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TOPOLOGY OF WRINKLONS IN GRAPHENE NANORIBBONS IN
THE VICINITY OF CONSTRAINED EDGE

E. A. Korznikova,' J. A. Baimova,' and S. V. Dmitriev'? UDC 539.31

Most of the two-dimensional materials possessing low bending stiffness tend to lose the flat shape to form
topological defects in the form of wrinkles and folds under the action of external factors. One of the striking
examples of such material is graphene, where the presence of wrinkles leads to changes in physical,
mechanical, and chemical properties of the material. Thus, changing the geometry of wrinkles, one can
purposefully control properties of graphene. In this paper, we studied the characteristics of wrinkles appearing
in graphene under the influence of elastic deformation, as well as the evolution of the configuration of wrinkles
in the vicinity of the constrained edge of the graphene nanoribbon at different initial conditions. It is found that
near the constrained edges of the deformed graphene nanoribbons, it is profitable to form wrinklons, that is,
transition regions, where two or more wrinkles merge into one. The stability of two types of wrinklons formed
by merging of the two or three wrinkles in one is shown. It is shown that in the process of the structure
relaxation of the uniformly deformed graphene depending on the initial configuration of wrinkles, hierarchy of
wrinkles containing wrinklons of one or another type is formed near the constrained edges. The results allow to
explain the experimentally observed topology of the graphene sheet in the vicinity of the constrained edge.
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INTRODUCTION

Graphene is a two-dimensional crystal of carbon, where each atom is connected by covalent bonds with three
nearest neighbors. Due to the presence of the delocalized covalent bond, graphene possesses unique electrical properties
[1, 2] and high thermal conductivity [3]. Like many other two-dimensional materials, graphene has high strength and
stiffness when stretched in the plane of the sheet [4—7], but it has very low bending stiffness, which leads to the
formation of wrinkles and folds under the influence of external factors [8—16].

It was shown in [17] that the formation of wrinkles is often observed in two-dimensional materials. The
properties of graphene depend strongly on the applied deformation and surface topology. Among the factors leading to
the loss of the flat shape by the graphene sheet, we note the application of compressive stresses acting in the plane of
the sheet [8—16], interaction with the substrate [18], partial hydrogenation [19], and thermal fluctuations [13, 14].

Formation of wrinkles in the graphene and graphene nanoribbons was investigated both experimentally and
theoretically. The potential energy £ and amplitude 4 of wrinkles depend on the wrinkles wavelength A and obey the
laws of A ~ A and E ~ A% over a wide range of the plane deformation of graphene [18, 20]. The wrinkle formation in the
hanging two-dimensional materials was studied in [17], where it was shown that the structural instability due to the
fixing of edges is the cause of the formation of quasi-periodic wrinkles. The wavelength of wrinkles increases, as the
distance from the constrained edge x increases according to the law A ~ x™. This low is valid for most of the two-
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Fig. 1. Schematic representation of wrinklons, that is, transition regions of merging of the
two wrinkles in one (A — A2, {1—52}) (a) and of the three wrinkles in one (A — A/3,
{1—3}) (b). Black and white areas of the nanoribbon show the positive and negative
movements of atoms from the plane of the graphene sheet.

dimensional materials prone to wrinkling, regardless of the type and thickness of the material. The exponent m is in the
range from 1/2 to 2/3 for different materials.

The term wrinklon first introduced by the authors of [17] denotes a zone, where several wrinkles merge in one.
It was also shown that the hierarchy of wrinklons spontaneously arising in the two-dimensional material with the
constrained edge is self-similar.

Figure 1 shows examples of merging of the two wrinkles in one (A — A/2) (@) and of the three wrinkles in one
(A — N3) (b). Hereinafter, these transitions are briefly designated by {1—2} and {1—3}, respectively. Black and white
areas of the nanoribbon show the positive and negative movements of atoms from the plane of the graphene sheet,
respectively. Note that in Fig. la, there is a singular point, where two black and two white areas merge. There are no
such points in Fig. 15. Probably, metastable structures corresponding to the more complex transitions of & wrinkles in /
can also be formed.

Due to the fact that controlled wrinkling is an effective way to influence the phonon and electron spectra of
graphene, its chemical reactivity, optical properties, etc. [21], the study of special features of this process is an urgent
task. In this paper, equilibrium configurations of wrinkles in the deformed graphene in the vicinity of the constrained
edge are studied by the method of molecular dynamics under relaxation.

MODEL DESCRIPTION

The initial structure for simulation was constructed by translation of the graphene rectangular unit cell
containing four carbon atoms. [22] Translational cells were numbered by indices m and » in the directions x and y,
respectively (see Fig. 2). The x and y axes were chosen along the zigzag and armchair directions, respectively. During
the relaxation, every atom in the calculated cell had three degrees of freedom (the components of the displacement
vector). At the edges of the calculated region parallel to the y axis, periodic boundary conditions were used. The edges
parallel to the x axis were firmly constrained (Fig. 2a shows the half width of the nanoribbon with upper constrained
edge).

