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THE COSMOLOGICAL CONSTANT AS A CONSEQUENCE OF THE 

EVOLUTION OF SPACE  

A. M. Boichenko UDC 530.12 

Conditions are considered in various approaches, determining the dimensionality of a space in which specific 
physical interactions are described. The dimensionality of the Universe does not necessarily have a fixed value. 
The cosmological constant is interpreted as the energy density being released in the remaining dimensions 
when the dimensionality of space is decreased.  
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INTRODUCTION  

The development of philosophical ideas about the structure of the world surrounding us has led to the concept 
of space as a category characterized by extension in length, width, and depth. It seemed natural that such a space enters 
in the role of only a storage place of things and that it is three-dimensional. The experimental development of 
electrodynamics at the turn of the nineteenth century (the late 1800’s through the early 1900’s) led H. Lorentz in 
a treatment of the electron to some convenient transformations of the spatial coordinates and time. A. Poincaré 
generalized these transformations to the point of absolute accuracy and considered them as elements of transformations 
of a four-dimensional manifold, where 4-vectors consisting of the spatial coordinates and time preserving an invariant 
interval of the point coordinates of this manifold.  

However, the four-dimensional character of space did not last long. It did not take long before the first efforts 
to unify gravitational and electromagnetic interactions, undertaken within the framework of an extension of the general 
theory of relativity (GTR), showed that the dimensionality of the Universe should be greater than four. A possible 
treatment of the nature of the cosmological constant (CC) and its connection with the dimensionality of spacetime with 
reference to current approaches to its description is presented in the paper.  

LOCAL PHYSICAL THEORIES  

Significant progress in physics has been associated with the use of the Lagrange functions with local density. 
The Lagrange function (Lagrangian) or its density is defined on spatial structures, the simplest of which is a point in 
space. Such Lagrange functions are called local. It is thought that the interactions that are well known at the present 
time ‒ gravitational, electromagnetic, weak, and strong ‒ are a manifestation of some unified interaction that splits into 
the indicated components as one climbs down the scale of the characteristic energy of the interaction of their 
representatives. The success of A. Salam and S. Weinberg in unifying the electromagnetic and weak interactions 
strengthened this conviction. According to the available estimates, unification of the electroweak and strong interactions 
in such a case should take place at energies on the order of 1016 GeV (Grand Unification), and of all four interactions – 
at energies on the order of 1019 GeV.  
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One of the approaches to unification consists in a consideration of multidimensional spaces, the structure of the 
metric tensor of which enables a description of not only the gravitational field, but also the other fields that we seek to 
unify. The first of these approaches was that of T. Kaluza [1] in an attempt to unify gravitation and electromagnetism. 
The fifteen 5-dimensional Hilbert–Einstein equations (HEEs) split into ten ordinary 4-dimensional HEEs, the four 
Maxwell equations, and an additional scalar equation. It is assumed that the fourth spatial dimension is curled up into 
a very small-sized loop, not accessible to direct perception (it is compactified).  

The low-lying spectra of systems in the presence of the compact curled-up dimension and without it coincide. 
The difference in the spectra begins with terms of order a/R, where a is the characteristic size of the system and R is the 
radius of the compact dimension into which one of the extra coordinates is curled up [2]. As R tends to zero, the 
corrections tend to infinity. As of yet, no contribution from such corrections has been seen in experiments.  

A similar approach to the unification of the gravitational-electroweak interactions leads to a 6-dimensional 
space for one generation and a 7-dimensional space for three generations of leptons. In the case of unification of the 
gravitational-electrostrong interactions, space should be 7-dimensional, taking the three generations of quarks into 
account and 8-dimensional if the color-triplet nature of quarks is also taken into account [1, 3]. But progress in the 
description of the physical picture of the world by the local Lagrangians has been accompanied by conceptual 
difficulties in attempts to wring out such a description, which have still not been resolved. Let us consider a few of 
them.  

The equality of inertial and gravitational masses. The equality of gravitational and inertial masses in GRT is 
considered to be an exact law of nature. It is assumed that this fact is proven in the theory, its proofs are given, for 
example, in [4, 5]. But in actual fact, the equality of these two types of masses in the theory is valid only in systems of 
special form, in particular, Cartesian. In the remaining systems, inertial mass can take an arbitrary value ‒ negative as 
well as positive [6].  

