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CONDENSED-STATE PHYSICS

GENERATION OF INTERSTITIAL ATOMS IN FCC SINGLE
CRYSTALS

V. A. Starenchenko,' D. N. Cherepanov,' and O. V. Selivanikova’ UDC 539.37

A mathematical model of generation and accumulation of interstitial atoms in plastically deformable pure FCC
metals is suggested based on the concept of hardening and recovery that links the phenomena proceeding in
the deformable crystal material with the behavior of crystal structure defects. The model comprises kinetics
equations for point defects — mono- and bivacancies and interstitial atoms — written with allowance for
mechanisms of their generation and precipitation on sinks. Special attention is given to investigation of the
influence of the velocity and character of motion of helical segments of expanding dislocation loops on
generation of interstitial atoms. Concentrations of interstitial atoms generated in the process of plastic
deformation are calculated.

Keywords: concept of hardening and recovery, plastic deformation modeling, FCC metals, dislocation source,
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INTRODUCTION

Plastic deformation of face-centered cubic (FCC) metals is accompanied by a number of substructural
transformations [1]. Deformation in single crystals of these alloys causes substructural transformations which lead
sooner or later to the loss of monocrystallinity of the material. In this case, the processes of return to intermediate and
high temperatures are important. These processes can be realized in the process of interaction of point defects with
a dislocation ensemble. This interaction provides arbitrary rearrangement of the dislocation structure that finally leads
to substructure formation and, upon deeper deformation, to polycrystallinity. The rearrangement of the dislocation
ensemble requires sufficiently high concentrations of point defects with high mobility. In many materials at room and
low temperatures, the mobility of vacancies is insufficient to ensure these processes. The evolution of the dislocation
ensemble can be provided by other defects having higher mobility [2].

Experimental observation of interstitial atoms is difficult and has not yet been performed in situ. In this regard,
the theoretical consideration of the mechanisms causing generation of interstitial atoms becomes urgent. In situ
accumulation of vacancies in the process of plastic deformation was studied experimentally in [3]. Therefore, a possible
approach to a solution of this problem is to construct a model describing generation of not only vacancies, but also of
interstitial atoms. If the model is in agreement with the available experimental data on the concentration of vacancies, it
can be used for theoretical estimates of generation and accumulation of interstitial atoms.

The main physical prerequisite for a description of generation of point defects (vacancies and interstitial atoms)
is the dislocation motion in an imperfect crystal comprising forest dislocations that lead to the formation of dislocation
jogs and their motion. The motion of jogs in edge dislocations is of no interest in this sense, since it is exclusively
conservative. In the case of helical and similar orientations, the newly formed jogs can move not only conservatively
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(along the dislocation line), but also non-conservatively (in the direction of dislocation motion). The non-conservative
motion is accompanied by the formation of not only vacancies, but also interstitial atoms depending on the jog type.
The main point in the description of this motion is a search for the conditions under which the conservative motion of
jogs along the dislocation line becomes less favorable than their drawing with generation of point defects [4].

For pure metals, the condition of jog drawing is dynamical dislocation motion with high velocities, when the
kinetic energy of a free dislocation segment is higher than the energy required for generation of point defects of one

type or another. This process was discussed in detail in [4—6], where it was demonstrated that in this case, the rate of

generation of point defects can be described with good accuracy by the expression K pl/ 2 , where the coefficient K

is determined by the velocity of dislocation segments with helical orientation, the velocity of jog motion along the
dislocation, and the distribution of jog-forming forest dislocations. Another factor stabilizing the position of jogs on
moving dislocations of L1, alloys is the necessity of generation of anti-phase boundaries (APB) by moving jogs that
leads to a more intensive generation of point defects. In this case, in [7] it was demonstrated that the generation rate is

described by the expression K () pl/ 2 , where { is the energy of the antiphase boundary.

