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ON THE POSSIBILITY OF FORMATION AND PROPERTIES OF 

COPPER–SILVER SOLID SOLUTIONS UNDER SEVERE PLASTIC 

DEFORMATION  

V. P. Pilyugin, I. L. Solodova, T. P. Tolmachev UDC 669.35: 539.89 
O. V. Antonova, E. G. Chernyshev, and A. M. Patselov 

Mechanical alloying of Cu and Ag powders in concentrations Cu1–x–Agx (х at.% = 0.1, 0.2, …, 0.9) under high-
pressure torsion is investigated. The alloys obtained have a structure of nanograined nonequilibrium FCC 
solid solutions with positive deviation from Vegard’s law. The hardness of the alloys is 4–6 times higher than 
of the initial components – copper and silver. The energy and power parameters of treatment of the solid 
solutions and stages of their formation are calculated from the shear stress measured in situ under high 
pressure. Thermally induced decomposition of the solid solutions begins from aging under normal conditions, 
is accelerated upon heating, and ends by short-term heating up to 500°C. It is accompanied by simultaneous 
development of the processes of gathering recrystallization. 

Keywords: Cu–Ag solid solution, sever plastic deformation, high pressure, mechanical solution, mechanical 
alloying, decomposition, nonequilibrium, nanocrystalline, nanostructure, hardness. 

INTRODUCTION 

Cu–Ag systems have a positive mixing enthalpy of 5 kJ/mol [1] and a limited solubility caused by violation of 
the second Hume–Rothery rule, since the relative deviation of ionic radii of these d-transition metals with close values 
of electron affinity is 23% [2]. For several reasons, the properties of the Cu–Ag systems, including similar physical and 
mechanical properties of their elements, absence of intermetallic compounds, electrical and medical applications, 
prospects for obtaining deformation-induced amorphous state of copper or silver based alloys stabilized by alloying, 
and good comprehension of microstructure and properties of pure components and their alloys are of great scientific and 
practical interest [3, 4]. Products of mechanical synthesis conventionally obtained by ball milling are in the powder state 
and have a number of disadvantages peculiar to the milling method: impurities, uncontrolled and undesirable heating, 
and methodological limitations on investigation of the structure and especially mechanical properties of powders [5]. 
For reliable structural attestation and measurements of physical and mechanical properties of synthesized solutions, they 
must be prepared as bulk solid samples by the method of high-pressure torsion in the Bridgman chamber with dies made 
from superhard cermets BK-6 and c-NB [6, 7]. This method allows megaplastic strain degrees to be achieved with 
simultaneous control over the treatment parameters, including pressure, temperature, and strain degree almost without 
sample contamination by the material used for treatment. 
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example, 12Cr18Ni10Тi stainless steel. The Cu–Ag samples alloyed mechanically had increased brittleness compared 
to the pure components, which was also due to their strong fragmentation, high nonequilibrium concentration of the 
obtained solid solutions, and high level of internal stresses. 

A set of data on the structure, thermal stability, and mechanical properties of the alloy samples allows us to 
analyze the processes and physical mechanisms of forming the Cu–Ag nonequilibrium solid solutions and to determine 
the degree of their homogeneity. By the present time, the stage changes in the structure of single-phase pure metals 
during cold and low-temperature deformation have been established [9, 10]. In this case, the processes of saturation of 
the lattice by different defects whose concentration is determined by the specific thermobaric conditions and 
deformation rate, are observed in metals. As a result, metals reach the nanostructured state that corresponds to 
anomalously high self- and heterodiffusion and regimes of dynamic saturation of the shear stress dτ/dε = 0. The 
complex character of the dynamic behavior is complicated even greater for mixtures of chemically dissimilar metals 
subjected to structural fragmentation and heterogeneous stress-diffusion initiated by severe deformation. The 
deformation on the meso- and microlevels caused the shape of metal particles to change: their laminar stretching in thin 
layers is observed with subsequent turbulent eddies, torsions, rotations, and breaking of layers. These processes lead to 
strong – by several orders of magnitude – increase in the contact areas of the elements. Interlayers of mixed states that 
thicken and, in their turn, are also subjected to structural changes and fragmentation to the nanocrystalline state, are 
formed on the boundaries of contacts of the dissimilar metals due to stress-diffusion. The complexity of the processes of 
joint deformation of the mixtures allows only qualitative models [5, 11–13] of mass transfer by flows of nonequilibrium 
point defects, vacancies, and interstitial atoms formed in the process of dragging of vacancy and interstitial jogs by 
crossing dislocations [14, 15] to be used. In the process of severe deformation of the Cu–Ag mixtures, the equilibrium 
formation – decomposition of the solid solution is established with dynamical equilibrium dτ/dε = 0. As mentioned 
above, the concentration and structural equilibrium in dynamics corresponds to certain thermobaric conditions and 
treatment rate. Thus, first, the state is extremely saturated with defects, and the volume fraction of atoms in the 
intercrystallite space with daver = 20 nm is about 25–30% [16]. Second, the solid solution on the crystallite scale 
significantly exceeds the chemically equilibrium state with almost zero equilibrium mutual solubility of Cu and Ag at 
293 K [2]. The homological temperature Thom = Tdef / Tmelt, where Tdef is the deformation temperature and Tmelt is the 
melting temperature, is 0.24 for silver and 0.22 for copper at 293 K. Therefore, room temperature is comparatively low 
for the activation of conventional diffusion, although it is well known that the processes of dynamic and post-dynamic 
recrystallization occur in pure copper upon severe deformation at 80 and 293 K [9], whereas the processes of gathering 
recrystallization occur in it upon aging and heating to 100°C. This demonstrates the saturation of the structure with 
high-density defects and the increase of the internal energy. In our case, just after intensive treatment the system is far 
from equilibrium both in saturation by lattice defects of various topologies and in strong excess of the equilibrium 
concentration of the mutually mixed copper and silver atoms. When the treatment is finished, the system is shifted from 
the dynamic equilibrium formation – decomposition of the solid solution toward the decomposition of the solid solution. 
Manipulations with samples after deformation treatment – relieve from shear and compressive axial stresses, 
preparation of foils, and temporal aging under normal conditions – require time that leads to decomposition of 
nonequilibrium solid solutions and system transition to the stable state. Moreover, globules having different contrasts 
enriched with copper and silver are formed. Therefore, the state of the samples with the sections of still preserved 
nonequilibrium solution and sections in which decomposition has already started was registered by the TEM method. It 
should also be noted that the microstructure of the Cu–Ag alloys obtained differs from the microstructures of severely 
deformed pure metals and stable alloys [9, 10] or solid solutions mechanically alloyed for systems with negative shear 
enthalpies, for example, Cu–Ni or Cu–Zn systems [6]. In the latter, globular nanocrystallites were absent after identical 
intense deformation treatment, since the decomposition processes do not proceed in these systems with negative shear 
enthalpy. 

