years. Their principal feature is a possibility of controlling the austenite – martensite phase transition 
not only via temperature and mechanical stress variations but also using a magnetic field. Nickel-base Heusler alloys 
(NiMnGa, NiFeGa(Co), NiMnInCo) exhibit high-temperature superelasticity (SE) up to 400°С, very large field-induced 
strains up to 10%, and magneto- and elastocaloric effects [1–3]. These multifunctional materials offer new practical 
solutions due to multiple transformations of the magnetic and thermal energies into mechanical work and vice versa. 
One of the principal factors, preventing their extensive application in multi-shot reclosing relays, is the low cyclic 
stability of their functional properties. Today, the investigations dealing with microstructural mechanisms of 
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degradation and methods for improving the stability of thermomechanical properties of Heusler Ni-base alloys are few 
[4–6]. It is shown in [5] that NiFeGa single-phase crystals demonstrate a strong orientation dependence of cyclic 
stability of SE under tensile stress. Single crystals oriented along the [001]-direction in the case of 3% given strain 
withstand up to 18 000 loading/unloading cycles during SE without significant degradation and exhibit high cyclic 
stability: neither the values of critical stresses of martensite formation σcr nor that of stress hysteresis Δσ depend on the 
number of loading/unloading cycles, and there is no increase in the irreversible strain εirr, while the [123]-oriented 
crystals fail after 60 cycles [5]. There are no answers to the physical reasons for the strong orientation dependence, the 
microstructural mechanisms of degradation, the influence of the level of given strain per cycle, the sequence of 
martensitic transformations (MTs) and the influence of the disperse second-phase particles on the cyclic stability in 
these crystals so far. Without investigations providing the answers to these questions, it is impossible to predict the 
stability of functional properties to cyclic stress. The purpose of this work is to study the orientation dependence of 
cyclic stability of SE under tensile stress of Ni49Fe18Ga27Co6 (at.%) single- and heterophase single crystals oriented 
along [001]- and [123]-directions.  

In order to determine the influence of crystal structure of stress-induced martensite (14М, L10) and γ-phase 
particles on cyclic stability of SE, we primarily selected Ni49Fe18Ga27Co6 as-grown single crystals in one-phase with the 
L21-structure [3, 6]. It was shown in our previous work [3] and in [7] that in L21-NiFeGa(Co) single crystals in 
compression within the temperature interval Т < 340–370 K an L21–14M-MT occurs in the [001]-orientation. In other 
orientations ([011], [012]), there is a sequence of L21–14M–L10-MTs. Secondly, we took Ni49Fe18Ga27Со6 single 
crystals after thermal treatment: heating to 1373 K, which is higher than the order – disorder transition temperature 
(~923–973 K [8]), annealing for 25 min and quenching into water. After quenching, the crystals contain γ-phase 
particles (length 5–10 µm, volume fraction ~7%) [9] and undergo a stress-induced В2–L10-MT. 

The choice of [001]- and [123]-orientations of single crystals for the present investigations of orientation 
dependence of SE cyclic stability relies on the analysis of theoretical calculations of transformation strain using the 
theory of energy minimization during the formation of twinned martensite εCVP and its subsequent detwinning εCVP+detw 
[7]. It is evident from Table 1 that the contribution from the 14М-martensite detwinning into transformation strain 
approximates zero irrespective of crystal orientations. If the L10-martensite does not detwin during a stress-induced MT, 

then the values of transformation strain during the formation of 14М- and L10-structures are close 01 14
CVP+detwCVP

L M   , 

which is observed in [001]-oriented single crystals. In [123]-oriented single crystals, detwinning of L10-martensite 

contributes into the transformation strain and 0 01 1 14
CVP+detwCVPCVP+detw

L L M     . As it follows from [10, 11], during 

detwinning the habitus plane moves from its invariant undistorted position, which gives rise to development of internal 
stresses, increases energy dissipation during MTs, and can favor SE degradation. 