These ideas provided the basis for the model of generation of point defects constructed in [8]. The present work
is devoted to estimation of generation and accumulation of interstitial atoms in FCC single crystals taking into account
interactions between ensembles of point defects and the dislocation ensemble and verification of the model by means of
calculations of the vacancy concentration and its subsequent comparison with the available experimental data. For this
purpose, based on the concept of hardening and recovery [9], calculations were performed of the following quantities:
1) rate of generation of interstitial atoms, 2) concentration of generated interstitial atoms, 3) concentration of interstitial
atoms annihilated on dislocations, and 4) residual concentration of interstitial atoms.

1. DISLOCATION MOTION IN A SHEAR ZONE

The loss of the shear stability of the crystal lattice under the influence of a deforming stress is accompanied by
relay-race motion of localized shear deformation in the volume of the deformable material. The elementary shear
instability — the spontaneous expansion of the dislocation loop from the Frank—Reed source up to obstacles that cannot
be overcome (shear zone boundaries) — leads to the formation of a shear zone. Moreover, deformation defects such as
dislocations with dynamical dipole configurations, dislocation fragments, and point defects (interstitial atoms,
vacancies, and bivacancies) are generated in the shear zones. Superposition of mechanisms of generation,
transformation, and annihilation of deformation defects leads to the formation of deformation substructures [1].

It is assumed that N dislocation sources emit during time Af in unit volume An dislocation loops which form
a cluster on the boundary of the shear zone. Climbing of edge dislocations in dislocation clusters leads to their
rearrangement into dislocation walls at the boundaries of the shear zones. The formation of the dislocation walls leads
to the removal of reverse stress fields and emission of the next portion of dislocation loops by the source.

During expansion of the dislocation loop, the work A of the external stress T is spent on the creation of the
kinetic energy E, of the dislocation loop, overcoming various resistance forces, and increase of the intrinsic loop
energy. Hence, we can write dE;, =d4—dd, —d4, —d4; —d4, [10], where d4 =1bdS), ddg =tz bdSp, 14 is the

friction stress independent of the velocity of dislocation motion, d4, = B,vdS,, B, is the viscous friction coefficient,

L
and v =R is the velocity of motion. The kinetic energy E, of the moving curved (with curvature radius R) segment of
the dislocation loop can be represented as the product £, = R0, ¢, of the segment length RO, on the kinetic energy
¢, of the unit dislocation length [10].

Let us write the system of differential equations describing the motion of the helical segments of the dislocation
loop in the following form:

&} =y (ter b-0.25Gb%¢ ;- B, us—(u+e,§)R“), R=c,\1-(1+¢] glgm)‘z , 1)
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¢ =B;5p v, —(wie,) v, @)

where T4 =T—Tp ® 0.4Gbp1/ 2 s Colast © 0.5Gb* , & is the relative fraction of forest dislocations, 3 i= 0.5(1-B,) is the
relative fraction of jog-forming forest dislocations, [3, is the relative fraction of reactive dislocations [12], and v jis

the annihilation rate of jogs moving along the dislocation. For edge dislocation segments, the system of differential
equations has the following form:

e',i:Ue(reffb—BUUe—(u+e;)R_l), R=v,, (3)

_1 _ _ _ _ \1/2 /2
where eli = Celast (1_V) (03062 (SY/ +4Y[l _7Yt _6Yt : +Yt3)_1)9 Yo 2(1—050[2) ,and Yt :(l_ogct 2) .
The average free path lengths for helical and edge segments of dislocation loops are determined by sizes of the
shear zone estimated for the model of interdislocation interaction, according to  which
D=2(B DB,ép)_l/ 2~ 80p_1/ 2 [13]. Calculations by formulas (1)—(3) demonstrated [14] that the edge segments move

with higher velocities and reach the shear zone boundaries before the helical segments; therefore, the area enclosing
edge segments can be neglected in the first approximation.

2. RATE OF INTERSTITIAL ATOM ACCUMULATION

is established on the

)1/2

For stationary segment motion, it is assumed that the stable jog density c; = ( p;&p

. . . . . . . 1/2
segments and that the jog drawing causes generation of vacancy chains with the intensity Ac;/Aa = 0.25b( P /ﬁp)/ ,
where b is the Burgers vector modulus, p; ~0.5 is the relative fraction of jog-forming forest dislocations, ¢; is the

concentration of interstitial atoms forming chains, and a is the shear deformation. The factor 0.25 takes into account
that half the jogs generate vacancy chains and that the average chain length is half the free path length of the helical
segments.