The nanoribbon width W (the calculated cell size in the y-axis direction) was N = 480-700 translational
elementary cells, and the calculated cell size L in the x-axis direction was M = 56—150 cells. The simulation was
performed at zero temperature.

To describe interatomic interactions, the potential proposed in [22] was used, which gives the equilibrium
length of the valence bond py= 1.418 A. This potential has been successfully tested in finding the stability region of the
graphene sheet uniformly deformed in its own plane [23], in studying the dynamics of motion of soliton waves in the
deformed graphene [24], and in studying the discrete breathers in graphene and graphene nanoribbons [25-28].

In all considered cases, the nanoribbon was elastically deformed in the plane by the strain g,, =—0.08, ¢, = 0.1.
The compressive strain in the x-axis direction provided the appearance of wrinkles oriented along the y direction in the
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Fig. 2. Initial (a, c, e) configurations of the nanoribbon wrinkles and configurations formed
after the relaxation (b, d, f). A half of the calculated area near the upper constrained edge
(240 <n <480) is shown. Black (white) color corresponds to a positive (negative)
displacement of atoms from the nanoribbon plane.

nanoribbon. To study the relaxation dynamics, the viscosity term was introduced in the equations of motion of atoms.
Equilibrium configurations of nanoribbons of various widths with different initial conditions were studied.

The initial conditions were set in two different ways:

1. A nanoribbon with the width of W =2042 A (N = 480) and size of the calculated cell of L =339 A (M = 150)
is considered (see Fig. 2). In the elastically deformed graphene nanoribbon, the displacements of atoms from the plane
of the nanoribbon were set in the form of the function Az(x, y) = 4sin (2mx/A) for A =L, L/2, and L/3. The obtained
initial configurations are shown in Fig. 2a, c, e. Positive and negative displacements of atoms of the nanoribbon are
shown in black and white. For the wave amplitude of initial displacements from the plane, a sufficiently small value of
4 =0.3 A was chosen, to prevent the breaking of valence bonds near the constrained edge.

2. In the second case, a nanoribbon with the width W = 2978 A (N = 700) and three various sizes of the
calculated cell: L = 126.56, 180.8, and 235.04 A corresponding to the numbers of elementary cells M = 56, 80, and 104
was considered. The initial conditions were set, to simulate the transition between the wrinkles in the graphene
nanoribbons with different wavelengths. To this end, the displacements of atoms in the direction normal to the plane of
the nanoribbon were given in the form of sinusoidal functions: Az (x, y) = 4, sin(2mx/A;) in the range 0 < n < 550 and
Az(x, y) = A, sin(2mx/A,) in the range 551 < n < 699, where A; = L and A, = L/2 or L/3. The amplitudes of the initial
displacements were 4; = A, =0.15 A. The initial configurations for the transitions {1—2} and {1—3} are shown in
Fig. 3a and b, respectively. Note that the topology of the initial conditions in Fig. 3a and b corresponds to the topology
of structures shown in Fig. 1.

For both types of initial conditions, initial displacements of atoms in the plane of the graphene sheet and the
initial velocities of atoms are zero.

SIMULATION RESULTS

Figures 2b, d, f show the configurations of wrinkles resulting from the relaxation of initial structures shown in
Figs. 2a, c, e, respectively. It may be noted that the morphology of wrinkles formed as a result of relaxation weakly
depends on their initial configurations. Thus, relaxation of the initial structure containing one wrinkle with A = L
(Fig. 2a) leads to the formation of the hierarchy of wrinkles {3 — 4 — 9}, while moving from the middle of the

810



640

610

580

550

520

0 50 100 150§ :
a x(m)i b c d i e f g : h

Fig. 3. Initial configurations of wrinkles {1—2} (a) and {1—3} (b) in the nanoribbons and
configurations formed as a result of relaxation for the calculated areas of various sizes: ¢, d
~L=12656 A, e, f~L=180.8A, g, h—L=235.04 A. For c, e, g, the transitions {1—2}
are formed and for d, f, h, the transitions {l—3} are formed. Black (white) color
corresponds to a positive (negative) displacement of atoms from the nanoribbon plane.
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Fig. 4. Dependence of the maximum displacements from the plane (xy) on the number of
the unit cell n for the structures shown in Fig. 2b, d, f. The number n = 480 corresponds to
the constrained edge.

nanoribbon to the constrained edge (see Fig. 2b). The dependence of the maximum amplitude of wrinkles AZ,,.x on the
number of the unit cell n near the constrained edge (430 <n <480) shown in Fig. 4 is well approximated by
a polynomial of the fourth order, which confirms the observations [22]. In the center of the nanoribbon, maximum
displacement from the plane (xy) is about 10 A.

