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ENERGY EXCHANGE BETWEEN THE DISCRETE BREATHERS 

IN GRAPHANE 

J. A. Baimova1 and S. V. Dmitriev1,2 UDC 534-16 

Discrete breathers in graphane (fully hydrogenated graphene) are studied by the molecular dynamics method. 
It has previously been demonstrated that in graphane, there are discrete breathers in the form of single 
hydrogen atoms oscillating with the big amplitude in the direction perpendicular to the graphane plane with 
a frequency lying in the bandgap of the phonon spectrum. In this work, the possibility of the existence of long-
lived clusters of discrete breathers of different configurations is shown, their properties are studied, and the 
possibility of energy exchange between the discrete breathers in the cluster is demonstrated. These results are 
important for the discussion of physical processes occurring during dehydrogenation of graphane at high 
temperatures, which, in turn, is of great importance for the development of the hydrogen storage and transport 
devices based on sp2-carbon materials. 
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INTRODUCTION 

Graphene, whose physical, mechanical, electronic, and other properties are being actively investigated in the 
last decade, is one of the most chemically active materials. It has been shown that graphene readily reacts, e.g., with 
hydrogen, which results in a transition from a highly conductive material to the semiconductor. Fully hydrogenated 
graphene named “graphane” was first predicted theoretically [1, 2] and then, it was obtained experimentally [3]. In 
contrast to graphene, graphane is not a flat two-dimensional material, since the attachment of hydrogen atoms leads to 
the displacement of carbon atoms from the plane. 

To each of the carbon atoms above and below of the graphene sheet, one hydrogen atom is attached, whereby 
hybridization of carbon atoms is changed from sp2 to sp3 [4–9], which, in turn, leads to significant changes in the 
material properties. Thus, full or partial hydrogenation is a promising method for the controlled variation of many 
properties of graphene. For example, hydrogenation can be used to control the electron transport [10] and gap width of 
the electron spectrum [11], to change electrochemical [12, 13] and magnetic properties [14] and thermal conductivity 
[6, 9]. Now, methods of hydrogenation of graphene are well known and widely used in practice [5, 10, 15, 16]. 
However, experimental determination of the morphology of hydrogenated graphene is a rather complicated task [10]. 
One of the most popular experimental methods to evaluate the degree of hydrogenation of graphene is Raman 
spectroscopy [3]. Theoretical studies of structure and properties of graphene were presented in [1, 9, 17, 18]. For 
example, the formation of clusters of hydrogen atoms and the graphene surface regions free of hydrogen atoms were 
investigated [4, 18]. 

In recent decades, considerable attention is attracted to the problem of storage and transportation of hydrogen 
due to the increasing requests for the creation of environmentally friendly and energy saving sources of energy. 
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CONCLUSIONS 

Thus, clusters composed of two discrete breathers in graphane were studied by the method of molecular 
dynamics. Each of the DBs in the cluster represents a hydrogen atom oscillating in the direction perpendicular to the 
plane of graphane. All types of clusters discussed in this paper have lifetimes of thousands of oscillation periods in the 
whole range of the studied initial amplitudes. Moreover, the DBs in the cluster may vibrate both in anti-phase and in 
phase. The change in the direction of initial oscillations usually does not result in the rapid decay of DBs. In clusters, 
energy exchange is observed between the DBs. The most favorable conditions for the sustainable energy exchange are 
realized, if two adjacent hydrogen atoms located on different sides of the graphene sheet (Fig. 3 а, the cluster A) are 
excited in phase and the initial difference of the DB amplitudes is small (about 0.01 Å). 

We note that the energy of DB in graphane can reach several electron volts [27], that is, it is close to the energy 
of the hydrogen atom desorption. A couple of DBs is able to localize even more energy and greatly facilitate the 
desorption of hydrogen atoms from the graphane sheet due to the transfer of a part of energy from one DB to another. 
Thus, the DBs and their clusters may play an important role in dehydrogenation of graphane at higher temperatures. 
Investigation of the dehydrogenation of graphane is important, because this process is performed in devices of 
transportation and storage of hydrogen fuel based on sp2-carbon materials. However, the dehydrogenation process 
requires more detailed studies. It is important to study the clusters consisting of more DBs, as well as the possibility of 
excitation of DBs in graphane by applying an external high-frequency field. 
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