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SPATIOTEMPORAL DYNAMICS OF THE WIND VELOCITY 

FROM MINISODAR MEASUREMENT DATA  

V. A. Simakhin,1 O. S. Cherepanov,1 and L. G. Shamanaeva2,3 UDC 551.596; 53.082.4  

The spatiotemporal dynamics of the three wind velocity components in the atmospheric boundary layer is 
analyzed on the basis of Doppler minisodar measurements. The data were processed and analyzed with the 
help of robust nonparametric methods based on the weighted maximum likelihood method and classical 
methods. Distribution laws were obtained for each wind velocity component. There are outliers in the 
distribution functions; both right and left asymmetry of the distributions are observed. For the x- and y-
components, the width of the distribution increases as the observation altitude is increased, but the maximum of 
the distribution function decreases, which is in agreement with the data available in the literature. For the z-
components the width of the distribution remains practically constant, but the value of the maximum also 
decreases with altitude. Analysis of the hourly semidiurnal dynamics showed that all three components have 
maxima in the morning and evening hours. For the y- and z-components the maxima in the evening hours are 
more strongly expressed than in the morning hours. For the x- and y-components the horizontal wind shear is 
closely tracked in the evening hours. It is shown that adaptive estimates on the efficiency significantly exceed 
the classical parametric estimates and allow one to analyze the spatiotemporal dynamics of the wind velocity, 
and reveal jets and detect wind shears.  

Keywords: acoustic sounding, estimates of the weighted maximum likelihood method, robust nonparametric 
estimates, spatiotemporal dynamics of the wind velocity.  

INTRODUCTION  

Information about the spatiotemporal dynamics of the wind velocity, its mean value, variance, and structure 
functions in the atmospheric boundary layer (ABL) is of both fundamental and applied significance. It is needed to 
study the dynamics of atmospheric processes, to predict the state of the air basin, to estimate pollutant transport, to 
construct models of the ABL, to make weather forecasts, and to ensure safety of takeoff and landing of aircraft. Doppler 
acoustic radars (sodars) allow one to obtain the three wind velocity components with high spatial (down to several 
meters) and temporal (from 1 to 30 min) resolution and to analyze their spatiotemporal dynamics [1, 2]. The distribution 
law of the the wind velocity components is in general unknown, and various parametric models are used to describe it. 
Thus, Breadly [2] used a Gaussian and a parabolic shape of the distribution. Rykhlov [3] observed that the Weibull 
distribution model possesses a number of advantages over the more often used normal, lognormal, and Maxwellian 
model distribution laws for the wind velocity. For an unknown distribution law these models can give an inadequate 
description of the observed distribution of the wind velocity. What is more, the signal has random outliers. Processing 
of moderate-sized files of wind velocity data from meteorological masts allowed us in the manual curve-fitting mode to 
use standard methods to process the data. Large data files obtained by sodars require the creation of automated data 
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processing systems, including online operation employing processing and analysis methods based on robust 
nonparametric statistics [4–7].  

This article investigates special features of the spatiotemporal dynamics of the wind velocity extracted from 
real-time measurements obtained using a Doppler minisodar, and an analysis and comparison of standard classical 
methods with methods based on robust nonparametric statistics are carried out.  

1. STATEMENT OF THE PROBLEM  

We investigate the spatiotemporal dynamics of the three wind velocity components in the ABL on the basis of 
Doppler sodar measurements made using an AV4000 minisodar with a 50-element phase antenna array [8]. The 
working frequency of the minisodar was 4900 Hz, pulse duration 60 ms, and acoustic radiation was emitted sequentially 
in three directions – vertically and at angles  = 18° with respect to the vertical in two mutually orthogonal planes. The 
pulse repetition period was 4 s. Measurements were made at 40 altitude strobes jz  with resolution 5z   m in the 

altitude range 5–200 m. Series of N = 150 profiles each were processed, which ensured averaging over a 10-minute 
measurement period. The measurements were carried out over the course of six (6) days in autumn from 12 to 17 
September. Results of processing of the minisodar data for the three wind velocity components on the basis of the least 
squares method (LSM) are presented in [9–11]. A parametric model of the vertical profile of the horizontal wind 
velocity was constructed for neutral and unstable stratifications of the atmosphere. The spatiotemporal dynamics of the 
х-, y-, and z-components of the wind velocity was analyzed.  

The random vector of the components of wind velocity ( , ) ( , , )x y zt z V V VV  depends on the time t of the 

measurement and on the altitude z above the underlying surface and forms a random process that depends on the 
parameter z (a random wind field). The random vector was defined by a number of n-dimensional distributions 
dependent on a large number of factors such as location, the underlying surface, time, altitude of the measurement, etc. 
It is obvious that to construct a mathematical model of the wind velocity in the ABL on the basis of such n-dimensional 
distributions (models of which are lacking) would be extraordinarily complex if even possible. Therefore the problem is 
decomposed into a sequence of simpler problems, on the basis of which particular mathematical models are constructed 
and solutions are extracted. Stable factors are assigned fixed values – location, the underlying surface, time and altitude 
of the measurement, and the following problems are considered:  

1. Synthesis and analysis of strobe array (cell array). The time t = t0 and altitude z = z0 are assigned and the cell 

0 0( , )t zV  is singled out. Models of marginal cell distributions, parameters of position (average value), scale (variance), 

and confidence intervals are introduced and examined. Numerical characteristics are time-averaged in order to establish 
and trace out stable trends [9–11]. 