Conservation laws in GRT. There is also the more essential, indeed key problem of determining the 
gravitational energy and specifying the laws of conservation of energy-momentum in GRT. Great efforts to resolve it 
have not led to success. It turned out that the introduction of the Einstein pseudotensor pointed the way to its solution. 
But in this case, in the spacetime transformations, the energy of the gravitational field varies (for example, the Boyer 
paradox). C. Møller formulated conditions on the pseudotensor of the gravitational field that should preclude the 
possibility of obtaining incongruous results, but he himself proves a theorem to the effect that in principle these 
conditions cannot be satisfied [4].  

Gravitational waves. A wave transports energy and momentum, but there are serious problems with their 
definition (see above). It is difficult to indicate a generally covariant criterion for the wave nature of an effect associated 
with solutions of the HEEs, there are difficulties associated with the use of reference systems (the reference criterion), 
with the determination of the dynamical degrees of freedom (orientational, polarizational), it is even unclear specifically 
how the curvature of spacetime should be affected by a gravitational wave. Many problems fall away in the linearized 
version of a description of gravitational waves. But the HEEs are nonlinear, and the superposition principle does not 
work for them. For this reason, it is not clear in this context how to distinguish wave solutions from nonwave solutions. 
The quantum theory of the linearized gravitational field is not renormalizable, and efforts to adapt it to this purpose lead 
to the appearance of infinities which cannot be eliminated by introducing a finite number of counter-terms [1].  

Many difficulties in the description of gravitation are apparently associated with the fact that it cannot be 
quantized [1, 7]. Subsequent to the lack of success in quantizing gravitation, the idea was advanced of a secondary 
character of the curvature of spacetime [8]. It is assumed that gravitation is not a fundamental interaction, but represents 
the macroscopic (long-wavelength) limit of a more general theory due to a quantized field [5]. Thus, in theories with the 
local Lagrangians the dimensionality of spacetime is obtained as a consequence of an extension of the metric tensor to 
include components describing other, nongravitational interactions. The difficulties mentioned above must be borne in 
mind in any question pertaining to the completeness of such a description.  
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NONLOCAL PHYSICAL THEORIES  

The next object up in complication after a point is a one-dimensional structure ‒ a line. The use of theories with 
the local Lagrange functions greatly simplifies the treatment, but nowhere does it follow that these are the only possible 
physical theories. Lines on which a Lagrange function is defined are called strings; correspondingly, we are dealing 
with string theories. For the most part, optimism in regard to string theories is due to the fact that this approach has the 
potential to lead to quantization of gravity. The gravitational interaction has not yet been quantized, and gravitational 
waves also have not yet been discovered. However, the gravitational interaction should, it seems, in a positive solution 
of the given problems, be realized by a particle whose spin is equal to 2 [1]. In the spectrum of the oscillations of 
a string, particles have been detected with spin 2 [2], and this is the main argument that physics is nonlocal and that 
further development of the theory must be sought in a string approach. Note that so far all of the advantages of string 
theory remain without experimental confirmation.  

What does the string approach give in regard to the question pertaining to the dimensionality of our space? 
Quantization of strings for the boson sector leads to the transverse Virasoro operators of various modes. The generators 
of the Lorentz transformations of the string coordinates (the Lorentz charges) are expressed in terms of the Virasoro 
operators, the mass of the string is expressed in terms of the zero-mode Virasoro operator, etc. Calculation of various 
characteristics containing the given operators is quite specific and makes use, for example, of an analytic continuation 
of the Riemann zeta function. The commutative relations for generators of the Lorentz charges depend both on the 
Virasoro operators and on the dimensionality of the space under consideration. Valid commutation relations are 
obtained for the dimensionality of the space in which the strings are considered, equal to 26. Including the fermion 
sector in the treatment leads to the theory of superstrings. A similar calculation in the theory of superstrings leads to 10-
dimensional spacetime.  