The morphology of wrinkles observed during the relaxation of nanoribbons containing two wrinkles with A =
L/2=169.5 A (Fig. 2¢, d) is, in general, similar to that in the previous case. The hierarchy of the resulting structure can
be described as {3—7} (Fig. 2d). As can be seen from Fig. 4, the maximum displacement amplitude is 10.5 A.
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Fig. 5. Dependences of the maximum displacement from the plane (xy) (@) and the potential
energy per atom (b) on the unit cell number #n after relaxation for the structures shown in
Figs. 3, c—h. The number n = 700 corresponds to the constrained edge.

In case of the initial structure with A = L/3 = 113 A (Fig. 2e, f), the transitions observed after the energy
minimization can also be described as {3—7}. As seen from Fig. 4, the maximum amplitude of the displacements is
8.5A.

According to the results shown in Fig. 2, we can conclude that at a maximum distance from the constrained
edge, the state with three wrinkles is advantageous within the periodicity cell, because the distance from the constrained
edge is not large enough for them to merge into one wrinkle. Thus, it follows from [22] that with increasing distance
from the constrained edge, an increase in the wavelength of wrinkles is observed. The displacements from the plane (xy)
of the nanoribbon also increase as AZ ~ An”, where An corresponds to the distance from the constrained edge.

With increasing size of the nanoribbon in the direction y, a state can be achieved, where the configuration with
one wrinkle becomes advantageous. It should also be noted that the spontaneously formed hierarchy of wrinkles
contains only elementary transitions of {1—3} type schematically shown in Fig. 15. In this case, no transitions {1—2}
shown in Fig. 1a, are observed.

To analyze the possibility of realization and probability of formation of elementary transitions {1—2} and
{1—3}, nanoribbons with initial conditions containing these transitions were investigated (Fig. 3a, b). As a result of the
relaxation of the nanoribbon with the width L = 126.56 A, the initial hierarchy of wrinkles {1—2} and {1—3} remains
unchanged (Fig. 3¢, d) and the length of the short-wave part of the nanoribbon significantly decreases, which is due to
the fact that the existence of the long-wavelength configuration is energy favorable [29, 30].

It should also be noted that the case of the transition {1—3} is characterized by a much smaller length of the
transition region. With the increase in width up to L = 180.8 A, the topology of the relaxed structure remains
unchanged, only the length of the transition region increases. From the plot of the dependence AZ,..(n) (Fig. 5a), it can
be concluded that the length of the transition region near the constrained edge is increased approximately 2-fold. For the
transitions {1—3}, the maximum amplitude decreases more smoothly, while approaching to the constrained edge,
which is reflected in the lower level of energy in the corresponding areas (Fig. 5b).

Under the relaxation of nanoribbons with the transitions {1—2} and {1—3} and width L = 235.04 A, the first
one is transformed to the {1—5} type. In this case, the wrinklons newly formed near the edge of the nanoribbon relate
to the {1—3} type. As in case of smaller L, the transition {1—3} is characterized by greater smoothness and lower
energy in the corresponding area.

It was shown in [30] that in spite of the significant differences in the topology, the energy characteristics of
both types of wrinklons are close to each other. The differences in the local increments of elastic strains Ag,, and Ag,,
caused by the presence of the wrinklon have one order of magnitude. The transition of the {1—3} type is characterized
by lower values of Ag,, and Ag,,, than the transition {I—2}. This may be one of the reasons for the preferential
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formation of a certain elementary type of the wrinklon under spontaneous formation of the wrinkle hierarchy shown in
Fig. 2.

CONCLUSIONS

This paper deals with various structures of wrinkles and wrinklons appearing in the graphene nanoribbon with
constrained edges uniformly deformed in its own plane. Two types of wrinklons are described: transition regions,
within which several wrinkles merge in one, namely, transitions of the {I—2} and {I—3} types (Fig. 1). It is found
that:

1) Relaxation of nanoribbons with the width W = 2042 A (N = 480) and calculated cell size L = 339 A (M =
150) (see Fig. 2) initially containing from one to three of wrinkles leads in all three cases to the formation of similar
hierarchy of wrinkles near the constrained edges containing only the transitions {1—3} that are energetically favorable
and cause lower local lattice distortions [30].

2) An analysis of the evolution of elementary transitions {1—2} and {l—3} in nanoribbons with different
values of L showed that the length of the wrinklon monotonically increases with increasing L. For L = 235.04 A, the
relaxation of the structure leads to the formation of new wrinklons along the constrained edge, which is caused by the
tendency to minimize total potential energy of the system. It should also be noted that under the relaxation of the initial
{1—-3} structure, the density of wrinklons decreases with increasing L. In case of {1—2}, the density of wrinklons
increases due to the formation of new alternating transitions near the constrained edge.

3) The dependence of the amplitude of the maximum displacements from the plane (xy) near the constrained
edge can be approximated by a polynomial of the fourth order (see Fig. 4 and Fig. 5a).

The data obtained indicate that the existence of different metastable configurations of wrinkles under the same
conditions is possible.

Taking into account that many of properties of graphene depend on the configuration of wrinkles, the study of
ways to control the topology of wrinkles and their evolution could potentially be useful in the development of new
nano-devices based on graphene.
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