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COHERENT LIGHT AT THE INTERFACE BETWEEN TWO MEDIA  

N. D. Kundikova1,2 UDC 535.3 

Reflection and refraction of coherent polarized radiation at the interface between two media are considered. It 
is shown that deviations from the well-known laws of geometrical optics are possible under certain conditions. 
The causes of such a deviation are considered.  

Keywords: Goos–Hänchen shift, optical Magnus effect, spin and orbital angular momenta, spin-orbit 
interaction of a photon, optical Hall effect.  

INTRODUCTION 

Reflection of light from the interface between two media has been utilized since ancient times. In the Museum 
of Science in London an ancient Egyptian bronze mirror is preserved which harkens back to the period 800–100 years 
before our era. In the British Museum (London) there is an entire exposition of Japanese bronze mirrors from the XIIIth 
through the XVth centuries. These mirrors were considered as symbols of power. Mirrors fabricated from metal and 
glass by the British astronomer Sir William Herschel (1738–1822) for telescopes are found in the Museum of Science in 
London.  

In all likelihood, the first formulation of the law of reflection of light can be said to harken back to 300 years 
before our era, when Euclid (ca. 365 – ca. 300 before our era), associating light rays with straight lines, observed that 
the angle of reflection is equal to the angle of incidence, and that the incident ray and the reflected ray lie in the same 
plane [1, 2]. Claudius Ptolomeus (ca. 100 – ca. 170), considering the refraction of light at the interface of two 
transparent media, observed that a beam of light, propagating along a straight line, is deflected from its original 
direction as it passes through such an interface.  

In 1704 Sir Isaac Newton in his treatise Opticks: Or, a Treatise on Reflections, Refractions, Inflections and 
Colours of Light formulated three axioms: 1) The angles of reflection and refraction lie in the same plane as the angle of 
incidence. 2) The angle of reflection is equal to the angle of incidence. 3) A ray that is refracted from an optically less 
dense medium into an optically denser medium is deflected toward the perpendicular, that is, the angle of refraction is 
less than the angle of incidence [3]. The well-known mathematical formulation of the laws of reflection and refraction is 
rightfully ascribed to Willebrord Snellius (1580–1626) [4]. In 1821 Augustin Fresnel (1788–1827) derived fundamental 
expressions describing the variation of intensity and phase upon reflection and refraction of light at the interface 
between two media [5].  

Among the achievements of the middle years of the twentieth century, it is necessary to include the creation of 
lasers and the discovery of two theretofore completely unknown phenomena, namely the possibility of the existence of 
materials with a negative coefficient of refraction [6] and wave front reversal [7]. At the same time, more subtle effects 
which are observed at the interface between two media remained practically unnoticed. Interest in these effects arose 
with the development of nanophysics and nanophotonics and was motivated by the need to take these effects into 
account in the development of new devices, new technologies, and new instrumentation.  
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PRINCIPLE OF WEAK MEASUREMENTS  

Experimental studies which investigated the accumulation of the effect after multiple reflections made it 
possible to detect longitudinal and transverse spatial shifts, but did not make it possible to carry out a detailed 
investigation of the magnitude of the shift due to a single total internal reflection. The possibilities of such 
an investigation became apparent only with the development of weak measurements. The principle of such 
measurements in classical optics was demonstrated in the case of the splitting of a Gaussian beam upon passage through 
a thin crystalline plate [20].  

Let us consider the principle of weak measurements in more detail. An incident beam is linearly polarized with 
polarization azimuth angle   in the plane of incidence. Upon passing through a crystalline plate the initial beam is split 
into two beams with orthogonal polarizations. The field of the transmitted wave has the following form:  
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 is the Maxwell column vector,    w w wx yE E E x y
 

, x


 and y


 are unit 

vectors in the x  and y  directions, respectively,   is the phase difference between the x -component  w xE  and the y

-component  w yE  of the field wE , 0w  is the width of the Gaussian beam, and a  is the displacement (spatial shift), 

where 0 1a w  . The split beam passes through an analyzer oriented at an angle 2        relative to the plane 

of incidence, where the angle 1  , which is to say that the polarizer and the analyzer are practically crossed. Let 
4   , then after passage through the analyzer the field  
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Along the x  axis the intensity distribution remains Gaussian, but along the y  axis it acquires the following form: 
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 (1) 