There are five types of nontrivial 10-dimensional supersymmetric theories of superstrings: types I, IIA, IIB, and 
two heterodyne types: E8E8 and SO(32). It turned out, for example, that for a certain dimensional reduction of 11-
dimensional membrane (n = 2) theory, superstrings of type IIA are obtained [9]. From an 11-dimensional theory 
containing membranes with n = 2 and 5 (the M5-brane is magnetically dual to the M2-brane in 11 dimensions), in 
various limits it is possible to obtain all 5 types of 10-dimensional superstring theories. This theory is called M-theory. 
Note that the 11-dimensional theory of supergravitation is also obtained from M-theory in the low-energy limit. The 
meaning of M-theory has still not been elucidated. One thing is clear, however, namely that the five superstring theories 
and M-theory are different sides or limits of one theory [2].  

DESCRIPTION OF GEOMETRY ON THE BASIS OF PHYSICAL STRUCTURES  

There is also an approach to the description of geometry on the basis of physical structures, considered by Yu. 
I. Kulakov and coworkers. The given approach is not based on a search for primordial matter, i.e., on the traditional 
historical path of development, but on a search for primordial structures. In particular, neither fields nor space are 
contained in it. The form of the relations between elements of a structure allow us to become aware of the prototype of 
the emerging concepts of space and interaction [1].  

Unary physical structures. At the basis of the approach lies a set of elements, the number of which is the rank 
of the structure r, and between which pairwise relations aik are established. We seek a general form of the function  

 Ф = 0,  (1) 

establishing a connection between these relations. All possible laws (1) are found which the elements of the structures 
obey. These laws are found from the requirement that r arbitrary elements not coincident with the originally chosen 
elements lead to the same identity satisfied by the initial elements, i.e., identity (1). The obtained solutions of Eq. (1) 
have the form of connections between n = r – 2 elements of the structure, and the number n is associated with the 
dimensionality of the space. These very connections have the form of a quadratic relation between r – 2 elements of the 
structure and are directly interpreted as the square of the length between n coordinates of the elements. Such 
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an approach for a set of 5 elements leads to three-dimensional spaces with different geometries: Euclidean, pseudo-
Euclidiean, the first non-Eucliean geometry (Lobachevskian), the second non-Euclidean geometry (Riemannian), 
a peculiar symplectic geometry, etc. Three practically unknown exotic geometries are also obtained, mentions of which 
were later found in forgotten works of past geometers.  

Binary physical structures, or binary systems of complex relations (BSCRs). In this case, binary connections 
or relations between r elements of one set and s elements of another set are established, i.e., binary structures of rank (r, 
s) are considered. Similarly as in the unary case, a general form of functions establishing a connection between these 
relations is sought. It turns out that only structures of rank (4, 2), (2, 4), (r – 1, r), (r, r), and (r, r + 1) are nontrivial. In 
contrast to the case of unary structures, for systems of binary structures, the problem of the form of functions Ф is 
solved in general form. Unary systems of relations can be obtained from binary systems by way of a certain gluing of 
elements of different sets, where the relations between them are constructed from the primordial binary relations. The 
obtained unary relations lead to the prototype of space (see above).  

WHAT IN FACT IS THE DIMENSIONALITY OF SPACE?  

Local theories. In the descriptions of our world by local theories the dimensionality of space grows 
proportionately as one takes an increasing number of interactions into account. Thus, the presence of the 
electromagnetic interaction along with the gravitational interaction increases the dimensionality of space from 4 to 5, 
etc., and taking all of the interactions known to us into account leads to 11-dimensional space. It is now thought that the 
evolution of our world takes place in accordance with the concept of the Big Bang [10]. If there are interactions we 
don’t know about, then the dimensionality of space should be greater than eleven. Such a situation was entirely possible 
at times, for example, from 10–32 to 10–12 s, when, according to the Big Bang, separation of interactions took place. At 
the present time, the representatives of these unknown interactions could have disappeared (for example, as a result of 
annihilation processes) or they cannot be detected for whatever reasons. It is also possible that some representatives of 
these interactions have remained in vanishingly small quantities, but, by virtue of their high-energy character, may be 
inaccessible to present-day measurement techniques. But even at the present time (13.7 billion years) it is not possible 
to completely rule out the presence of interactions unknown to us. It is well known that the baryonic component of 
matter by itself is not capable of explaining the emergence of galaxies [10]. The difference between the observed mass 
and the dynamical mass in the Universe also speaks on behalf of the assertion that there should be a mass, called dark 
mass, which exceeds the baryonic mass by at least a factor of three and does not interact with radiation, but does 
interact with ordinary matter (and with itself) only gravitationally. Neutrinos have been advanced as the most probable 
candidate for the role of dark matter since they interact with one another, with ordinary baryonic matter, and with 
radiation very weakly. However, their excessive velocity stands in the way of any explanation of the growth of small-
scale inhomogeneities and it has become necessary to reject such an explanation. At the present time, there are no 
candidates for the role of a carrier of dark mass [11]. Thus, we do not know in what interactions, besides the 
gravitational interaction, dark matter participates. The same thing can be said about dark energy (see below) – it is not 
known what it is made of.  

