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BEHAVIOR OF MACROFRAGMENTATION OF SHEAR-INDUCED 

DEFORMATION AND OF REORIENTATION OF MACROREGIONS 

FORMED IN ALUMINUM SINGLE CRYSTALS UNDER 

COMPRESSION 

L. A. Teplyakova1 and I. V. Bespalova2 UDC 669.017.539.4 

Results of investigations into the behavior of plastic deformation macrofragmentation and macrolocalization in 
aluminum single crystals in which constrained shear volumes can be distinguished for the family of {111} 
planes under maximum loading are presented. Single crystals with the following three orientations: [111] , 

[112] , and [001] are investigated. It is established that in such single crystals, plastic deformation 

macrolocalization is observed under uniaxial compression with the formation of reorientation regions whose 
shapes and sizes depend on the single crystal orientation.  
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INTRODUCTION 

As a rule, localization of shear-induced deformation on different scale-structural levels occurs under 
compression of single crystals of metals and alloys with the FCC lattice [1–7]. The range of scales in which the 
localization is intensively manifested and the localization mechanism depend on many factors, including the 
possibilities of easy shear along the slip planes having the maximum Schmid factors. Thus, in [6, 7] it was established 
that in single crystals with easy shear volumes, strongly pronounced localization of the shear-induced deformation 
accompanied by the formation of slip macropackets was observed from the very onset of plastic deformation. 
Otherwise, the situation was observed in single crystals in which the possibility of shear crossing the free faces of 
crystals having such geometry was impeded by the circumstance that in a part of the single crystal volume, the slip 
planes and systems appeared locked (bounded by the crystal end faces) [8]. In such single crystals, considerable reverse 
stresses facilitating the accumulation of the excess dislocation density must arise. With further increase in deformation, 
smooth and discrete misorientations of local volumes can arise in such single crystal regions on various scales. The 
present work is devoted to a study and generalization of the behavior of misorientations arising on the macrolevel in 
aluminum single crystals in which constrained shear volumes can be distinguished before or during loading when the 
sample changes its shape. The samples were deformed by uniaxial compression at room temperature. Details of the 
experiment were described in [7, 8].  

1. RESULTS AND DISCUSSION 

In the present work, the group of single crystals was investigated whose volumes were bounded from two sides 
by the end faces of the sample – constrained shear volumes (CSVs). Single crystals with the following orientation of the 
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the shear asymmetry in the families of the octahedral planes, thereby causing the formation of larger primary shear 
macrofragments. 

CONCLUSIONS 

In this work, results of investigation into the spatial organization of shear-induced deformation in aluminum 
single crystals whose compression axes lie on the [001] [111]  straight line of the standard stereographic triangle have 

been presented. The feature in common for these single crystals was that no easy shear volume could be distinguished 
in them for maximum loaded planes; on the contrary, the constrained shear volume could be distinguished (see 
Table 1). The F2 single crystals in which the constrained shear plane rather than the constrained shear volume was 
observed occupied a special place in this group; however, constrained shear volumes were formed in them during 
deformation, and their relative fraction increased during compression. 

The behavior of plastic deformation in the single crystals of this group is reduced to the following. 
1. In all examined single crystals, the primary shear macrofragmentation along the loaded octahedral planes 

developed from the very onset of plastic deformation. In the FT, F1k, and F2 single crystals this was caused by the 
inhomogeneous incomplete (not crossing through) shear along these planes. In the T single crystals, such 
macrofragments occupied no more than 20% of the single crystal volume. 

2. In single crystals in which the constrained shear volumes were distinguished for the families of equiloaded 
octahedral planes, deformation macrolocalization occurred during plastic deformation causing the formation of 
reorientation macroregions in the FT single crystals, deformation macrobands in the T single crystals, and incomplete 
shear macropackets in the F1k single crystals. When the height of the F1 single crystal was halved, this led to the change 
of the character of macrolocalization. Whereas macrolocalization in the F1 single crystals was observed in two of four 
families of equiloaded octahedral planes with the formation of the shear macropackets that crossed through the single 
crystal, macrolocalization in the F1k single crystals was observed in each of four families of equiloaded octahedral 
planes also with the formation of shear macropackets; however, they were attenuated in the sample volume.  

3. No localization of shear deformation was observed on the macrolevel in the aluminum single crystals when 
the orientation of the side faces changed from F1 to F2. 
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