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SPATIOTEMPORAL DYNAMICS OF THE WIND VELOCITY
FROM MINISODAR MEASUREMENT DATA

V. A. Simakhin,' O. S. Cherepanov,1 and L. G. Shamanaeva®® UDC 551.596; 53.082.4

The spatiotemporal dynamics of the three wind velocity components in the atmospheric boundary layer is
analyzed on the basis of Doppler minisodar measurements. The data were processed and analyzed with the
help of robust nonparametric methods based on the weighted maximum likelihood method and classical
methods. Distribution laws were obtained for each wind velocity component. There are outliers in the
distribution functions; both right and left asymmetry of the distributions are observed. For the x- and y-
components, the width of the distribution increases as the observation altitude is increased, but the maximum of
the distribution function decreases, which is in agreement with the data available in the literature. For the z-
components the width of the distribution remains practically constant, but the value of the maximum also
decreases with altitude. Analysis of the hourly semidiurnal dynamics showed that all three components have
maxima in the morning and evening hours. For the y- and z-components the maxima in the evening hours are
more strongly expressed than in the morning hours. For the x- and y-components the horizontal wind shear is
closely tracked in the evening hours. It is shown that adaptive estimates on the efficiency significantly exceed
the classical parametric estimates and allow one to analyze the spatiotemporal dynamics of the wind velocity,
and reveal jets and detect wind shears.

Keywords: acoustic sounding, estimates of the weighted maximum likelihood method, robust nonparametric
estimates, spatiotemporal dynamics of the wind velocity.

INTRODUCTION

Information about the spatiotemporal dynamics of the wind velocity, its mean value, variance, and structure
functions in the atmospheric boundary layer (ABL) is of both fundamental and applied significance. It is needed to
study the dynamics of atmospheric processes, to predict the state of the air basin, to estimate pollutant transport, to
construct models of the ABL, to make weather forecasts, and to ensure safety of takeoff and landing of aircraft. Doppler
acoustic radars (sodars) allow one to obtain the three wind velocity components with high spatial (down to several
meters) and temporal (from 1 to 30 min) resolution and to analyze their spatiotemporal dynamics [1, 2]. The distribution
law of the the wind velocity components is in general unknown, and various parametric models are used to describe it.
Thus, Breadly [2] used a Gaussian and a parabolic shape of the distribution. Rykhlov [3] observed that the Weibull
distribution model possesses a number of advantages over the more often used normal, lognormal, and Maxwellian
model distribution laws for the wind velocity. For an unknown distribution law these models can give an inadequate
description of the observed distribution of the wind velocity. What is more, the signal has random outliers. Processing
of moderate-sized files of wind velocity data from meteorological masts allowed us in the manual curve-fitting mode to
use standard methods to process the data. Large data files obtained by sodars require the creation of automated data
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processing systems, including online operation employing processing and analysis methods based on robust
nonparametric statistics [4—7].

This article investigates special features of the spatiotemporal dynamics of the wind velocity extracted from
real-time measurements obtained using a Doppler minisodar, and an analysis and comparison of standard classical
methods with methods based on robust nonparametric statistics are carried out.

1. STATEMENT OF THE PROBLEM

We investigate the spatiotemporal dynamics of the three wind velocity components in the ABL on the basis of
Doppler sodar measurements made using an AV4000 minisodar with a 50-element phase antenna array [8]. The
working frequency of the minisodar was 4900 Hz, pulse duration 60 ms, and acoustic radiation was emitted sequentially
in three directions — vertically and at angles o = 18° with respect to the vertical in two mutually orthogonal planes. The

pulse repetition period was 4 s. Measurements were made at 40 altitude strobes z ; with resolution Az=5 m in the

altitude range 5-200 m. Series of N =150 profiles each were processed, which ensured averaging over a 10-minute
measurement period. The measurements were carried out over the course of six (6) days in autumn from 12 to 17
September. Results of processing of the minisodar data for the three wind velocity components on the basis of the least
squares method (LSM) are presented in [9-11]. A parametric model of the vertical profile of the horizontal wind
velocity was constructed for neutral and unstable stratifications of the atmosphere. The spatiotemporal dynamics of the
x-, y-, and z-components of the wind velocity was analyzed.

The random vector of the components of wind velocity V(¢,z) = (Vx,Vy,VZ) depends on the time ¢ of the

measurement and on the altitude z above the underlying surface and forms a random process that depends on the
parameter z (a random wind field). The random vector was defined by a number of n-dimensional distributions
dependent on a large number of factors such as location, the underlying surface, time, altitude of the measurement, etc.
It is obvious that to construct a mathematical model of the wind velocity in the ABL on the basis of such n-dimensional
distributions (models of which are lacking) would be extraordinarily complex if even possible. Therefore the problem is
decomposed into a sequence of simpler problems, on the basis of which particular mathematical models are constructed
and solutions are extracted. Stable factors are assigned fixed values — location, the underlying surface, time and altitude
of the measurement, and the following problems are considered:

1. Synthesis and analysis of strobe array (cell array). The time ¢ = £y and altitude z = z, are assigned and the cell
V(ty,z,) is singled out. Models of marginal cell distributions, parameters of position (average value), scale (variance),
and confidence intervals are introduced and examined. Numerical characteristics are time-averaged in order to establish
and trace out stable trends [9—11].

