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STRUCTURAL STATE OF A WELD FORMED IN ALUMINUM 

ALLOY BY FRICTION STIR WELDING AND TREATED BY 

ULTRASOUND 

V. A. Klimenov,2,3 Yu. A. Abzaev,3 A. I. Potekaev,1,4 V. A. Vlasov,2,3  UDC 669.24’ 783:539.389.1 
A. A. Klopotov,1,3 K. V. Zaitsev,5 A. V. Chumaevskii,3 S. A. Porobova,3  
L. S. Grinkevich,1 I. D. Tazin,6 and D. I. Tazin6 

The experimental data on structural state of an aluminum alloy, AlMg6, in the weld zone formed by friction stir 
welding are analyzed in order to evaluate the effect of its subsequent ultrasonic treatment. It is found that the 
crystal lattice transits into a low-stability state as a result of combined heat-induced and severe shear 
deformation. This transition is accompanied by considerable structural-phase changes that are manifested as 
an increased lattice parameter of the solid solution. This increase is caused by both high values of internal 
stresses and increased concentration of Mg atoms in the solid solution due to essential dissolution of the -
Al2Mg3 particles with the content of manganese higher than that in the matrix. This is accompanied by high-
intensity diffusion and relaxation processes due to the low-stability state of crystal lattice (inhomogeneous 
stresses) in the weld zone. 

Keywords: friction stir welding, aluminum alloy, structural state, first- and second-order stresses. 

INTRODUCTION 

Friction stir welding (FSW) is a well-established technique for bonding metals and alloys [1, 2]. Weld strength 
is especially critical in the cases where the presence of residual stresses is of great concern and for the purpose of 
bonding difficult-to-weld materials. An extension of FSW application area requires a deeper insight into the processes 
taking place during consolidation of materials under conditions of large deformations and at temperatures lower than 
that of melting, Тmelt, which are frequently sufficient for phase transformations to occur [2].  

The method of bonding materials by high-rate rotation along the weld joint boundary is the major technique of 
welding AlMg6 aluminum-manganese alloys nonhardenable by heat treatment [1]. In the contact zone of the weld, local 
temperature gradients (0.5–0.6 Тmelt) are developed and the welding seam is formed as a result of stirring of solid-state 
materials. The features of structure formation of such welds have been extensively studied, while a comparative 
analysis of the resulting structural states and long-range stress fields in different weld zones is still lacking. Without 
understanding their complex interrelations it is difficult to predict reliable performance of a weld joint. When 
calculating the field stresses it is important to take into consideration the temperature dependences of elastic 
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characteristics and lattice parameters [3], since the formation of laminated ultrafine-grained structure was revealed in 
the center of the weld joint [4]. This structural-phase state is thought to give rise to considerable internal stresses. The 
stressed state of weld joints is commonly controlled by their subsequent treatment. Considering the features of FSW, 
nonthermal treatment processes are most applicable. Ultrasonic treatment reduces the number of defects in the weld 
joint [5], so its application makes it possible to considerably improve surface finish, which favorably affects the weld 
fatigue properties.  

It should be noted that at present a lot of attention is given to metal systems demonstrating low-stability states 
in the regions preceding phase transitions or alloys subjected to severe deformation, which contain a large number of 
defects [6–8]. In most cases, these states are achieved via special technical processes [8]. Note also that the physical 
reasons of stability, behavior, properties and structure of such materials often remain unclear. It is quite probable that 
friction stir welding involves a transition into low-stability states. 

The purpose of this work is to identify the interrelations between the structural state of weld joints and long-
range stresses using an AlMg6 aluminum alloy in the initial state and in the weld zone during friction stir welding. 

MATERIAL AND EXPERIMENTAL PROCEDURE 

The experiments were performed using an AlMg6 alloy as an example in its initial state and in the weld zone in 
the course of friction stir welding. The alloy composition is given in Table 1 (its Russian designation is 1561). The weld 
zone of a weld joint is formed with AlMg6 by friction welding via high-velocity rotation of the tool, the weld zone 
temperature being as low as ~0.6 Тmelt.  