1. EXPERIMENTAL PROCEDURE  

Single crystals of the Ni49Fe18Ga27Со6 (at.%) alloy were grown using the Bridgeman process. The specimens 
oriented along [001]- and [123]-directions for compressive tests were shaped as parallelepipeds measuring 
2.8×2.8×6 mm. Orientation dependence of their cyclic stability was investigated in two structural states: 1) after growth 
without any additional heat treatment (L21-crystals); and 2) after annealing at 1373 K for 25 min, followed by 
quenching into water (В2+γ)-crystals). Isothermal loading/unloading cycling (100 cycles) was performed at the 

TABLE 1. Theoretical Values of Transformation 
Strain for NiFeGa(Co) Single Crystals [7] 

MT type L21–14M L21(В2)–L10 
Orientation [001] [123] [001] [123] 
εCVP,% 6.03 3.63 6.25 3.79 

εCVP+detw,% 6.38 3.72 6.25 4.77 
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SUMMARY 

The influence of crystal structure of stress-induced martensite (14М orL10), detwinning of L10-martensite 
crystals, strength properties of austenite and martensite, as well as γ-phase particles measuring 5–10 μm on cyclic 
stability of SE under conditions of thermal loading/unloading cycling (1 to 100 cycles) in [001]- and [123]-oriented 
single crystals of Ni49Fe18Ga27Со6 (at.%) alloy in single-phase (L21) and heterophase (B2+γ) states at the temperature 
Т = Af +(12–15) K has been experimentally determined. 

Single-phase L21-single crystals oriented along [001]-direction exhibit the highest cyclic stability of SE: as the 
number of cycles increases from 1 to 100, the irreversible strain is as low as 0.2%, and the values of critical stress σcr 
and stress hysteresis Δσ remain constant within the measurement error 5%. The physical reasons for high stability of 
these crystals to cyclic degradation are as follows: 1) high strength properties of L21-austenite (σcr

A = 1000 MPa) and 
14М-martensite (σcr

M = 1680 МПа); 2) low energy dissipation and hence narrow stress hysteresis (Δσ = 12 MPa), which 
is controlled by high mobility of the phase boundary during the development of L21–14М-transformation and the 
absence of a contribution from detwinning of the martensite crystals. 

In low-strength, one-phase L21 single crystals oriented along [123]-direction, during the development of L21–

14М–L10-MT followed by detwinning of L10-martensite crystals (εg = 5.5% ~ εCVP+detw(L10)) a severe degradation of SE 
is observed: as the number of cycles is increased, the irreversible strain increases up to 0.7% and the values of σcr and 
Δσ decrease by 25 and 30%, respectively. This behavior is dictated by: 1) low strength properties of L10-martensite 
(σcr

M = 270 MPa; 2) large value of energy dissipation and hence a wide stress hysteresis Δσ = 100 MPa, which is 
associated with low mobility of the phase boundary during the development of L21–14М–L10-transformation due to the 
distorted invariant position of the habitus plane in the course of detwinning of L10-martensite crystals. In the cases 
where the given strain in [123]-oriented crystals is small and there is no martensite detwinning at εg = 3.5% 
~ εCVP+detw(14M) = εCVP(L10), the value of stress hysteresis is reduced by a factor of 2 (Δσ = 50 MPa), and SE is more 
stable. 

The cyclic stability of SE in (B2+γ) heterophase single crystals of Ni49Fe18Ga27Со6 alloy during the 
development of B2–L10-MTs and in the absence of detwinning of L10-crystals under loading εg = εCVP(L10) has been 
observed to decrease compared with single-phase L21 single crystals. This is controlled by the changed morphology of 
L10-martensite crystals and the multivariant character of MT via the prevailing nucleation of martensite crystals near the 
particle–matrix boundary. 

In this work, a method for predicting cyclic stability of SE from the ratio between the reversible ΔGrev and 
dissipated ΔGirr energies during the development of a stress-induced MT has been proposed. In L21-single crystals of 
Ni49Fe18Ga27Со6 alloy in single-phase state, an L21–14М stress-induced transformation is characterized by a high level 
of reversible energy ΔGrev, which exceeds that of the dissipated energy ΔGirr, and represents a driving force of the 
reverse MT (ΔGrev/ΔGirr = 1.7–1.8), which favors high cyclic stability of SE. During the development of L21–14М–L10-
MTs in [123]-oriented single-phase crystals and B2–L10-MTs in (B2+γ)-heterophase single crystals, the ratio between 
the reversible and dissipated energies is smaller than unity ΔGrev/ΔGirr = 0.5, and these crystals demonstrate a low cyclic 
stability of superelasticity. 

This study has been supported by the Russian Science Foundation, Grant No. 16-19-10250. 
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