The helical segments of the dislocation loop emitted by the Frank—Reed source move with high average
velocity v, reached during time which is by an order of magnitude smaller than the total time of dislocation motion to

the shear zone boundary [14]. In this case, the stationary jog density c; = ([3 &Py / v, )l/ ® determined from Eq. (2) is

formed on the helical segments. The ratio of the increment of the interstitial atom concentration Ac; ~ 0.5h*c SpAnN
in chains formed during jog drawing to the increment of the shear deformation Aa = bSpAnN gives the expression for

the rate of interstitial atom generation in the following form:
s o—1 2
G; =0.5bc,;SpSp' = 0.5bc; = 0.5b(B;Epu, /v, ) " 4)

Limiting cases were considered in [5, 6] for the ratio v, /l) j when vy =v; and v;=c,, and the

phenomenological dependence was suggested in [8, 11], according to which the rate first increases exponentially, then
the rate of increase slows down, and in the limit the rate of increase for helical segments of the dislocation loop tends to

a certain constant value v,, (7) = wjz-B;lﬁ_lu jKlz) for a given deformation temperature. The relative fraction of jogs that
can annihilate was w; = 0.25. It was determined by their distribution over the helical dislocation line [11]. The rate

v,,(T)~3.56v ; which can be determined experimentally or by modeling of dislocation motion [11, 15, 16] depends
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on the jog distribution, annihilation rate L; of jogs during their motion along the dislocation line, and on the

deformation temperature.
If we assume that the average velocity of dislocation motion is defined as a harmonic average of the average
velocity of quasi-viscous dislocation motion through a random field of strong point barriers

vr (1,7) =0, exp(—kng (U, —yt)) at a certain value T of the deforming stress [17] and the average velocity

v,, (T') of viscous dislocation motion between the barriers, we obtain the following expression for the helical

dislocation velocity [8]:

v, (v.7) = (05 (T)+U}1(I,T))7l = (0 (7)+vo" exp k5T~ (U —yr)))_l

(6))
=wiB; &0V, (VK +exp(V, (t, - r)))fl :

Here U, is the activation energy of thermally activated dislocation motion, y is the activation volume, 7 is the
temperature, and ky is the Boltzmann constant.

3. KINETIC EQUATIONS FOR DEFORMATION DEFECTS

The elementary act of work of dislocation sources increased the deformation products by Aa =Sp,bAn N (shear
plastic deformation), Ap,, = P,An N (density of the shear-forming dislocations), Ap,; =Apy +Ap2 =nyl An N
(density of dislocations in the vacancy and interstitial dipole configurations), ANy =dy F,D,An N (density of
misorientation boundaries), Ac, =w;c /Sgbz AnN (concentrations of point defects, including interstitial atoms ¢; for

k =i , monovacancies ¢}, for k£ =1v, and bivacancies ¢,, for k =2v).
The ratios of Ap,,, Ap;, ANy, and Ac, to Aa give expressions for deformation defect generation rates

(G)[89,14]: G, =(F,D;"+F,D;' )b for shear-forming dislocations, G} =Gy =F;ShSp'04'b™" ~2F,5™"p!? for

dislocations in dynamical dipole configurations, Gy = 2dy F,D, 7! for low-angle tilt walls, and wic;b, wye;b, and
Wy ;b for point defects. Considering that the numbers of vacancy and interstitial jogs are the same, we take w; =1/2.

Due to higher mobility of bivacancies, vacancy chains break so that most of them escape from the chains in the form of
bivacancies (w;,,, =5/12), and the rest vacancies escape as single vacancies (wy,, =1/12) [8].