2. Synthesis and analysis of cell profiles. The time t = t0 is fixed and the profiles 0( , )t zV  are considered as 

functions of the altitude z, or the altitude z = z0 is fixed and the strobes 0( , )t zV  are considered as functions of time t. 

Mathematical models (regression lines) and confidence intervals on them are constructed. Time averaging was used in 
[9–11] to examine trends.  

3. Synthesis and analysis of the two-dimensional distributions ( , )t zV . It is of significant interest to construct 

models of the fine structure of a wind stratum: structure functions, autocorrelations, regression lines of ( , )t zV  as 

functions of time t and altitude z. 
In this paper we examine special features of the spatiotemporal dynamics of the wind velocity on the basis of 

real-time Doppler minisodar measurements and analyze and compare standard classical methods with methods based on 
robust nonparametric statistics.  
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For comparison, we calculated the standard parametric estimates: the sample mean p  and the sample 

variance. Given the estimates p  and n  we found the biases, variances, standard deviations SDр and SDn by the 

bootstrap method – and determined the relative efficiency eff = SDр/SDn. As an example, Table 1 presents results of 
a comparison of p  and n  at different altitudes, and Fig. 2 displays the results of a comparison of the p  and n  

profiles.  
As follows from Table 1, the efficiency can vary significantly with altitude (from 2% to 89%). As can be seen 

from Fig. 2a and b, SDp is mainly determined by the bias of the estimate, which can vary significantly both with altitude 
and with time. Figure 2c clearly shows such a dependence. On the basis of the bootstrap method, we determined the 
central confidence intervals of p  and n  from their profiles with a confidence level of 0.95. Table 2 presents 

calculated confidence intervals for a series of altitudes; Fig. 2c shows a plot of their corresponding profiles.  
Analysis of Table 2 and Fig. 2c shows that widths of the confidence intervals 2δp and 2δn for μp and μn are of 

the same order of magnitude. At the same time, a significant bias of the estimate μp at altitudes greater than 70 m is 
clearly visible, which testifies to the presence of significant outliers at these altitudes.  

TABLE 1. Characteristics of Estimates of μp and μn versus Altitude  

 
Altitude, m 

Parametric model (μp) Nonparametric model (μn) 
EfficiencySquare of 

the bias 
Variance SDp 

Square of 
the bias 

Variance SDn 

55 0.008143 0.000449 0.008593 0.006785 0.000890 0.007674 0.89 
100 0.142441 0.000408 0.142849 0.010625 0.000921 0.011546 0.08 
150 0.433752 0.000847 0.434599 0.001296 0.000396 0.001692 0.04 
180 0.614029 0.001204 0.615233 0.012446 0.000699 0.013144 0.02 
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spatiotemporal dynamics. All three components have maxima in the morning and evening hours. The maxima in the 
evening hours for the у- and z-components are more strongly expressed than the maxima in the morning hours. For the 
x- and y-components (Fig. 3a and b) the shear was closely tracked in the evening hours (from 20:00 to 23:00). At these 
times Vx varies from 5.2 m/s at an altitude of 50 m to –1.4 m/s at an altitude of 200 m, and Vy varies from 6.5 to –1 m/s.  

The obtained results allow us to draw the following conclusions:  
1. Analysis of the hourly semidiurnal dynamics showed that all three wind velocity components have maxima 

in the morning and evening hours. For the у- and z-components, the maxima in the evening hours are more strongly 
expressed than in the morning hours. For the x- and y-components the wind shear was closely tracked in the evening 
hours.  

2. We obtained the distribution law for each wind velocity component. We found that for the x- and y-
components the width of the distribution increases as the observation altitude is increased, and the maximum of the 
distribution function decreases, which is in agreement with the data available in the literature. For the y-component 
a transition from a unimodal to a bimodal distribution with increasing altitude is traced out. For the z-component the 
width of the distribution remains practically constant but the maximum decreases with altitude.  

3. The efficiency of classical data processing methods in comparison with robust nonparametric methods can 
be extraordinarily low, in a number of cases reaching as low as 5% (Tables 1 and 3). 

4. The presence of different kinds of outliers (Fig. 1) leads to extremely unstable behavior of the SDp. At the 
same time, the robust nonparametric estimates are stable to outliers (Table 1). As this work has shown, this is due to the 
appearance of significant biases of the classical estimates (Fig. 2 and Table 1). 

5. The use of nonparametric methods makes it possible to obtain data that cannot be obtained by conventional 
methods.  
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