The weld joint was formed under optimal process conditions, which ensured high strength characteristics of the 
joint [9] due to thermomechanical processes in the weld zone. Subsequently, the specimens under study were subjected 
to a finishing ultrasonic treatment. 

Ultrasonic treatment consisted in the following: the surface was processed by a hard-alloy ball striking it at the 
frequency 24 kHz, which was simultaneously denting into the surface by a static force at a constant pressure. The 
energy into the treatment zone was delivered by the static force pressing the tool to the processed surface. The indenter 
plastically deformed the surface layer modifying the weld structure. Ultrasonic treatment is accompanied by a number 
of features controlled by impact loading, periodically reciprocating and propagating over a comparatively small area. 
The processed surface is thus subjected to frequently interchanging compressive and shear deformations. The ultrasonic 
treatment was performed at the power 200 W, the indenter oscillation amplitude 20 µm, and the static force 70 N. 

Diffraction studies were performed in a DRON4-07 diffractometer using CuK-radiation within the Bragg-
Brentano geometry with the step 0.02 and the exposure time in the point 1 s within the angular range 2 = 17–102. 
The diffraction patterns were taken from different spots of the specimen (Fig. 1). Their qualitative phase analysis was 
carried out using the Match! software program. The lattice parameter of the AlMg6 solid solution was calculated by the 
Rietveld method, which relied on processing the diffraction data [3]. 

The first- and second-order stresses were estimated by the following formulas, respectively: 
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where E is the Young modulus,  is the Poisson ratio, g is the interplanar spacing for the reflection planes, disp is the 
deformation due to displacement of reflections, and broad is the deformation due to broadening of reflections. For cubic 

TABLE 1. Composition of AlMg6 Aluminum Alloy 

Elements Si Fe Cu Mn Mg Zn Al 
Content, at.% 0.40 0.40 0.10 0.7–1.1 5.5–6.5 0.20 ~92.5% 
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It is to be noted that the calculated stresses are much higher than those far from the weld zone. A subsequent 
ultrasonic treatment gives rise to a further increase in the lattice parameter and the first-order stresses (hence the long-
range stresses also increase), which correlates with increased microhardness (see Table 2). It should be noted that 
an increase in the long-range stress fields could result in dynamic recrystallization and recovery during friction stir 
welding. 

The calculated values of the second-order stresses and CDD sizes are given in Table 3. Interestingly, the 
second-order microstresses II in the weld zone are lower than those in the initial alloy. This redistribution of stresses 
could be attributed to the following processes. A decrease in the II stresses in the weld zone is associated with their 
relaxation as a result of stirring after removal of the external impact on the weld joint. It has to be noted that this process 
occurs under more favorable conditions in the case where the lattice transits into a low-stability state, which is 
accompanied by considerable structural – phase changes. This correlates with the data reported in [13], where the 
internal stresses in the grains of severely deformed steel are shown to redistribute as a result of relaxational processes 
due to a transition grain boundaries from non-equilibrium into equilibrium states. Note also that the deformation impact 
formed by the field of mechanical stresses during friction stir welding might result in such relaxational processes as the 
formation of standing waves in a low-stability crystal medium [14]. 

Thus the X-ray diffractometry data demonstrate that an ultrasonic treatment in the weld zone has resulted in 
an appreciable increase in the second-order stresses (Table 3).  

SUMMARY 

The experimental data obtained demonstrate that a combined thermal treatment (weld-zone temperature Т  
0.6Тmelt) and severe deformation impact on the AlMg6 alloy in the weld joint zone formed by FSW result in a transition 
of the crystal lattice into a low-stability state. This transition is accompanied by considerable structural-phase transitions 
manifested as an increased value of the solid-solution lattice parameter in the weld zone. This increase results both from 
high internal stresses and increased concentrations of Mg atoms in the solid solution due to essential dissolution of the 
-Al2Mg3-phase particles with a higher content of manganese than that in the base material. The above-mentioned 
processes are accompanied by high-intensity diffusion and relaxation due to the low-stability state of the crystal lattice 
(inhomogeneous stresses) in the weld joint zone. These phenomena favor mixing of the atoms in the alloy during 
friction stir welding. 
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