If we differentiate the intensity distribution   2yE  with respect to the coordinate and set the result equal to zero, then 

it is possible to see that the position of the maximum max 0y  . To simplify the calculations, we set cos 1  , and in 

the solution of the quadratic equation we take into account the smallness of the quantities a  and  . As a result, we 
obtain the following expression for the position of the coordinate maxy  of the maximum intensity in the intensity 

distribution of the resulting beam: 
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 max cotan
2

a
y    .   (2) 

It is clear from expression (2) that a change in the sign of the angle   leads to a change in the sign of maxy . 

Substituting expression (2) into Eq. (1), it is easy to show that an increase in the observed shift leads to a significant 
lowering of the intensity of the observed distribution, that is to say, the price one has to pay to increase the spatial 
resolution is an increase in the sensitivity of the devices recording the intensity.  

SPATIAL AND ANGULAR SHIFTS INCIDENT TO REFRACTION AND REFLECTION  

It appears that the longitudinal Goos–Hänchen shift was first measured experimentally inside a laser cavity in 
the vicinity of the angle of total internal reflection [21]. In [22] a single longitudinal Goos–Hänchen shift was measured 
using a one-dimensional position-sensitive detector. This method made it possible to determine with an accuracy of 
hundreds of nanometers the difference in the longitudinal shift for light polarized in the plane of incidence  
(р-polarization) and perpendicular to the plane of incidence (s-polarization). 

According to the expressions obtained in [23], the longitudinal shift depends on the angle of incidence  , the 
shift for p-polarization pd  is greater than the shift for s-polarization sd , and the difference between these two shifts 

p sd d    has the following form:  

 
     2 2 2 2

sin 1
1

sin 1 1 sin 1
p sd d

n n

        
       

.   (3) 

It is clear from expression (3) that as the angle of incidence approaches the angle of total internal reflection 

cr arcsin(1 )n   the magnitude of   tends to infinity. In the study reported in [22] measurements were carried out in 

a prism fabricated from BK7 glass at two wavelengths, 0.67   μm ( 1.511n  , critical angle 41.4 ) and 
1.083   μm ( 1.506n  , critical angle 41.6 ). The authors of this work determined the maximum value of the 

difference   to be equal to 19 μm at the wavelength 0.67   μm, and 9 μm at the wavelength 1.083  .  
The use of a two-dimensional position-sensitive detector made it possible for Pillon et al. [24] under conditions 

of a single total internal reflection to measure not only the longitudinal Goos–Hänchen shift, but also the much-smaller-
in-magnitude transverse Fedorov–Imbert shift. These measurements were performed for linearly, circularly, and 
elliptically polarized radiation at the wavelength 1.083   μm for a fixed angle of incidence 41.65   , close to the 
angle of total internal reflection for BK7 glass. It turned out that linearly polarized radiation undergoes only 
a longitudinal shift with a maximum value on the order of 9 μm. A circularly polarized beam was shifted only in the 
transverse direction with the magnitude of the shift equal to 0.6 μm. As expected, a shift was observed both in the 
positive and in the negative directions. An elliptically polarized beam was shifted both in the positive and in the 
negative directions.  

In 2004 Onoda et al. [25] showed that not only under conditions of total internal reflection but also for partial 
reflection, and also under conditions of refraction, circularly polarized radiation undergoes a transverse shift. The 
magnitude of the shift is also on the order of a wavelength, but the direction of the shift is equal for the reflected and the 
refracted radiation. This effect has come to be known as the spin Hall effect for light in analogy with the spin Hall effect 
in which a deflection of electrons with antiparallel spins occurs perpendicular to the direction of current toward opposite 
sides of a conductor in the absence of a magnetic field [26]. In the case of light the analog of the force is the gradient of 
the refractive index at the interface between the two media and photons with spins of different signs deflect in opposite 
directions, perpendicular to the gradient of the refractive index and to the plane of incidence.  

