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INVESTIGATION OF TORSIONAL STRENGTH OF THE VT6 

WELD JOINT PRODUCED BY LINEAR FRICTION WELDING  

G. R. Suleimanova,1 R. R. Kabirov,2 M. V. Karavaeva,1  UDC 669.295:621.791.14 
Yu. A. Ershova,3 and A. P. Zhilyaev2 

Results of measurement of torsional strength of the weld joint of the VT6 titanium alloy produced by linear 
friction welding are presented. For a comparison, the same method was used to test monolithic specimens of 
the VT6 alloy. Torsional strength values of the weld joint (τUS = 861 MPa and φ = 110°) correspond to the 
strength of the monolithic material. In this case, the specimens fail along the base metal. 
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INTRODUCTION 

Linear friction welding (LFW) is a method of joining parts of machines and billets in the solid state in which 
heat liberated as a result of friction is used to produce a weld joint. The process of forming a one-piece joint using LFW 
can conditionally be subdivided into several stages [1, 2]. In the initial stage, the surfaces being joined come into 
contact under the action of axial loading (Fig. 1). Then under the influence of friction forces between billets, heat is 
liberated in the contact zone causing plasticization of thin layers of the material adjacent to the joint line. In the third 
stage, the plasticized layers are extruded from the joint under the effect of axial loading and form the so-called burr. 
Together with the burr, various nonmetallic inclusions and pollutants of the metal surface, forming juvenile surfaces, 
are extruded; as a result, in the fourth stage interatomic bonds are formed together with a one-piece weld joint under the 
application of an axial force in the absence of friction.  

Joining titanium alloys by conventional methods of fusion welding calls for the application of some protective 
gases to reduce weld joint pollution in the process of liquid phase treatment. In addition, the joints of titanium alloys 
obtained by the method of arc welding lose their plasticity in comparison with the initial material due to the formation 
of a martensitic structure and its subsequent coarsening in the region adjacent to the joint [3–5]. Linear friction welding 
widely used to join dissimilar materials, including steel, aluminum, titanium, and intermetallic alloys, is free from these 
disadvantages. It can be used to join gear wheels, chains, hinges, wheels of turbines, electric buses, and bimetallic cutter 
blades as well as to replace damaged compressor blades [6]. 

In the last few years, increasing importance has been attributed to a study of weld joint fracture and influence 
of various structural and technological factors on the fracture characteristics [7]. Investigation of the strength of weld 
joints is an important and urgent problem. The weld joints are traditionally tested on tension, compression, and-or 
bending; however, the characteristics obtained during such tests incompletely reflect the stressed state arising during 
system operation. Additional data can be provided by investigations of the torsional strength of materials. However, the 
works devoted to investigation of the mechanical properties of weld joints by the torsion method are few in number in 
the literature. 
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The purpose of the present work is the determination of the torsional strength characteristics of the VT6/VT6 
weld joint. Since the failure most clearly reflects the structure and properties of the material in the local volume in 
which the fracture proceeds, fractograms of fractured surfaces are also investigated. 

MATERIALS AND METHOD OF RESEARCH 

We investigated titanium VT6 belonging to high-strength two-phase martensitic titanium alloys. The base 
alloying elements in this alloy are aluminum (6%) and vanadium (4.5%) [8]. To investigate the weldability of VT6 with 
VT6, parallelepiped specimens 35 mm high having cross section 13  26 mm2 were used. Mechanically treated billets 
were made from hot rolled bar according to IS 1 90006-86. Before welding, the VT6 alloys were subjected to rolling 
with reduction of 45–50% and subsequent annealing at a temperature of (800 ± 10)°С. 

Among the main preset parameters determining the welding process were the frequency, amplitude of 
vibrations, rolling and shrinkage forces, time of welding, and amount of shrinkage. The parameters of the LFW process 
of the specimens used in the present work are presented in Table 1.  

Tests for torsion were performed according to GOST 3565-80 [9]. For this purpose, specimens with 
a cylindrical working part having the diameter d = 3 mm and the calculated length L = 15 mm with heads at the ends for 
fastening in grips of a test machine Instron were manufactured. The mechanical characteristics were calculated in 
accordance with GOST 3565-80. To elucidate the structure, the prepared microsections etched with a solution of fluoric 
and nitric acids in water were used. The microstructure was investigated using an Olympus GX-51 optical microscope 
and a TescanMira 3 LMH scanning electron microscope. The microhardness was measured using a Duramin-1/-2 
microhardness tester with a step of 0.5 mm and a load of 2 N applied for 10 s. The x-ray structure analysis was 
performed with a DRON-3M diffractometer using CuK radiation. All measurements were carried out for a welded 
VT6/VT6 specimen in four zones, including the joint zone, the zone of thermomechanical effect (ZTME), the zone of 
thermal effect (ZTE), and the base metal zone.  

RESULTS OF INVESTIGATIONS 

Microstructure 

Figure 2 shows photomicrographs of structures in transverse cross sections of the weld joint. Investigation of 
the welded structure demonstrated the presence of four zones: 1) recrystallized (joint zone), 2) ZTME, 3) ZTE, and 

TABLE 1. Main Technological Regimes of Welding 

Main Technological Parameters 
Vibration 
frequency, 

Hz 

Amplitude of 
vibrations, 

mm 

Friction force, 
kN 

Forging force, 
kN 

Shrinkage, 
mm 

Welding time, 
s 

Pressure, 
MPa 

50 2 35 35 4 ~1.5 100 

 Vibrational 
force 

Compression 
force Compression 

force 

 

Fig. 1. Scheme of LFW. 
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Investigation of the fracture histograms demonstrated that the fracture zone was characterized by viscous 
(fibrous) failure both for the weld joint and monolithic specimen. In the monolithic material, the bumpy smoothed relief 
was observed that testified to considerable plastic deformation preceeding failure. The direction of pit elongation 
indicated the direction of fracture development in the microvolume as well as the direction of crack front propagation. 
In the process of fracture pits deepen as a result of contraction of bridges between them. Small extention but sufficient 
depth of pits demonstrates high torsional strength of the joint and initial material. 

CONCLUSIONS 

In this work it has been shown that the chosen regime of linear friction welding allows a high-quality joint of 
the VT6 alloy to be obtained. The structural investigation of the specimens of the VT6/VT6 weld joint demonstrated the 
presence of the following zones in the region near the joint: recrystallization zone, strong plastic deformation 
(thermomechanical) zone, transitive (thermal) zone, and base metal zone. The microhardness was maximal in the joint 
zone, which indicated the formation of the fine-needle martensitic structure within the small recrystallized β-grain 
leading to the increased strength of the alloy. 

The analysis of the failure surfaces demonstrated that the fracture zone was characterized by viscous (fibrous) 
failure, small extension, but sufficient depth of pits for both the weld joint and the monolithic specimen which 
demonstrated high torsional strength of the joint and initial material. The characteristics of the torsional strength 
(τв = 810 MPa and φ = 110 (1.9 rad)) confirmed sufficiently high characteristics of the weld joint corresponding to the 
strength of the monolithic material. In this case, fraction occurs along the base metal.  
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