Nonlocal theories. In attempts to describe our world by nonlocal theories, the dimensionality of space (eleven) 
is based on the existence of an M-theory of the same dimension, the corresponding limits of which lead to well-known 
10-dimensional string theories. In particular, certain reductions of the Lagrangian of membrane theory (n = 2) lead to 
a Lagrangian of string theory [9]. The interconnections between the Lagrangians of the various membrane theories have 
not yet been completely explored. The existence of found reductions does not exclude the existence of other reductions. 
Thus, the dimensionality of space in such an approach can also grow larger. Moreover, the spectra of string theories 
should reproduce the particles known to us. If interactions that are not known to us will be revealed, then this will lead 
to the necessity of reproducing their representatives in the spectra of string theories, i.e., once more to an increase in the 
dimensionality of space.  

Theory of structures. Classical spacetime can be described within the framework of a BSCR of rank (3, 3). 
Correspondingly, we arrive at 4-dimensional space with allowable signatures (+, +, +, +), (+, +, +, –), (+, +, –, –) and 
equivalent signatures with the plus signs replaced by minus signs. To construct multidimensional Kaluza–Klein 
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theories, it is necessary to step up to a BSCR of rank (4, 4) [1, 7], and correspondingly the dimensionality of spatial 
structures will not exceed nine. A description of leptons and quarks is already possible within the framework of a BSCR 
of rank (6, 6) [1], and the emerging dimensionalities can go as high as 25. With the growth of the number of 
interactions, the rank of the structure also grows, and correspondingly also the dimensionality of space. Thus, as in the 
case of a description with the help of the local and nonlocal Lagrangians, taking a continually increasing number of 
interactions into account leads to a growth of the dimensionality of space.  

Multidimensional time. The constructions considered above pertain to one-dimensional time because they have 
a direct connection with the Universe in which we live. We cannot reject the possible existence of worlds in which time 
is multidimensional. The possibility of the existence of spaces with the signatures (+, +, –, –) or (–, –, +, +), remarked 
upon above, is already testimony to the possibility of the existence of two-dimensional time.  

Remark. In the monad method, descriptions of the reference system in which the congruence lines are parallel 
to the time coordinate of the considered manifold (i.e., these are chronometric lines) are a particular case [1]. In the 
early works on SRT, the time coordinate was chosen to be proportional to the imaginary unit to ensure the pseudo-
Euclidean space. In nonchronometric systems, the generalization of the monadic description in the real-number field to 
a description in the complex-number field can be connected with how one goes about introducing a time coordinate. 
Multidimensional time structures can be associated with a further generalization of the monadic description to 
a description in the field of quaternions.  

The fundamental possibility of the existence of various Universes is contained in the inflationary theory 
proposed by A. Guth and modified by A. Linde, P. Steinhardt, and A. Albrecht [12]. Fluctuations of the primordial 
scalar field within the limits of the Planck scale lead to conditions for transition to the inflationary regime, a result of 
which is rapid growth of the spatial dimensions of the three-dimensional part of space, leading to the conditions 
necessary for commencement of the evolution of the hot Big Bang. These fluctuations lead to a continuous generation 
of Universes, each with a different nature. Transitions between Universes with different dimensionalities of time are 
still unknown; therefore, we will assume that the dimensionality of the time continuum of our Universe does not change 
and is equal to 1.  

As we have seen, the dimensionality of space in all three approaches to its description is determined by the 
existence of different kinds of interactions. The more there are of them, the greater is the dimensionality of space. Thus, 
the dimensionality of our space can be greater than 11. This depends on the existence of interactions as yet unknown to 
us.  