2. Synthesis and analysis of cell profiles. The time ¢ = ¢, is fixed and the profiles V'(¢,,z) are considered as
functions of the altitude z, or the altitude z = z, is fixed and the strobes V' (¢,z,) are considered as functions of time .

Mathematical models (regression lines) and confidence intervals on them are constructed. Time averaging was used in
[9-11] to examine trends.

3. Synthesis and analysis of the two-dimensional distributions ¥'(¢,z). It is of significant interest to construct
models of the fine structure of a wind stratum: structure functions, autocorrelations, regression lines of V(¢,z) as

functions of time # and altitude z.

In this paper we examine special features of the spatiotemporal dynamics of the wind velocity on the basis of
real-time Doppler minisodar measurements and analyze and compare standard classical methods with methods based on
robust nonparametric statistics.
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Fig. 1. Graphs of the density distributions of the x- (a), y- (b), and z-components (c) of the
wind velocity for altitudes 50 (x), 100 (o), 150 (m), and 200 m (A).

2. ANALYSIS OF CELL ARRAY

We processed series of N=150 profiles each over a 10-minute measurement period for the different
components, altitudes, and times (cell array).
Let vy =(V},...,Vy) be a sample of a the wind velocity component at the altitude z and time ¢, where N =150

is the sample size. For each wind velocity component in the cell we constructed a graph of the estimate of the
Rosenblatt—Parzen probability density of the form

1 XN AV Vi
Z hy) = K L, 1

where K (u) is the kernel function and Ay is the width of the window [6]. As an example, Figure 1 displays graphs of

the density distribution for three wind velocity components V;, V), and V. at fixed altitudes estimated from minisodar
measurements taken on 13 October 2003 between 11:00 and 11:10 local time.

Even a simple visual analysis of the graphs enables one to draw a number of conclusions: the presence of
outliers is more the rule than the exception; distributions are present both with stretched tails (a) and light tails (c);
hardly any normal distributions were observed; the form of the marginal distributions varies strongly as a function of
time of day of the observation. It should also be noted that for the x- and y-components the width of the distribution
increases as the observation altitude is increased, and the maximum of the distribution function decreases, as was also
noted in [2]. For the y-component we tracked the transition from a unimodal distribution to a bimodal one with increase
of altitude. For the z-component the width of the distribution remains practically constant, but the maximum decreases
with altitude.

Analysis of the marginal distributions shows that the problem belongs to the class of nonparametric problems
of robust statistics [5, 6], which are characterized by the level of a priori uncertainty when the form of the distribution is
unknown and there are deviations from the basic distribution, for example, in the form of outliers, asymmetry, etc. [6].
The parameters of position [, and scale of the wind field were calculated for the cells. Robust nonparametric estimates

were found on the basis of the weighted maximum likelihood method (WMLM) [6, 7] by solving a system of equations
of the form
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TABLE 1. Characteristics of Estimates of i, and p, versus Altitude

Parametric model (u,) Nonparametric model (n,,)
Altitude, m Squarc.e of Variance SD, Squart? of Variance SD,, Efficiency
the bias the bias
55 0.008143 0.000449 | 0.008593 | 0.006785 0.000890 | 0.007674 0.89

100 0.142441 0.000408 | 0.142849 | 0.010625 0.000921 | 0.011546 0.08
150 0.433752 0.000847 | 0.434599 | 0.001296 0.000396 | 0.001692 0.04
180 0.614029 0.001204 | 0.615233 | 0.012446 0.000699 | 0.013144 0.02
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For comparison, we calculated the standard parametric estimates: the sample mean L » and the sample
variance. Given the estimates |, and W, we found the biases, variances, standard deviations SD, and SD, by the

bootstrap method — and determined the relative efficiency eff = SD,/SD,. As an example, Table 1 presents results of
a comparison of Ll » and W, at different altitudes, and Fig. 2 displays the results of a comparison of the » and U,

profiles.

As follows from Table 1, the efficiency can vary significantly with altitude (from 2% to 89%). As can be seen
from Fig. 2a and b, SD, is mainly determined by the bias of the estimate, which can vary significantly both with altitude
and with time. Figure 2¢ clearly shows such a dependence. On the basis of the bootstrap method, we determined the
central confidence intervals of |, and p, from their profiles with a confidence level of 0.95. Table 2 presents

calculated confidence intervals for a series of altitudes; Fig. 2¢ shows a plot of their corresponding profiles.