The deformation-induced point defects are precipitated on sinks representing edge dislocation segments and
point defects of alternative type. We define the power of sinks of a certain type as the squared precipitation surface of

the point defect per unit volume. Let us use the following designations for the power: (B,, = 2nbw,p,, , By = ZTtbpii ,
and B,; =2nbpy) for dislocation sinks of different types and (PB; =4n rébilcl- , B, =4n rl%b7101U , and
Bay =47tr]%b_lczl)) for point defects of different alternative types. The sums of sink powers for point defects are
B™ =B, +Bog B2 +Bivs Bl =B +Big +B; +Bry» and PR =B, +B;y +B;. We denote by wk = B,;/Bi“m the
ratio of the sum of the surface areas of sinks of the kth type to the sum of the surface area of all sinks for point defects

of the kth type.
The recombination (R) and annihilation rates (4) can be written in the form [8, 9]

_ i _ i _ 1v _ 1v 2
Rilu _KRWIUCicluDi > Ri21> _KRW2L>ciCZUDi > Rh)i - KRWi CicluDi ’ RUU _KRWIU (Ch)) Dlo >
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) ) .
Ry = Kpwj UCiCZL)D2L> > Aip = (We Pm + p‘t;) Dy, Alup = (Wepm + Pij )cl\)Dl\) > A2\)p = (Wepm + pld )C2UD2\) >

where Ky =28mrb™, 1, ~838b/JT | D, =D, exp(~Uf'ky' T )meb’leg' ™" is the diffusion coefficient of the

point defects of the kth type (£ =i, 1v, 2v ) drifting to sinks under the action of internal stresses mt, and D, = 12b%v D
is the pre-exponential factor.
If we denote generation rates of point defects as  follows: G, =Kgi(Py)\Pm >

12 1] -
Gio = Ko1o (P )NPm +d" W Rz, and Gay =Koy (P )NPw +d WigRyy, Where Kgp = wibe SpSp', then we

obtain the balance equations for point defects in the form
s L. 20
G = aGi - Aip _Rilu _RiZU > Clv = aGl\) - Ah)p _Rloi _Roo W Ri2o 4

.. 1v
Cop = aG20 _AZUp _RZUi + W]URUU .

Let us write down the balance equation for the shear-forming dislocations in the form

P = c'z(G;l + GmW)—Z,ISWmeWew,I;pmck Dy /b.
k

Here we have taken into account that Gy, =w, (1— Wiy )FD_lb_1 is the rate of generation of edge dislocations whose
relative  fraction wiy =An/n forms  nuclei  of  fragment  boundaries, An=Dm(1-v)ogy,

-1
X~/ Pm (ln 8—ln(3 B;Ebp,, D)) is the number of dislocations emitted during one act of source operation, n ~ 1000 is

the number of dislocations emitted by the source, G,y =a'z_1KT Ny [dy is the rate of wall decay, K, is a constant,

T
dy =0.125K .y B ; P,y D? b(An +1)_1 is the distance between dislocations in the wall, &f ;=022 is the relative
fraction of jog-forming forest dislocations, and the factor K, takes into account the effect of annihilation on the wall

formation.
The balance equation for the density of misorientation boundaries can be written in the form

Ny = (G + G ) = Ay

Here 4y, =K, Ny is the decay rate of misorientation boundaries, Gy, = a_lb_lmeDW xZDkwfncdewepmNW is
k

the rate of their expansion, and GSVy,:l’ = dyw,wip FD™'b7! is the rate of their dynamical nucleation.

Balance equations for the densities pi, and pj; of the interstitial and vacancy dislocation dipoles have the form

. 1/2 .

Pl =aKgapyy —wy <h>""b7'pl(Dyyery, + Dayeay)s Py = dKdel/z

m

—wh <h>"' 7Y eD; .

4. RESULTS OF MODELING

The above-discussed balance equations for deformation defects and the expression for the deforming stress

T=1,+0Gb\lp,, +0,Gbylp. —0.25n'GBN, In(Ny b ),
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Fig. 1. Dependences of the concentrations of accumulated monovacancies (a),
bivacancies (b), and interstitial atoms (c) on the deformation degree. Solid curves are for
calculated results, and symbols are for the experimental data [3].