The first experimental study of a transverse shift under conditions of refraction was performed in 2008 by 
Hosten et al. [27]. The measurements were performed at the wavelength 632.8   μm. The light was refracted in BK7 
glass; in order to eliminate the effect of refraction at the second interface, a prism was fabricated from it consisting of 
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two parts, the mutual rotation of which, for a given angle of incidence, allowed light to exit the prism along a path 
perpendicular to the surface. The principle of weak measurements was employed to amplify the shifts. Splitting of 
a linearly polarized beam into two circularly polarized beams with different signs of circulation was experimentally 
observed. It was shown first analytically, and then experimentally, that the magnitude of the shift depends on the 

azimuth of the linear polarization. The dependence of the transverse shift for the p-component 1
p
  and the  

s-component 1
s
  on the angle of incidence   has the following form:  
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1

1

cos cos
,

2 cos

cos cos
.

2 cos
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I
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I

t t

t t





  
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 

  
  

 

  (4) 

Here T  is the refraction angle, st  and pt  are the Fresnel coefficients for the amplitude, and 1    for right circular 

polarization and 1    for left circular polarization. In the experiment good agreement was observed between the 
measured values of the splitting and expressions (4). The maximum shift, recorded for near-grazing incidence (in the 
limit 90  ), was approximately 80  nm. 

Under conditions of partial reflection of light from the interface between two media, polarization of the incident 
light has a big effect on the spatial shifts since, as is well known, in the case of reflection at the Brewster angle radiation 
with polarization lying in the plane of incidence is zeroed out. Such an effect was observed in [28]. For linear 
polarization perpendicular to the plane of incidence, the magnitude of the splitting increases with increase of the angle 
of incidence   to its maximum value, equal to 69.6  nm at 48   , and then decreases to zero as the angle of 
incidence approaches 90 . In the case of radiation that is linearly polarized in the plane of incidence, for B   the 

splitting is significantly increased with approach to the Brewster angle B 57   , reaching a value 1800  nm, and for 

B    the shift changes sign and decreases with further increase of the angle of incidence. For a fixed angle of 

incidence, as the azimuth of linear polarization is varied from 0   (polarization in the plane of incidence) to 90    
the shift decreases smoothly and for the azimuth of linear polarization equal to 39  it changes sign while growing in 
absolute value.  

The longitudinal spatial shift under conditions of partial reflection was investigated experimentally for the 
Brewster angle of incidence [29]. It turned out that the longitudinal shift is exceptionally sensitive to a change in the 
azimuth of linear polarization in the vicinity of 0   . In the experiment both a longitudinal shift and a transverse shift 
were observed as the azimuth was varied within the limits 0.6 0.6      . The shift changed sign at 0   ; in 
absolute value the longitudinal shift reached a value of 900 μm, and the transverse shift reached a value of 300 μm. 

A longitudinal angular shift, specifically nonspecular reflection, was observed experimentally in [30] upon 
reflection of a Gaussian beam with wavelength 820   nm from BK7 glass ( 1.51n  , B 56.5   ). According to the 

results of calculations, a longitudinal angular shift should not be observed for radiation with linear polarization 
perpendicular to the plane of incidence (the s-component); for the orthogonal polarization (the p-component) the shift 
grows as the Brewster angle is approached, and at angles greater than the Brewster angle it changes sign while falling 
off in absolute value. At B 56.5      the s-component disappears, while the p-polarized Gaussian beam undergoes 

a deformation. In absolute value the deflection lies within the limits from 510  to 210  rad. 
Departure of the reflected beam from the plane of incidence at some angle to it (the transverse angular shift, 

referred to here as an out-of-plane shift) was observed upon reflection of light from a metallic surface [31]. Both 
a spatial shift and an angular shift were observed for linearly polarized radiation; the largest splitting occurred for 
switching of the azimuth of linear polarization from 45    to 45    , but for switching between the s- and  
p-polarizations it was zero. For circular polarization only a transverse spatial shift was observed.  
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Under partial reflection a transverse spatial shift is affected by the structure of the field of the light beam. Thus, 
in [32] it was shown that for a linearly polarized partially reflected beam with orbital angular momentum 0l   the 
difference in the transverse spatial shifts between beams with p- and s-polarization p sd d    has the following form:  

 
     

2

2 2 22 2

sin
1

1 sinsin
p s

n
d d l

n nn

        
       

.  (5) 

Here   is the wavelength,   is the angle of incidence, and n  is the relative refractive index of the medium. It follows 
from expression (5) that the quantity TM TEd d    is equal to zero for 0l   and depends linearly on the magnitude of 

the orbital angular momentum. It changes sign when the orbital angular momentum changes sign, and has a different 
sign for angles of incidence less than or greater than the Brewster angle.  