Generation of nonequilibrium point defects upon plastic deformation of initial mono- and polycrystalline FCC 
metals was modeled in a number of works (for example, see [17, 18]). According to the results of calculations presented 
in [18], the concentration of nonequilibrium vacancies of deformation origin increased by 5–6 orders of magnitude from 
510–12 to 510–7 for ε = 0.4–0.8; it increased from 510–13 to 710–7 for bivacancies [18]. The concentration of the 
interstitial atoms increased even stronger: from 10–22 to 10–13. The calculated data are in a good agreement with in situ 
experimental measurements [19] in copper mono- and polycrystals during deformation, where it was demonstrated that 
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the orders of magnitudes of the local vacancy concentrations for ε = 0.4–0.6 reached 10–7 in monocrystals and 10–6 in 
polycrystals. Moreover, the change in the concentration of the grain boundaries having deformation origin from 10–5 to 
10–4 for ε = 0.4, which is initial for the present work, was also established in [19]. Therefore, the concentration of grains 
significantly increased up to 10–3 with the deformation, which caused further fragmentation of the structure [20], with 
a considerable increase in the excessive volume. The set of theoretical and experimental data on the effect of severe 
deformation on the structural changes of the metal allows alloying of the elements and hence the formation of 
nonequilibrium solid solutions together with their microstructures to be explained qualitatively. 

To accelerate the mutual penetration and spreading of atoms, including dissimilar ones, throughout the crystal, 
multiple acts of generation, migration, and annihilation of nonequilibrium point defects should be modeled. Upon cold 
deformation, generation and annihilation of vacancies and interstitial atoms occur during annihilation of dislocation 
dipoles, climbing dislocation jogs, dragging elementary and long jogs during intersection of forest dislocation, their 
climbing, etc. [14, 15]. The resulting nanostructural state of the system is achieved via multiple elementary acts of 
plastic deformation leading to nanofragmentaion of the structure accompanied by the formation of solid solution in the 
conditions of cold plastic deformation under high pressure. 

CONCLUSIONS 

The Cu–Ag alloys with the structure of nanocrystalline FCC nonequilibrium solid solutions have been obtained 
in the process of severe cold deformation under high pressure. The solid solutions obtained were chemically 
homogeneous on the scale of spherulites with sizes 20–25 nm and of their clusters and had high hardness and 
brittleness. The alloys obtained by deformation were unstable and decomposed during aging, heating, and upon 
exposure to an electron beam of the microscope. The special features of the formation, microstructure, and thermal 
stability established for the nonequilibrium solid solutions consisting of pure components of the Cu–Ag system should 
be considered in their preparation and application as solid lubricants or additives. 

The synchrotron measurements were performed in the Siberian Synchrotron and Terahertz Radiation Center of 
the Siberian Branch of the Russian Academy of Sciences (Novosibirsk), and electron microscopic observations were 
performed in the Center for Collective Use “Testing Center for Nanotechnologies and Advanced Materials” of the 
Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences.  

This work was supported in part by the Ministry of Education and Science of the Russian Federation (State 
Assignment “Deformation” No. 01201463327). 
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