Varying dimensionality of space. The possibility of the existence of a still greater and even a substantially 
greater dimensionality of space in comparison with the dimensionality discussed above flows out of other 
considerations. String theory, by virtue of its nonlocal character, contains additional symmetries not contained in local 
theories. One such symmetry is the T-duality of free strings, from which the impossibility of the electric field strength 
taking infinitely large values follows [2]. In thermodynamic equilibrium, the same energy is assigned on average to 
each degree of freedom (the equidistribution law). If this law is still valid at superhigh energy densities, this will lead to 
the result that a finite number of fields will contain only a finite energy density and under the conditions of infinite 
energy density of the Big Bang in its initial moments they will not be able to accumulate the released energy. This, in 
turn, should lead to an infinite or very large (if the energy density of the Big Bang in its initial moments was not 
infinite) dimensionality of space during the initial moments of the Big Bang.  

The above considerations does not exclude the possible existence of a dimensionality of space that is greater 
than eleven, which with the expansion of the Universe will gradually decrease. W. Heisenberg remarked that modern 
physics is similar to the teaching of Heraclitus. If we replace the word fire by the word energy, then it is possible to take 
it as the primal cause of all changes in the world. We may add here: and possibly the reason for the dimensionality of 
space as well.  
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THE COSMOLOGICAL CONSTANT  

Current status. The Hilbert–Einstein equations  

 
1

8
2

R g R kT      

are obtained by setting the variational derivative Sg/g of the action equal to zero, where the action  

 4
gr m gr m( )gS S S d x g L L     , (2) 

is constructed using the metric tensor g (,  = 1–n) and its first derivatives with respect to the coordinates of 
spacetime, g is the determinant of the metric tensor,  
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1 1
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is the gravitational scalar density of the Lagrangian, k is Newton’s gravitational constant, R is the curvature of space, 
i.e., the convolution of the metric tensor with the Ricci tensor R: R = gR, Lm is the density of the Lagrangian of 
matter, T is the energy-momentum tensor of matter,  
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and the integration is carried out over four-dimensional spacetime. The HEEs are generally covariant and do not depend 

on the choice of local coordinates. Since the quantity 4gd x  is invariant, this allows us to introduce the term  

 4S d x g     , 

 4
gr m gr m( )g gS S S S S S d x g L L          , (3) 

in Eq. (2) without violating the general covariance of the HEEs. The new equations take the form  

 
1

8 ( )
2

R g R k T       .  (4) 

Einstein introduced the Cosmological Constant (CC) () in 1917 in order to achieve a static Universe. Without 
introducing this term, either the energy density or the pressure of matter would have to be negative. The introduction of 

 or the energy density vac 8 k


 


 makes it possible to avoid such an unphysical result. Since the right-hand side of 

the given relation does not depend on the characteristics of matter, it is interpreted as the energy density of empty space 
or the vacuum. After the appearance of the Friedman models, interest in a static Universe disappears and in 
an overwhelming number of works the CC is taken to be equal to zero.  

Models with   0. Nevertheless, the possibility (  0) has not been completely excluded. The dynamics of 
the expansion of the Universe is investigated in such models, and the consequences of the existence of the CC in 
various astrophysical questions are addressed [10, 11, 13].  
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The induced theory of gravitation. In this theory, the CC arises as the zeroth term of the expansion of the 
density of the Lagrange function in a power series over the curvature of space [8].  

Propagation of gravitational waves. In a consideration of a gravitational wave far from matter, the only source 
supporting its propagation can be the wave itself. R. Feynman concludes that nonlinear corrections should be added to 
the action. After this, his analysis became quite generally accepted and led to the conclusion that a sufficiently general, 
consistent field equation that includes not more than two derivatives is the HEE with the CC. A similar approach was 
developed by S. Gupt and R. Kraichnan. At the end of the 1990s it became clear that a nonzero value of the CC is in 
many ways fundamental.  