Analysis of Table 2 and Fig. 2c shows that widths of the confidence intervals 23, and 25, for p, and p, are of
the same order of magnitude. At the same time, a significant bias of the estimate p, at altitudes greater than 70 m is
clearly visible, which testifies to the presence of significant outliers at these altitudes.
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TABLE 2. Confidence Intervals

Parametric model (u,) Nonparametric model (u,)
Altitude, m 1, Sy Ly Sy
55 0.2402635 0.0357225 0.2302145 0.0452535
100 0.5648655 0.0327015 0.2907555 0.0473035
150 0.9759460 0.0476910 0.3533920 0.0348630
180 1.0202670 0.0578420 0.3460385 0.0407315
180 180 ———0 180 — T
z,m z,m z,m
160 160 b 1 1601 c
140} 140} | 140t 1
120} 120 1 1201 2
100 100 1 100
80F 80 2 4 80
60} 60 1 60
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Fig. 2. Altitude dependence of characteristics of the estimates p, (curve /) and p,
(curve 2): a) square of the bias, b) variance, ¢) confidence intervals.

3. ANALYSIS OF ALTITUDE PROFILES AND TEMPORAL DYNAMICS OF WIND VELOCITY
COMPONENTS

We fix the time 7= £, and some averaging interval 7. Let us consider the profiles V'(¢,,z) as functions of the

altitude z. We processed series of 150 profiles over 10-minute measurement period (7' = 10 min, sample size N = 5200)
for the different components.

Let vy =(V,...,Vy) be a sample of the wind velocity components at the altitude z; =i-5, i=1,40, where

N =5200 is the sample size. Let us consider the problem of constructing a mathematical model of the behavior of the
profile V' (¢,,z) . The given problem can be related to the problem of classical regression expressed in the form

v(z)=m(z)+¢, 3)

where v is the the wind velocity component at the time ¢, m(z) is the regression function, and ¢ is noise. We assume a

priori that the random quantity € has a probability density f{€) that is symmetric about zero, whose form, however, is
unknown.
In [9, 11] a regression function in the form of a third-degree polynomial:

m,(z) =0y +0,z+0,2° +0;2° (4)

was used as a parametric model. Estimates of the parameters of model (4) were found using the method of least squares.
On the basis of the WMLM method [6], the parameters of local model (3) were estimated by solving a system
of nonlinear equations of the form
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TABLE 3. Average and Maximum Relative Efficiencies of Estimates

Measurement time, h:min 08:00-08:10 20:00-20:10
Average efficiency, % 38 3
Maximum efficiency, % 43 4

11:00 17:00 th 2300  q1:00 4700  tp 2300

100  17:00 “Th 2300

Fig. 3. Robust nonparametric estimates of the wind velocity plotted as functions of time for the
altitudes 200 (curve /), 150 (curve 2), 100 (curve 3), and 50 m (curve 4).
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By way of an example, Fig. 2¢ displays a graph of the regression lines and their confidence intervals. Table 3
lists the mean values and maximum relative efficiencies of the parametric estimate expressed as a ratio to the
nonparametric estimate over their profiles in the morning and evening hours.

In analogy with the construction of the mathematical robust nonparametric model of profiles (5), robust
nonparametric regressions were constructed for the the wind velocity components on the basis of minisodar
measurements conducted from 11:00 to 23:00 on 13 September (Fig. 3), which characterize their hourly semidiurnal
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spatiotemporal dynamics. All three components have maxima in the morning and evening hours. The maxima in the
evening hours for the y- and z-components are more strongly expressed than the maxima in the morning hours. For the
x- and y-components (Fig. 3a and b) the shear was closely tracked in the evening hours (from 20:00 to 23:00). At these
times V. varies from 5.2 m/s at an altitude of 50 m to —1.4 m/s at an altitude of 200 m, and ¥, varies from 6.5 to —1 m/s.

The obtained results allow us to draw the following conclusions:

1. Analysis of the hourly semidiurnal dynamics showed that all three wind velocity components have maxima
in the morning and evening hours. For the y- and z-components, the maxima in the evening hours are more strongly
expressed than in the morning hours. For the x- and y-components the wind shear was closely tracked in the evening
hours.

2. We obtained the distribution law for each wind velocity component. We found that for the x- and y-
components the width of the distribution increases as the observation altitude is increased, and the maximum of the
distribution function decreases, which is in agreement with the data available in the literature. For the y-component
a transition from a unimodal to a bimodal distribution with increasing altitude is traced out. For the z-component the
width of the distribution remains practically constant but the maximum decreases with altitude.

3. The efficiency of classical data processing methods in comparison with robust nonparametric methods can
be extraordinarily low, in a number of cases reaching as low as 5% (Tables 1 and 3).

4. The presence of different kinds of outliers (Fig. 1) leads to extremely unstable behavior of the SD,. At the
same time, the robust nonparametric estimates are stable to outliers (Table 1). As this work has shown, this is due to the
appearance of significant biases of the classical estimates (Fig. 2 and Table 1).

5. The use of nonparametric methods makes it possible to obtain data that cannot be obtained by conventional
methods.
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