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SPECIAL FEATURES OF FRACTURE OF A SOLID-STATE 

TITANIUM ALLOY – NICKEL – STAINLESS STEEL JOINT 

R. G. Khazgaliev,1 M. Kh. Mukhametrakhimov,1 M. F. Imaev,1,2 UDC 621.791.18, 621.7.019.4 
R. U. Shayakhmetov,1 and R. R. Mulyukov1,2 

Microstructure, nanohardness, and special features of fracture of three-phase titanium alloy and stainless steel 
joint through a nanostructural nickel foil are investigated. Uniformly distributed microcracks are observed in 
Ti2Ni and TiN3 layers joined at temperatures above T = 700°C, whereas no microcracks are observed in the 
TiNi layer. This suggests that the reason for microcracking is an anomalously large change in the linear 
expansion coefficient of the TiNi layer during austenitic-martensitic transformation. Specimens subjected to 
mechanical tests at T = 20°C are fractured along different layers of the material, namely, in the central part of 
the specimen they are fractured along the Ti2Тi/TiNi interface, whereas at the edge they are fractured along 
the TiNi/TiNi3 interface. 
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INTRODUCTION 

The development of modern technical devices, in particular, steam generators and heat exchangers of nuclear 
power plants calls for the manufacture of reliable joints of titanium alloys with other materials. Fusion welding is 
unreliable, and joining with fastening elements makes the construction heavier. Elimination of the fastening elements 
will allow one not only to decrease the weight and size of important construction units, but also to implement radically 
new design solutions. The most common problem is to join titanium alloys with steel and heat resistant nickel alloys. 
Solid phase welding is a perspective method of joining of these materials. However, direct joint of titanium alloys with 
these materials is not always possible due to the formation of brittle phases at the interface. For example, the solid phase 
joint of the titanium alloy with the stainless steel is accompanied by the formation of brittle Fe–Cr–Ti and Fe–Ti based 
intermetallic phases and by residual stresses caused by different thermal expansion coefficients (TECs) of the materials 
being joined [1]. One of the methods of solving this problem is the use of a nickel gasket [2]. The intermetallic 
compounds are not formed at the steel – nickel alloy interface, whereas Ti2Ni, TiNi, and TiNi3 intermetallic compounds 
are formed in the titanium alloy – nickel contact. The welding regime is of great importance when the nickel gasket is 
used. For example, in [1–4] the titanium alloy and steel were joined through a nickel interlayer at high temperatures 
T = 850–950°С. As a result, the brittle Fe–Ti intermetallic compounds were formed even at the nickel–steel interface 
due to fast diffusion of titanium, which significantly reduced the hardness of specimen joints. To prevent diffusion of 
titanium into steel, the temperature or joining time must be decreased. The mechanical properties of the specimens 
obtained by joining of the titanium alloy with the stainless steel through the nanocrystalline nickel layer at temperatures 
T = 650–750°C were investigated in [5]. The intermetallic Fe–Ti compounds were not formed at these temperatures, 
and the hardness of the joint was higher than after joining at temperatures T = 850–950°C. 
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The aim of the present work is to investigate the microstructure, chemical composition, and nanohardness of 
the layers of the solid-state titanium alloy – nickel – stainless steel joint to detect regions of crack nucleation and to 
determine ways for further improvement of the joint hardness. 

