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STRUCTURAL-PHASE TRANSFORMATIONS OF AN FCC-ALLOY 

DURING THERMAL CYCLING 

P. A. Chaplygin,2 M. D. Starostenkov,2 A. I. Potekaev,1,4  UDC 538.913 
A. A. Chaplygina,2 A. A. Klopotov,4,5 V. V. Kulagina,3,4  
and L. S. Grinkevich1 

Using an intermetallic compound of the Ni–Al system as an example, it is shown by the Monte Carlo technique 
that the processes developed during thermal cycling in the course of structural phase transformations in FCC-
alloys are irreversible. As a result of a heating–cooling cycle, a certain hysteresis is observed, whose presence 
suggests an irreversibility of these processes, which is indicative of the difference in the structural-phase states 
in the stages of heating and cooling. An analysis of the atomic and phase structure of the intermetallic system 
during its heating–cooling, i.e., in the course of order–disorder and disorder–order phase transformations has 
supported the difference in its structural-phase states in the stages of heating and cooling. Upon completion of 
the disorder–order phase transition, two antiphase domains with B2 superstructure are formed in the system. It 
is demonstrated that to ensure an order–disorder transition the system has to be somewhat overheated in 
contrast to a commonly acknowledged phase transformation temperature, while to achieve a disorder–order 
transition it has to be somewhat overcooled with respect to this temperature.  

Keywords: order–disorder phase transition, simulations, structural-phase transformations, condensed matter 
systems. 

INTRODUCTION 

Currently the focus of attention is on the materials possessing a combination of special properties capable of 
maintaining them under extreme conditions. Ordering alloys and intermetallics, from this standpoint, offer a great 
practical promise due to a range of unique physical and physical-mechanical properties, such as high strength, thermal 
strength, magnetic properties, etc. These are primarily determined by the structural-phase state of a metallic system. 
Designing materials with a predetermined set of properties is far from being trivial. An investigation of the properties 
and structural-phase states of a material using experimental methods is laborious and costly. Moreover, it is frequently 
hard to reveal the mechanisms underlying the structural-phase transformations. We can alleviate these difficulties using 
computer simulations, since many of the processes and phenomena are difficult to observe in a physical experiment. For 
this reason, the systematic studies by the methods of computer simulation are of special attention and value, since they 
uncover the phenomena and physical-chemical processes taking place in the system [1–3]. To name but a few, for 
instance, a series of studies report investigations dealing with structural-phase states in an fcc-system using Cu–Au and 
Cu–Pt systems as an example [4–17]. It is for this reason that BCC-alloys, such as intermetallics of the Ni–Al system 
attract attention as the base materials with a set of unique properties for designing new refractory intermetallic alloys. 
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that in order to ensure an order–disorder transition the system has to be somewhat overheated with respect to the 
traditionally percepted phase transition temperature and, on the other hand, to ensure a disorder–order transition the 
alloy has to be somewhat overcooled with respect to this temperature. This is in agreement with the temperature 
dependences for energy and order. Upon completion of the disorder – order phase transition, two antiphase domains of 
superstructure B2 are formed.  

SUMMARY 

Using Monte Carlo simulations, we have demonstrated that during cycling of BCC-alloys, such as for instance 
a NiAl intermetallic compound of the Ni–Al system, the processes observed are irreversible. as a result of the heating–
cooling cycle, a certain hysteresis is formed in the temperature curve, whose presence is an evidence of irreversibility of 
the processes, which suggests differences in the structural phase states in the heating and cooling stages. An analysis of 
the atomic and phase structure in the course of the heating–cooling cycles, i.e., during the order–disorder and disorder–
order phase transitions has supported the differences in the structural-phase states of the alloy. A comparison of the 
phase distributions during heating (order–disorder transition) and cooling (disorder–order transition) has allows us to 
conclude that during heating the phase transition temperature is higher than it is during cooling. This agrees with the 
tempearature plots for energy and order. Upon completion of the disorder–order phase transition, two antiphase 
domains of superstructure B2 are formed.  

Thus, in order to ensure an order–disorder transition the system has to be somewhat overheated with respect to 
the conventionally accepted phase transition temperature and, on the other hand, to ensure a disorder–order transition 
the alloy has to be somewhat overcooled with respect to this temperature. 
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