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TOPOLOGY OF WRINKLONS IN GRAPHENE NANORIBBONS IN 

THE VICINITY OF CONSTRAINED EDGE 

E. A. Korznikova,1 J. A. Baimova,1 and S. V. Dmitriev1,2 UDC 539.31 

Most of the two-dimensional materials possessing low bending stiffness tend to lose the flat shape to form 
topological defects in the form of wrinkles and folds under the action of external factors. One of the striking 
examples of such material is graphene, where the presence of wrinkles leads to changes in physical, 
mechanical, and chemical properties of the material. Thus, changing the geometry of wrinkles, one can 
purposefully control properties of graphene. In this paper, we studied the characteristics of wrinkles appearing 
in graphene under the influence of elastic deformation, as well as the evolution of the configuration of wrinkles 
in the vicinity of the constrained edge of the graphene nanoribbon at different initial conditions. It is found that 
near the constrained edges of the deformed graphene nanoribbons, it is profitable to form wrinklons, that is, 
transition regions, where two or more wrinkles merge into one. The stability of two types of wrinklons formed 
by merging of the two or three wrinkles in one is shown. It is shown that in the process of the structure 
relaxation of the uniformly deformed graphene depending on the initial configuration of wrinkles, hierarchy of 
wrinkles containing wrinklons of one or another type is formed near the constrained edges. The results allow to 
explain the experimentally observed topology of the graphene sheet in the vicinity of the constrained edge. 

Keywords: graphene, hierarchy of wrinkles, wrinklon, elastic deformation, molecular dynamics.  

INTRODUCTION 

Graphene is a two-dimensional crystal of carbon, where each atom is connected by covalent bonds with three 
nearest neighbors. Due to the presence of the delocalized covalent bond, graphene possesses unique electrical properties 
[1, 2] and high thermal conductivity [3]. Like many other two-dimensional materials, graphene has high strength and 
stiffness when stretched in the plane of the sheet [4–7], but it has very low bending stiffness, which leads to the 
formation of wrinkles and folds under the influence of external factors [8–16]. 

It was shown in [17] that the formation of wrinkles is often observed in two-dimensional materials. The 
properties of graphene depend strongly on the applied deformation and surface topology. Among the factors leading to 
the loss of the flat shape by the graphene sheet, we note the application of compressive stresses acting in the plane of 
the sheet [8–16], interaction with the substrate [18], partial hydrogenation [19], and thermal fluctuations [13, 14]. 

Formation of wrinkles in the graphene and graphene nanoribbons was investigated both experimentally and 
theoretically. The potential energy E and amplitude A of wrinkles depend on the wrinkles wavelength λ and obey the 
laws of A ~ λ and E ~ λ–2 over a wide range of the plane deformation of graphene [18, 20]. The wrinkle formation in the 
hanging two-dimensional materials was studied in [17], where it was shown that the structural instability due to the 
fixing of edges is the cause of the formation of quasi-periodic wrinkles. The wavelength of wrinkles increases, as the 
distance from the constrained edge x increases according to the law λ ~ xm. This low is valid for most of the two-
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formation of a certain elementary type of the wrinklon under spontaneous formation of the wrinkle hierarchy shown in 
Fig. 2. 

CONCLUSIONS 

This paper deals with various structures of wrinkles and wrinklons appearing in the graphene nanoribbon with 
constrained edges uniformly deformed in its own plane. Two types of wrinklons are described: transition regions, 
within which several wrinkles merge in one, namely, transitions of the {1→2} and {1→3} types (Fig. 1). It is found 
that: 

1) Relaxation of nanoribbons with the width W = 2042 Å (N = 480) and calculated cell size L = 339 Å (M = 
150) (see Fig. 2) initially containing from one to three of wrinkles leads in all three cases to the formation of similar 
hierarchy of wrinkles near the constrained edges containing only the transitions {1→3} that are energetically favorable 
and cause lower local lattice distortions [30]. 

2) An analysis of the evolution of elementary transitions {1→2} and {1→3} in nanoribbons with different 
values of L showed that the length of the wrinklon monotonically increases with increasing L. For L = 235.04 Å, the 
relaxation of the structure leads to the formation of new wrinklons along the constrained edge, which is caused by the 
tendency to minimize total potential energy of the system. It should also be noted that under the relaxation of the initial 
{1→3} structure, the density of wrinklons decreases with increasing L. In case of {1→2}, the density of wrinklons 
increases due to the formation of new alternating transitions near the constrained edge. 

3) The dependence of the amplitude of the maximum displacements from the plane (xy) near the constrained 
edge can be approximated by a polynomial of the fourth order (see Fig. 4 and Fig. 5a).  

The data obtained indicate that the existence of different metastable configurations of wrinkles under the same 
conditions is possible. 

Taking into account that many of properties of graphene depend on the configuration of wrinkles, the study of 
ways to control the topology of wrinkles and their evolution could potentially be useful in the development of new 
nano-devices based on graphene.  
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