where p, =wiyp,, + Ny /dy, is the excess dislocation density, form the closed system of equations whose solution

allows theoretical dependences of the densities of deformation defects on the deformation degree and deforming stress
to be obtained. Calculations were performed for uniaxial deformation of a copper single crystal at the constant

temperature 7=300 K and d = 10™*s7! with the deformation axis oriented along the [001] direction with the following
initial conditions: p,,(0)=10° mm™=, pY(0)=0, p’(0)=0, ¢, (0)=0, and Ny (0)~0mm™" and the following

parameter values: G = 55710 MPa; the Burgers vector modulus b ~2.56-107 mm; the interdislocation interaction
parameter o=, =0.25; B,=200, F=5, Kg, =F/(abB,)~0.1/b; the relative fraction of helical dislocation

components w, =1-2/n; 1, =4, V,=16,vp = 102 s7!; the energy of point defect migration u ~1.87-107°7,

U ~14-102° ) and U ~11-102°J ; and =29, K. ~0.00029, Kjy ~4, <h>~6b,and K, ~0.39.

Figure 1 shows the dependences of the concentrations of accumulated point defects on the deformation degree.
The calculated results are in agreement with the experiment not only qualitatively, but also quantitatively. Results of
theoretical calculation predicted the two-stage increase in the point defect concentration depending on the deformation
degree, including the stage of fast increase in the point defect concentration for intermediate deformation degree
followed by the stage of saturation during which the point defect concentration varies slightly. This is in agreement with
observations. The good agreement between the calculated results and the experimentally observed dependence
(Fig. 1a) [3] as well as the agreement with the experimental data on dislocation densities, parameters of substructure
fragments, and macroscopic hardening curves [8, 9] allows the model to be considered as well verified that can be used
to analyze the process of generation and accumulation of deformation interstitial atoms.

Figure 2 shows the dependences of the current concentrations of accumulated (curves /) and generated mono-
and bivacancies (curves 3) and of the concentration of mono- and bivacancies annihilated on dislocations (curves 2) on
the deformation degree. Analogous dependences for the residual concentration of interstitial atoms, concentration of
generated interstitial atoms, and concentration of interstitial atoms annihilated on dislocations are shown in Fig. 3a. The
concentrations of annihilated point defects were close in values to the concentration of generated ones, which led to
a significant decrease of the current concentrations. The overwhelming majority of the generated point defects were
spent on relaxation. The interstitial atoms take more active part in the annihilation and relaxation processes. The
concentration of accumulated interstitial atoms is by many orders of magnitude lower than concentrations of mono- and
bivacancies. It should be noted that the accumulated point defects were in a nonequilibrium state, and after the
termination of deformation, the relaxation processes continued. Hence, experimental observations of point defects can
provide reliable information only when measurements are performed in the process of deformation.
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Fig. 2. Dependences of the concentration of generated (curve 3) and annihilated (curve 2)
vacancies and bivacancies and of their current concentrations on the deformation degree (curve 2).
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Fig. 3. Dependences of the concentrations of generated (curve 3) and annihilated (curve 2)
interstitial atoms on the deformation degree together with their current concentration (curve /) (a);
dependences of the annihilated dislocation density on the point defect concentrations (b).

Figure 3b shows the dependences of the annihilated dislocation density on the point defect concentrations.
Interstitial atoms annihilate with a high rate, thereby leading to the decrease of their concentration by more than ten
orders of magnitude. We can consider that all generated interstitial atoms annihilate on dislocations or vacancies.
Interstitial atoms bring the main contribution to annihilation at the initial deformation stage, and then their contribution
becomes comparable with that of bivacancies. The contribution of monovacancies to annihilation becomes noticeable
only at high dislocation density, but still remains by an order of magnitude lower than the contribution of interstitial
atoms.
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Results of modeling demonstrated that by the end of the third deformation stage, the concentration of point
defects in the absence of mechanisms of annihilation on dislocations can reach values of 10°~10* physically unrealistic
for the crystalline state. However, the precipitation of point defects on dislocations does not allow this to be the case by
reducing the density of point defects down to actually observed values. A significant part of interstitial atoms (6%) is
involved in the dynamical formation of nuclei of the dislocation walls.

