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TEMPERATURE DEPENDENCE OF THE MAGNETIZATION OF 

THE Ni52Mn24Ga24 ALLOY IN VARIOUS STRUCTURAL STATES  

I. I. Musabirov,1 I. Z. Sharipov,1,2 and R. R. Mulyukov1 UDC 537.622; 539.25 

Results are presented of a study of the temperature dependence of the magnetization σ(Т) of the polycrystalline 
Ni52Mn24Ga24 alloy in various structural states: in the initial coarse-grained state, after severe plastic 
deformation by high pressure torsion, and after stepped annealing of the deformed specimen at temperatures 
from 200 to 700°С for 30 min. As a study of the σ(Т) curve shows, in an alloy possessing a coarse-grained 
initial structure, a martensitic phase transition and a magnetic phase transition are observed in the room 
temperature interval. The martensitic transformation takes place in the ferromagnetic state of the alloy. This 
transformation is accompanied by an abrupt lowering of the magnetization of the material, associated with 
a lowering of the symmetry of the crystalline lattice and a high value of the magnetocrystalline anisotropy 
constant of the alloy in the martensitic phase. It is shown that as a result of plastic deformation there takes 
place a destruction of ferromagnetic order and a suppression of the martensitic transformation. Consecutive 
annealing after deformation leads to a gradual recovery of ferromagnetic order and growth of the 
magnetization of the material. Recovery of the martensitic transformation begins to be manifested only after 
annealing of the alloy at a temperature of 500°С, when the mean grain size in the recrystallized structure 
reaches a value around 1 μm.  

Keywords: ferromagnetic shape-memory alloys, Heusler alloys, martensitic transformation, severe plastic 
deformation.  

INTRODUCTION  

Heusler alloys of the Ni2MnGa system possess unique properties, thanks to which they are considered to belong 
to the class of functional materials. In alloys of this system such effects as the ferromagnetic shape-memory effect 
(FSME) [1–4] and the magnetocaloric effect (MCE) [5–7] are observed, along with others. Their existence is due to 
a martensitic transformation taking place in the room temperature interval. The main attraction in alloys of the 
Ni2MnGa system is the FSME, i.e., the possibility of controlling the shape and dimensions of a material with the help of 
an external magnetic field. In polycrystalline alloys the magnitude of this effect is about 1% [8]. This opens up wide 
perspectives of putting these alloys to use in various sorts of microelectronic devices and actuators. However, they have 
two important drawbacks: degraded mechanical properties and instability of the shape-memory effect. Upon cyclic 
heating and cooling of the specimen through the martensitic transition temperature, the structure gets destroyed. As is 
well known, applying thermomechanical processing to various metals and alloys leads to enhanced mechanical 
properties [9–14]. In the case of the examined alloys such processing increases the stability of the functional 
characteristics of the material. In other words, the alloy endures a large number of cycles of the martensitic 
transformation. To better understand how to enhance the functional characteristics of alloys of the given system by the 
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method of deformational-thermal processing, a systematic study of the physical properties and structure of a material 
subjected to such treatment is needed. In this paper, we present results of a study of the magnetic properties and 
microstructure of the polycrystalline Ni52Mn24Ga24 alloy in various structural states obtained by high pressure torsion 
with subsequent stepped annealing at temperatures in the range 200–700°С. We shall refer to this process in what 
follows as high pressure torsion (HPT). The present work is a continuation of previously published papers [15, 16]. 

MATERIALS AND METHODS  

As the material to investigate we chose the polycrystalline Ni52Mn24Ga24 alloy. The alloy was obtained by arc 
melting in an Ar atmosphere from high purity Ni, Mn, and Ga. To achieve homogenization, the specimens were 
annealed for 9 days at 827°С with subsequent quenching in water with melting ice. An ingot of the alloy has 
an elongated shape (in the form of a bar) since crystallization of the melt took place in an elongated copper crucible 
with a depression and dimensions 10 × 100 mm2.  

The specimens were subjected to HPT on Bridgman anvils. The pressure was about 5 GPa, torsion was 
performed for 5 revolutions at a rate of 2 rpm. After deformation, all of the specimens had the shape of disks with 
a diameter of about 10 mm and a thickness of 0.1–0.15 mm. 

The martensitic transformation was investigated by recording the curves of the temperature dependence of the 
magnetization in a magnetic field around 240 kA/m. This was done by heating the specimen in the existence interval of 
the martensitic and magnetic phase transformations. The magnetization of the specimen was measured using an 
automated magnetic microbalance.  

The grain structure of the alloy after deformation and annealings at various temperatures was examined with 
the help of a scanning electron microscope and a sensor that was sensitive to the orientational contrast of the material. 
This is the most convenient method for examining small-grain structure as it does not require the laborious preparation 
of thin foils and makes it possible to analyze a large area of the surface of the specimen. After polishing with sandpaper 
with different degrees of roughness, the examined surface was subjected to electrolytic polishing.  

EXPERIMENTAL RESULTS  

The temperature dependence of the magnetization of the polycrystalline Ni52Mn24Ga24 alloy in its initial cast 
state, recorded during heating of the specimen in a magnetic field of 240 kA/m, is shown in Fig. 1 (curve 1).  

It is clear from the curve of σ(Т) that an abrupt increase in the magnetization is observed in the room 
temperature interval due to occurrence of the reverse martensitic transformation. Such behavior of the curve in magnetic 
fields below 500 kA/m is characteristic of alloys of the given system. This is explained by the low symmetry of the 
crystalline structure and the high value of the magnetocrystalline anisotropy constant of the martensitic phase. With 
further increase of the temperature, a smooth decrease of the magnetization is observed in the curve, and at 125°С the 
transition to the paramagnetic state takes place.  

The microstructure of the alloy in the initial state at room temperature is shown in Fig. 2. Microcracks are 
observed in the structure, passing along the grain boundaries. They are about 0.5 μm wide. As a result of repeated 
cycles of the martensitic transformation, a piling up of defects takes place in them. In the final count, this leads to 
growth of the cracks and destruction of the material. In the body of a grain there are also observed bands of varying 
thickness. These are martensitic twins.  

Temperature dependences of the magnetization of the alloy after HPT and subsequent stepped annealings at 
temperatures in the interval 300–700°С over the course of 0.5 h are plotted in Fig. 1 (curves 2–6). As can be seen, after 
severe plastic deformation magnetization of the specimen in the measured temperature interval is practically absent 
(curve 2). An analogous phenomenon was also observed in [17, 18]. This effect is explained by fragmentation of the 
grain structure of the material and by the high density of defects observed after severe plastic deformation. It is well 
known that a highly defective crystalline structure hinders ferromagnetic ordering [19, 20]. Along with destruction of 
ferromagnetic ordering, the martensitic transformation in the alloy is also suppressed. Curve 3 corresponds to the state 
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