The experimental results obtained in [33] demonstrate striking agreement between calculated and experimental 
values of p sd d   . The measurements were performed at the wavelength 632.8   nm, light was reflected from 

a rotary prism, and the refractive index of the prism material was 1.5n  . The transverse distribution of the intensity of 
the reflected beam was recorded with a CCD array for each polarization state and each value of the orbital angular 
momentum. The cross-correlation method of image processing was employed to determine the distance between the 
centers of gravity of the recorded beams. The maximum shift 2   μm was recorded in the vicinity of the Brewster 
angle for Laguerre–Gaussian beams with 3l   and 5. For the angle of incidence 81    a linear dependence of the 
transverse spatial shift TM TEd d    on the magnitude of the orbital angular momentum was experimentally 

demonstrated in the range 1, 2, ..., 5l  . 

In [34] the influence of the orbital angular momentum on the spatial and angular Goos–Hänchen shifts ( GH  is 

spatial, GH  is angular) and Fedorov–Imbert shifts ( FI  is spatial, FI  is angular) was investigated both theoretically 

and experimentally. It was shown that the influence of the orbital angular momentum leads to an interrelationship 
between the angular and spatial shifts which can be described by the following matrix equation:  

 

GH GH

FI FI

FIFI
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GH

1 2 0 0

0 1 2 0 0

0 0 1 2

0 0 0 1 2

l

l

l

l

l

l

l

l
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.  (6) 

Here l  is the orbital angular momentum. It follows from expression (6) that the presence of orbital angular momentum 
can amplify as well as suppress spatial and angular shifts.  

Experimental studies were carried out at the wavelength 632.8   nm both for total internal reflection and for 
partial internal reflection. A prism was used that was fabricated from BK7 glass with refractive index 1.51n  . Shifts 
that arose when the polarization was modulated were recorded with the help of a two-dimensional position-sensitive 
detector. To separate the angular shifts, the beams were focused, and to separate the spatial shifts, they were collimated. 
The experimental results showed that under total internal reflection the orbital angular momentum has no influence on 
the magnitude of the shifts. Under partial reflection the magnitudes of the shifts for beams with orbital angular momenta 

0, 1l    depend on the angle of incidence, and the experimental results proved to match up well with the analytical 

results.  
Upon reflection of radiation from a film deposited on a substrate, it is possible to observe a transverse shift, 

whose magnitude depends not on the sign of the circular polarization, but on the sign of the orbital angular momentum. 
In [35] Kundikova and Zaitsev modeled reflection of a Gauss–Bessel beam from a thin sapphire film deposited on 
silicon. The thickness of the film was varied in the range from 10 to 20 wavelengths. The wavelength was taken to be 
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Such an approach does not always allow us to obtain an analytical solution; therefore, to estimate the 
magnitudes of the shifts, some approaches have been developed in [36]. 

CONCLUSIONS  

Studies of spatial shifts in the middle of the last century as a manifestation of the influence of polarization of 
radiation on its trajectory were of an extraordinarily fundamental character and together with studies of the influence of 
the trajectory on the polarization [37–41] have enabled a consideration of the spin-orbit interaction [16, 42] of a photon 
and made it possible to predict a number of effects associated with its appearance. The development of modern 
experimental methods, and also technologies, associated with the transition to the nanoscale range, has led to the need 
to consider the possibility of bringing fundamental results into the picture. The spatial and angular shifts considered 
above are very sensitive to a change in the physical state of systems and are promising for application in high-precision 
metrology. They can be used to determine the spatial distribution of electronic spin states in semiconductors [43], to 
determine the parameters of films of nanometer thickness [35, 44], to image graphene layers [45], and to investigate 
topological insulators [46]. 

This work was performed within the scope of the topic of State Assignment No. 0389-2014-0004. 
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