Interstitial atoms have a very strong effect on dislocations. This can be the determining factor in the evolution
of dislocation substructures. Consideration of this circumstance is particularly important for an analysis of processes of
nanostructure formation in materials subjected to intensive treatment with high degree of plastic deformation. The
interaction of interstitial atoms with the dislocation ensemble remains intensive at low temperatures. This is due to
retention of the mobility by interstitial atoms at low temperatures due to low activation energy of their drift. High
concentration of interstitial atoms generated in the process of deformation can be the important factor causing the
occurrence of dislocation substructures in materials deeply deformed at low temperatures.

This work was supported in part by the Program of Improving the Competitiveness of Tomsk State University
among World’s Leading Scientific and Educational Centers.

REFERENCES

1. E. V. Kozlov, V. A. Starenchenko, and N. A. Koneva, Russian Metallurgy (Metally), 5, 106—114 (1993).
2. A.N.Orlov and Yu. V. Trushin, Energies of Point Defects in Metals [in Russian], Energoatomizdat,
Moscow (1983).
3. E. Ungar, E. Schafler, P. Handk, S. Bernstorff, and M. Zehetbauer, Mater. Sci. Eng., A426, 398-401 (2007).
4. L. E. Popov, V. A. Starenchenko, and I. I. Shalygin, The Physics of Metals and Metallography, No. 6, 26—
31 (1990).
5. S. N. Kolupaeva, V. A. Starenchenko, and L. E. Popov, Instabilities of Plastic Deformation of Crystals
[in Russian], Publishing House of Tomsk State University, Tomsk (1994).
6. L. E. Popov, L. Ya.Pudan, S.N. Kolupaeva, et al., Mathematical Modeling of Plastic Deformation [in
Russian], Publishing House of Tomsk State University, Tomsk (1990).
7. V. A. Starenchenko, S. V. Starenchenko, S. N. Kolupaeva, and O. D. Pantyukhova, Russ. Phys. J., 43, No. 1,
61-65 (2000).
8. V. A. Starenchenko, D. N. Cherepanov, Yu. V. Solov’eva, and L. E. Popov, Russ. Phys. J., 52, No. 4, 398—
410 (2009).
9. V. A. Starenchenko, D. N. Cherepanov, and O. V. Selivanikova, Russ. Phys. J., 57, No. 2, 139-151 (2014).
10. M. 1. Slobodskoi and L. E. Popov, Study of Slip Phenomenon in Crystals by Imitation Modeling Methods
[in Russian], Publishing House of Tomsk State University of Architecture and Building, Tomsk (2004).
11. V. A. Starenchenko, D. N. Cherepanov, and M. 1. Slobodskoi, 1zv. Vyssh. Uchebn. Zaved. Fiz., 52, No. 9/2,
108-117 (2009).
12. R. I. Kurinnaya, L. V. Ganzya, and L. E. Popov, Russ. Phys. J., 25, No. 8, 710-713 (1982).
13. V. A. Starenchenko, M. V. Zgolich, and R. I. Kurinnaya, Russ. Phys. J., 52, No. 3, 245-251 (2009).
14. D. N. Cherepanov, V. A. Starenchenko, O. V. Selivanikova, and E. A. Barbakova, Izv. Vyssh. Uchebn. Zaved.,
Fiz., 57, No. 2/2,90-98 (2014).
15. S. N. Kolupaeva and S. I. Samokhina, Fund. Probl. Sovrem. Materialoved., 4, No. 3, 32-36 (2007).
16. S. N. Kolupaeva, A. E. Petelin, and S. I. Samokhina, Vestnik of Tomsk State University of Architecture and
Building, Engl. Version, No. 1, 156-163 (2011).
17. T. Suzuki, H. Yoshinaga, and S. Takeuchi, Dislocation Dynamics and Plasticity [Russian translation], Mir,
Moscow (1989).

453



	INTRODUCTION
	1. DISLOCATION MOTION IN A SHEAR ZONE
	2. RATE OF INTERSTITIAL ATOM ACCUMULATION
	3. KINETIC EQUATIONS FOR DEFORMATION DEFECTS
	4. RESULTS OF MODELING
	REFERENCES