Expansion of the Universe. Results of analyses of the red shift of emission lines, performed by different 
international astrophysical groups, provide evidence of the accelerated expansion of the Universe. Such behavior 
necessitates a large energy density in the Universe, which has been called dark energy or quintessence (other names for 
it are vacuum-like matter, the cosmological -term, and the Cosmological Constant) [11–13]. In contrast to dark 
matter, the given component is distributed uniformly and is not subject to clustering. It is thought that this consists of 
physical fields of an unknown nature.  

The density of matter in the Universe. A useful parameter in cosmology is the ratio of the density of various 

structural forms of material components to its critical density 
cr


 


, 

2
0

cr
3

8

H

k
 


, where H0 is the Hubble constant. 

The contribution of the baryonic component b does not exceed 0.023 (b < 0.023). The contribution of all matter of 
a nonfield character, including dark matter, m , does not exceed 0.3 (m < 0.3). This was a stumbling block for a long 
time since the Universe having a flat geometry necessitates that m = 1. In a number of works from 1980–1990 it was 
considered as a statement having a fundamental character. The need to introduce dark energy made it possible to 
remove this contradiction, as it is assumed that the remaining part of the density rests on it:   0.7 [11–13].  

Modification of Newtonian dynamics. A modification of the theory was developed at first to describe the 
rotation curves of galaxies [14] and to reject the necessity of introducing dark matter. The first approach is associated 
with a modification of the gravitational interaction, and the second – with a modification of Newton’s second law. In 
both cases, results at great distances are modified (for accelerations greater than some value a0). The question arises of 
the choice of the parameter a0. It would be natural to associate it with the Hubble constant ( H0), with the curvature of 
space ( 1/R), or with the CC ( 1/2) [14]. We also note that the existence of the CC affects the growth of the 
Universe, the anisotropy of the relict radiation, etc. [11–13], and a consideration of various questions associated with its 
value being different from zero leads to the value  = 10–0.10.1 [12].  

On the nature of the cosmological constant. Let us consider the action SG in a space of a greater number of 
dimensions (N), where GAB (A, B = 1–N) is the metric tensor in this space. If the dimensionality of space is lowered (N 
 n), then this will lead to the result that the metric tensor of the space of a greater number of dimensions will be 
replaced by the metric tensor of a space of a lower number of dimensions G  g, i.e.,  

 G = g, ,  = 1–n.  (5) 

All the remaining quantities, including the Ricci tensor, and the curvature will undergo a similar change, thus RG  Rg, 
where RG and Rg are the curvatures of spaces calculated using GAB and g, etc. Now, integrating the action over the 
space of lower dimensionality, we go from SG to Sg.  

But we can also do this another way, working as before with the original action SG and metric tensor GAB. The 
transition to the space of lower dimension is a restriction of the initial problem by a specified condition; therefore, we 
can seek the extremum of the action (i.e., the HEEs) in the initial space under this condition, i.e., we can seek the 
conditional extremum in the initial problem. We are not imposing any conditions on any of the elements of the matrix 
of the metric tensor GAB (A, B = 1–n), i.e., as before we have Eqs. (5) since they should follow as the solution of the 
variational problem. For A, B > n we can choose  

 GAB = 0, A  B, GA = 0, GA = 0,  = 1–n, GAA = 1/V2
A  (6) 
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(A is not being summed over, and VA is the volume of the space characterized by the coordinate A) since as a result of 
the disappearance of interactions underlying the existence of a greater number of dimensions, the nondiagonal elements 
vanish. Only the choice of components GAA, A > n, is not unique. We note that in the Kaluza theory and its 
generalizations, in the description of 5-dimensional spaces G55 can be chosen to be constant, a result of which will be 
invariance of the ratio of the charge of a particle to its mass, or it will be a function of the spacetime coordinates, which 
is equivalent to introducing a scalar field. So far, effects of a scalar field on variation of the ratios of the charges of 
particles to their masses have not been detected [1]. By virtue of this, we will assume that VA, A > n, does not depend on 
x,  = 1–n. 

