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SYNTHESIS OF Al–Al2O3 AND Al–AlN NANOPARTICLE 

COMPOSITES VIA ELECTRIC EXPLOSION OF WIRES 

M. I. Lerner,1 A. S. Lozhkomoev,1 A. V. Pervikov,2 and O. V. Bakina1 UDC 544.45 

Composite Al–Al2O3 and Al–AlN nanoparticles were synthesized via electric explosion of aluminum wires in 
an argon–oxygen gas mixture and in nitrogen. The parameters of electric explosion and gas medium affect the 
size and relative content of nitride and aluminum oxide in the nanoparticles. Processes of forming chemical 
compounds during aluminum oxidation at the contact surface between explosive products and gas and of 
nitrogen diffusions into the nanoparticles of the condensed phase are considered.  
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INTRODUCTION 

A perspective method for synthesis of nanoparticles of metals and chemical compounds (oxides and nitrides) is 
electric explosion of wires (EEW). EEW is the process with high rates of change of the thermodynamic system 
parameters observed when the current with density 106–109 A/cm2 runs through a metal wire. The processes of 
conversion of the wire metal from the condensed state into the two-phase state (liquid metal – gas/plasma) [1, 2] 
develops intensively for current densities in the range 107–108 A/cm2. 

In [3] it was shown that aluminum (Al), aluminum oxide (Al2O3), and aluminum – aluminum nitride (Al–AlN) 
composite nanoparticles can be synthesized via electric explosion of an aluminum wire in argon, air, and nitrogen 
atmosphere. In particular, it was established that the size of Al, Al2O3, and AlN nanoparticles is determined by the 
amount of overheat of the wire metal. From the data presented in [3] it follows that with decreasing amount of overheat, 
the specific surface of Al2O3 powders increases. It is demonstrated that the small fraction of nanopowders synthesized at 
a nitrogen pressure of 0.3 MPa and amount of overheat >1.7Ес (here EC is the aluminum sublimation energy) has 
a specific surface of about 30 m2/g and AlN content exceeding 95 mass%. 

The Al–AlN and Al nanoparticles are used as precursors for low-dimensional nanostructures (nanosheets) of 
pseudoboehmite used to develop biologically active materials [4]. Analogous structures are produced in the reaction of 
AlN nanoparticles with water [5]. Moreover, the rate of forming nanosheets during oxidation of Al–AlN nanoparticles 
with water is determined by the content of the AlN phase.  

The aluminum nanoparticles represent composite structures with the core-shell morphology, where the core is 
metal aluminum and the shell is amorphous aluminum oxide (Al–Al2O3) [6]. In the process of oxidation of aluminum 
nanoparticles with water, hollow spheres are formed coated by pseudoboehmite nanosheets [7]. The thickness of the 
aluminum oxide layer can determine the rate of aluminum oxidation and the morphology of hollow spheres coated by 
pseudoboehmite nanosheets. Because of their biological activity, nanostructures with similar morphology can be used 
as containers for bioactive substances. 
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It is obvious that the properties of the Al–AlN and Al–Al2O3 nanoparticles are determined by the conditions of 
their synthesis via EEW [8]. In [3] it has already been shown that oxygen additives to the working gas of the setup 
intended for synthesis of aluminum powder allows amorphous oxide coating to be formed on particles being 
synthesized. This allows agglomeration of aluminum particles to be reduced and the particle surface to be protected 
from oxidation.  

This suggests that the content of oxide and nitride phases on the nanoparticle surface can be regulated by 
changing the amount of overheat of aluminum wires, the pressure, and the active gas concentration during electric 
explosion, thereby allowing low-dimensional nanostructures with predetermined properties to be synthesized. In 
addition, a study of synthesis of AlN and Al2O3 nanoparticles having numerous practical applications is of special 
interest. 

The present work is aimed at elucidation of conditions of electric explosion of an aluminum wire allowing 
aluminum nanoparticles with predetermined AlN and Al2O3 contents to be synthesized. 

EXPERIMENTAL PROCEDURE 

Aluminum nitride and aluminum oxide nanoparticles were synthesized in the nitrogen (N2) atmosphere and in 
the mixture of argon and oxygen (Ar + O2) gases, respectively, using the technique described in [9]. The energy Е 
deposited into a wire was calculated from waveforms of the current, I(t), and voltage, U(t), by the method of 
substitution of the integral 

 
0

( ) ( )
nt

t

E U t I t dt   (1) 

by a finite sum. The relative error of energy estimation was σ ≤ 13%. The amount of overheat of the wire metal was 
determined, according to [10], from the expression 
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where Е is the energy deposited into the wire, in J; Еs is the energy of metal sublimation, in J/m3, and V is the wire 
volume, in m3. 

The TEM images of nanoparticles were registered by a JEM-2100 transmission electron microscope (JEOL, 
Japan). The elemental composition and the distribution of elements in the nanoparticles were studied using an X-Max 
detector combined with the microscope. The average particle diameter (a) was calculated from the equation for the 
specific surface area 
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where ρ is the specific metal density, in kg/m3; a is the average particle diameter, in m; and S is the specific surface area 
of nanoperticles, in m2/kg. 

The aluminum content in nanopowders was determined by the volumetric method. The content of aluminum 
nitride in Al–AlN was determined by the spectrophotometric method using the Nessler reactant with a Spekol 1300 
spectrophotometer (Analytik Jena AG, Germany) from the amount of ammonium deposited as a result of AlN 
hydrolysis.  
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experiments exceeded 45 mass%. For this reason, it is difficult to obtain thin aluminum oxide layers on the surface of 
aluminum nanoparticles synthesized via EEW because of high reactivity of aluminum with oxygen. 

3. The mass fraction of aluminum nitride in nanoparticles synthesized via EEW in nitrogen can be regulated in 
the range of overheat 0.6 < W <1.2 and pressure of gas mixture 0.1 MPa < P < 0.5 MPa. The maximal content of 
aluminum nitride in the nanopowders will be observed for metal overheat W > 1.2 and nitrogen pressure P ≥ 0.5 MPa.  

4. The average size of nanoparticles synthesized by electric explosion of an aluminum wire in the Ar + O2 gas 
mixture and in nitrogen decreased with increasing amount of metal overheat in the range 0.6 < W < 1.2. With further 
increase of overheat W > 1.2, the nanoparticle sizes remain unchanged. 

5. From the data obtained it follows that for overheat W < 1.2 the energy deposited into the wire is spent 
basically on heating of the condensed phase, and for W > 1.2, it is spent on the increase in the expansion rate of the 
explosive products.  

The study of the influence of the EEW parameters on the concentration of chemical compounds in 
nanopowders was supported in part by the Program of Fundamental Scientific Research (FSR) of the State Academies 
of Sciences for 2013–2020. The investigation of the characteristics of the Al–AlN nanoparticles was supported in part 
by the Russian Science Foundation (grant No. 14-23-00096). 
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