EXPERIMENTAL 

Specimens of the PT-3V titanium alloy and Fe–12Cr–18Ni–10Ti steel with sizes of 4 × 4 × 20 mm3 were 
joined through the NP-2 nickel interlayer with a thickness of 0.3 mm in a vacuum furnace with residual gas pressure not 
higher than P = 2.0·10–3 Pa. The welding regime was the following: pressure P = 4 MPa, temperature T = 600, 700, and 
750°C, and time of holding under pressure τ = 20 min. After welding the specimens were annealed at welding 
temperatures for 1 h. To investigate the mechanical properties at room temperature, the specimens were subjected to 
tensile tests with the strain rate έ = 210–3 s–1. To facilitate investigation of the joint zones, oblique microsections with 
the cutting angle α = 10° to the joint surface were cut on an electrospark machine. The microsections were successively 
polished with diamond pastes having different grain sizes and then with colloid silicon dioxide suspensions having 
particle sizes of about 0.04 µm. Some microsections were subjected to electrochemical etching in the solution of 
200 mL butanol and 20 mL HClO4. The microstructure was investigated using a 6610LV scanning microscope with an 
INCA energy dispersive spectrometer. The hardness of the joint zone was determined by impact indentation using 
a Nanoskan 3D nanoindenter. The scanning resolution was about 10 nm in the XY plane and no worse than 1 nm along 
the Z axis. As a tip, the Berkovich diamond indenter was used shaped as a triangular pyramid with a tip angle of 140° 
and the tip curvature radius r  50 nm. The load applied to the indenter was P = 20–30 mN.  

RESULTS 

As a result of joining, a layered composite was formed in which two interfaces can be distinguished: between 
the titanium alloy and nickel and between the stainless steel and nickel. The titanium alloy – nickel joint zone consists, 
in turn, of several layers (Fig. 1a and b). The formation of three kinks corresponding to Ti2Ni, TiNi, and TiNi3 
intermetallic compounds can be seen in the dependence of the composition on the distance. The TiNi and TiNi3 kinks 
were formed in the specimen at T = 650C, whereas the layer with the Ti2Ni stoichiometry was not observed; however, 
the region of changed microstructural state existed between Ti and TiNi. In this region of the titanium alloy the nickel 
content was high. At T = 750°С, the kinks were more clearly pronounced and were wider than after welding at 
T = 700C. The intermediate zones between the kinks corresponded to the two-phase regions. The width of the titanium 
alloy – nickel joint zone in which the intermetallic layers were formed was 8–10 and 12–14 µm at T = 700 and 750C, 
respectively. A comparison of the etched and non-etched microsections allowed a curious fact to be revealed. The 
polished microsections looked continuous, whereas periodic small cracks were observed on the etched microsections. 
The microcracks were observed in two layers: Ti2Ni and TiNi3. No cracks were observed in the TiNi layer. 

The nickel – stainless steel joint zone had no continuous layered structure analogous to that of the titanium 
alloy – nickel zone. Small particles with sizes smaller than 1 µm enriched with chromium were present in this 
zone (Fig. 2). The width of the nickel – stainless steel joint zone was equal to 15–20 µm. It depended weakly on the 
weld temperature. 

The nanohardness measured in the titanium alloy – nickel joint zone is shown in Fig. 3. The hardness changed 
non-uniformly in the region of the Ti–Ni intermetallic compound. Zones with high hardness altered with low hardness 
zones. Ti2Ni and TiNi3 layers had the highest hardness. 

The fractograms of specimens fractured in tensile tests at 20C demonstrated that failure was inhomogeneous 
and two zones were distinguished in the specimen: the central part and the edge. The inhomogeneity of failure was due 
to the formation of a stagnant zone in the central part of the specimen being welded that was caused by a strong increase 
in the friction coefficients of the surfaces being welded and their subsequent sticking. The following regularity was 
found for all examined weld temperatures: the central parts of the specimens failed along the Ti + Ti2Ni/TiNi interface, 
whereas at the edge of the specimens, they failed along the TiNi/TiNi3 interface. When the weld temperature T 
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3. The uniformly distributed microcracks were detected in the Ti2Ni and TiNi3 layers after joining at 
temperatures exceeding T = 700C, whereas they were not observed in the TiNi layer. Microcracks appeared under 
cooling of specimens from the weld temperature. It seems likely that cracking is initiated by the anomalously large 
change of the linear thermal expansion coefficient during the austenitic–martensitic transformation in the TiNi layer. 

4. During mechanical tests at T = 20C, the specimens always fractured in the joint between the titanium alloy 
and nickel. Wherein, the fracture surface in the central part and at the edge of the specimens was observed in different 
layers of the material. In the central part of the specimens, they fractured mainly along the Ti2Ni/TiNi interface, 
whereas at the edges they fractured along the TiNi/TiNi3 interface. 
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