A condition is in fact imposed only on the determinant of this matrix, wherefore  

 
1...n N

g
G

V V


  . (7) 

The general Lagrange method of searching for an extremum of some function f, in the given case the functional SG, 
under the condition F(y1, …, yi, …, yM) = 0 for the variables y1, …, yi, …, yM consists in introducing the term F(y1, …, 
yi, …, yM) into this function and searching for an unconditional extremum for it for the variables y1, …, yi, …, yM,  
[15]. Thus, according to the general algorithm of searching for the conditional extremum employing the Lagrange 
multipliers, we should introduce the term  

 1 2
1

...
... N

n N

g
G dx dx dx

V V

 
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 
  

into the initial action SG and search for the no-longer-conditional, but total (unconditional) extremum of the new action 
over the variables GAB, . In this case, setting the variation of the new action  

 1 2
1

...
...G G N

n N

g
S S G dx dx dx

V V

 
      

 
  

with respect to  equal to zero will give us the same condition (condition (7)), under which we will seek the conditional 
extremum of the initial action. Setting the variational derivative with respect to GAB equal to zero then leads us to the 
equations  

 
 1 2...

0
G NG

AB AB

S Gdx dx dxS

G G

   
 

 


. 

In this case, condition (5) in the sector of lowered dimensionality will now be written as  

 
 1 2...

0
g NS Gdx dx dx

g

   





, 

since VA, A, B > n, do not depend on x,  = 1–n, and, by virtue of Eqs. (6), calculation of the Christoffel symbols, the 
curvature tensor, and the Ricci tensor in this sector will not lead to the appearance of additional contributions from the 
components GAB, GA = 0 and GA = 0 (A, B = (n + 1) – N,  = 1–n). Condition (7) now leads to the result that the 

integration will be carried out over a volume of a space of dimensionality n since 1

1

...
1

...
n N

n N

dx dx

V V





:  
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 1
1 1

1

...
... ...

...
N

N n
n N

gdx dx
Gdx dx gdx dx

V V


   

  , 

i.e., we arrive (see Eqs. (3)) at the equations 0gS

g







 and correspondingly at Eqs. (4).  

Thus, the CC can be interpreted as a Lagrange multiplier introduced to search for a conditional extremum of 
action in the transition from a space of higher dimensionality to a space of lower dimensionality as a result of the 
evolution of the Universe. From a physical point of view, in the transition to a space of lower dimensionality the energy 
contained in the disappearing degrees of freedom should be released in the remaining space. And it will be released in 
the form of the CC or in the form of quintessence. Until this transition to the space of lower dimensionality has been 
completed, this energy will most likely grow in time although its concrete behavior will depend on the dynamics of the 
transition, about which we still do not know anything. We still don’t have any data on the nature of dark energy, but 
there have been efforts to describe it in some scalar field models. In these models, a growth of quintessence with time is 
needed to explain the growth of the observed red shift. [13].  

CONCLUSIONS  

Among various Universes, our Universe is characterized by one-dimensional time. Current thinking about the 
nature of space maintains that its dimensionality is closely connected with the existence of interactions and grows with 
increasing number of interactions of different nature. According to current thinking, the dimensionality of our space is 
equal to eleven. This position is based on taking the existence of gravitational, and also electromagnetic, weak, and 
strong interactions into account (in the standard SU(3)  SU(2)  U(1) model). The nature of dark matter and dark 
energy is unknown to us. What kinds of interactions do they represent? If we ultimately are not able to reject them in 
a description of the Universe, then the dimensionality of our space in the current epoch should be greater than eleven.  

As we move to the beginning of the Big Bang, other interactions, unknown to us, in addition to known ones, 
could be manifested, which entails a growth of the dimensionality of space. Moreover, if the equidistribution law is 
valid during the initial moments of the Big Bang, then the existence of T-duality in string theory can lead to an infinite 
(or very large) dimensionality of space. Thus, a scenario of the evolution of the Universe is possible, in which as it 
cools off we transit to an increasingly low-energy sector of interactions, which leads to a gradual decrease in the 
dimensionality of space.  

From a mathematical point of view, the CC can be interpreted as a Lagrange multiplier describing the transition 
of the action in a space of higher dimensionality to the action in a space of lower dimensionality. From a physical point 
of view, in the transition to a space of lower dimensionality the energy associated with disappearing degrees of freedom 
should be released in the remaining space. And it is released in the form of the CC or quintessence. Such a way of 
looking at the nature of dark energy can explain its emergence, but not its composition. The time interval over which 
the dimensionality of our space transitioned to lower values will be accompanied by a change in the quintessence over 
time.  
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