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ESTIMATION OF FRACTURE TOUGHNESS OF SMALL-SIZED 

ULTRAFINE-GRAINED SPECIMENS 

Е. Е. Deryugin and B. I. Suvorov UDC 624.014 

The results obtained from measurements of the crack resistance of a VT6 alloy (Ti–6.46Al–3.84V in wt.%) 
produced by refining coarse-crystalline structure down to an ultrafine-grained state, using a triaxial forging 
technique, are presented. The specific fracture energy c is calculated by means of a new procedure developed 
for small-sized chevron-notched specimens. Severe plastic deformation is shown to cause a substantial 
reduction in c at room temperature. Fracture surface structure found in the ultrafine-grained alloy under 
study contains local zones of a severely deformed material characterized by high pore concentration. This type 
of structure cannot be formed solely by crystallographic shearing along densely packed lattice planes. This is 
evidence for a significant role of rotation deformation modes in crack nucleation and growth on different 
structural scales of the material. 

Keywords: ultrafine-grained structure, localization of deformation, fracture, specific fracture energy, titanium 
alloys. 

INTRODUCTION 

Standard crack resistance tests typically involve massive specimens no less than 10 mm in thickness [1]. 
However, there is a practical need for conducting this kind of tests with the use of substantially smaller specimens. This 
is a vital issue for ultrafine-grained (UFG) and nanocrystalline materials produced by severe plastic deformation (SPD) 
techniques. The materials are characterized by fairly uniform crystallite size and misorientations in blanks of relatively 
low thickness. Besides, a tendency towards miniaturization of products in the most important branches of modern 
industry calls for estimation of crack resistance using techniques different from traditional approaches. An advantage of 
small-sized specimens is the fact that their testing does not require large amounts of materials and powerful testing 
machines. In fracture toughness (crack resistance) tests on small-sized samples, use is generally made of chevron-
notched specimens [2–5]. There is no need to provide fatigue precracking in this specimen configuration. 

The main parameter characterizing the ability of materials to resist crack growth is the critical stress intensity 
factor KIc to be usually calculated. The latter describes a non-uniform stress field in the vicinity of a crack tip in quasi-
brittle materials. In metals and alloys, crack nucleation and growth are preceded by considerable plastic deformations. 
Calculations performed in [6] by the relaxation element method showed that the stress distribution in a plastic 
deformation zone differed essentially from the stress field in a cracked elastic medium. This is due to the fact that there 
is no singularity in this zone. As the distance from the crack tip increases, the stress increases from zero at the crack tip, 
passes through a maximum, and decreases gradually down to the level of the applied stress at a fairly great distance 
from the crack tip. This implies that KIc has no physical meaning for plastic materials, especially in the case of small-
sized specimens.  

Whatever the type of the material, a reliable characteristic of the crack resistance is the critical elastic energy 
release rate Gcr in crack growth. Notably, Gcr is equivalent to the value of the J-integral [7 and 8]. Using a new 
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where dS = 2adl is the differential of the crack surface area. Hereinafter cr will be referred to as the specific fracture 
energy. 

The following formula is valid for a specimen shaped as a double-cantilever beam with a narrow rectilinear 
notch [8 and 10]: 

 
2 2
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P l
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The calculations accounting for chevron notch geometry allowed for derivation of an equation for a chevron-
notched specimen: 
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where coefficient T is expressed as 

 
2 1

1

0
2 cot cot 1

2 4 2 3

a k l dk
T k

l l dl


            

. (5) 

Here parameter k is 
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and, accordingly, 
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where Δl is the crack growth increment and l = l0 + Δlis the crack length. 
For a specimen treated as a symmetric double-cantilever beam, the following formula was derived for 

deflection of each cantilever, using methods of theory of elasticity: 
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The equations derived here, unlike the standard relations from [2–5], incorporate no empirical constants. All 
the necessary characteristics can be obtained from experiment. 

RESULTS 

Figure 2 presents typical load-notch opening diagrams for the TV6 alloy in the CC (а) and UFG states (b) 
obtained in testing small-sized chevron-notched specimens. For the CC structure, crack nucleation occurs at the apex of 
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