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CONDENSED-STATE PHYSICS 

GENERATION OF INTERSTITIAL ATOMS IN FCC SINGLE 

CRYSTALS 

V. A. Starenchenko,1 D. N. Cherepanov,1 and O. V. Selivanikova2  UDC 539.37 

A mathematical model of generation and accumulation of interstitial atoms in plastically deformable pure FCC 
metals is suggested based on the concept of hardening and recovery that links the phenomena proceeding in 
the deformable crystal material with the behavior of crystal structure defects. The model comprises kinetics 
equations for point defects – mono- and bivacancies and interstitial atoms – written with allowance for 
mechanisms of their generation and precipitation on sinks. Special attention is given to investigation of the 
influence of the velocity and character of motion of helical segments of expanding dislocation loops on 
generation of interstitial atoms. Concentrations of interstitial atoms generated in the process of plastic 
deformation are calculated. 

Keywords: concept of hardening and recovery, plastic deformation modeling, FCC metals, dislocation source, 
shear zone, dislocation density, interstitial atoms, vacancies, bivacancies, lattice defects, point defects. 

INTRODUCTION 

Plastic deformation of face-centered cubic (FCC) metals is accompanied by a number of substructural 
transformations [1]. Deformation in single crystals of these alloys causes substructural transformations which lead 
sooner or later to the loss of monocrystallinity of the material. In this case, the processes of return to intermediate and 
high temperatures are important. These processes can be realized in the process of interaction of point defects with 
a dislocation ensemble. This interaction provides arbitrary rearrangement of the dislocation structure that finally leads 
to substructure formation and, upon deeper deformation, to polycrystallinity. The rearrangement of the dislocation 
ensemble requires sufficiently high concentrations of point defects with high mobility. In many materials at room and 
low temperatures, the mobility of vacancies is insufficient to ensure these processes. The evolution of the dislocation 
ensemble can be provided by other defects having higher mobility [2]. 

Experimental observation of interstitial atoms is difficult and has not yet been performed in situ. In this regard, 
the theoretical consideration of the mechanisms causing generation of interstitial atoms becomes urgent. In situ 
accumulation of vacancies in the process of plastic deformation was studied experimentally in [3]. Therefore, a possible 
approach to a solution of this problem is to construct a model describing generation of not only vacancies, but also of 
interstitial atoms. If the model is in agreement with the available experimental data on the concentration of vacancies, it 
can be used for theoretical estimates of generation and accumulation of interstitial atoms.  

The main physical prerequisite for a description of generation of point defects (vacancies and interstitial atoms) 
is the dislocation motion in an imperfect crystal comprising forest dislocations that lead to the formation of dislocation 
jogs and their motion. The motion of jogs in edge dislocations is of no interest in this sense, since it is exclusively 
conservative. In the case of helical and similar orientations, the newly formed jogs can move not only conservatively 
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(along the dislocation line), but also non-conservatively (in the direction of dislocation motion). The non-conservative 
motion is accompanied by the formation of not only vacancies, but also interstitial atoms depending on the jog type. 
The main point in the description of this motion is a search for the conditions under which the conservative motion of 
jogs along the dislocation line becomes less favorable than their drawing with generation of point defects [4]. 

For pure metals, the condition of jog drawing is dynamical dislocation motion with high velocities, when the 
kinetic energy of a free dislocation segment is higher than the energy required for generation of point defects of one 
type or another. This process was discussed in detail in [4–6], where it was demonstrated that in this case, the rate of 

generation of point defects can be described with good accuracy by the expression 1 2
GK  , where the coefficient GK  

is determined by the velocity of dislocation segments with helical orientation, the velocity of jog motion along the 
dislocation, and the distribution of jog-forming forest dislocations. Another factor stabilizing the position of jogs on 
moving dislocations of L12 alloys is the necessity of generation of anti-phase boundaries (APB) by moving jogs that 
leads to a more intensive generation of point defects. In this case, in [7] it was demonstrated that the generation rate is 

described by the expression   1 2
GK   , where   is the energy of the antiphase boundary. 

These ideas provided the basis for the model of generation of point defects constructed in [8]. The present work 
is devoted to estimation of generation and accumulation of interstitial atoms in FCC single crystals taking into account 
interactions between ensembles of point defects and the dislocation ensemble and verification of the model by means of 
calculations of the vacancy concentration and its subsequent comparison with the available experimental data. For this 
purpose, based on the concept of hardening and recovery [9], calculations were performed of the following quantities: 
1) rate of generation of interstitial atoms, 2) concentration of generated interstitial atoms, 3) concentration of interstitial 
atoms annihilated on dislocations, and 4) residual concentration of interstitial atoms. 

1. DISLOCATION MOTION IN A SHEAR ZONE 

The loss of the shear stability of the crystal lattice under the influence of a deforming stress is accompanied by 
relay-race motion of localized shear deformation in the volume of the deformable material. The elementary shear 
instability – the spontaneous expansion of the dislocation loop from the Frank–Reed source up to obstacles that cannot 
be overcome (shear zone boundaries) – leads to the formation of a shear zone. Moreover, deformation defects such as 
dislocations with dynamical dipole configurations, dislocation fragments, and point defects (interstitial atoms, 
vacancies, and bivacancies) are generated in the shear zones. Superposition of mechanisms of generation, 
transformation, and annihilation of deformation defects leads to the formation of deformation substructures [1]. 

It is assumed that N  dislocation sources emit during time t  in unit volume n  dislocation loops which form 
a cluster on the boundary of the shear zone. Climbing of edge dislocations in dislocation clusters leads to their 
rearrangement into dislocation walls at the boundaries of the shear zones. The formation of the dislocation walls leads 
to the removal of reverse stress fields and emission of the next portion of dislocation loops by the source. 

During expansion of the dislocation loop, the work A of the external stress τ is spent on the creation of the 
kinetic energy kE  of the dislocation loop, overcoming various resistance forces, and increase of the intrinsic loop 

energy. Hence, we can write d d d d d dk R jE A A A A A       [10], where d d DA b S  , d dR R DA b S  , R  is the 

friction stress independent of the velocity of dislocation motion, d d DA B S   , B  is the viscous friction coefficient, 

and R    is the velocity of motion. The kinetic energy kE  of the moving curved (with curvature radius R) segment of 

the dislocation loop can be represented as the product k D kE R e   of the segment length DR  on the kinetic energy 

ke  of the unit dislocation length [10]. 

Let us write the system of differential equations describing the motion of the helical segments of the dislocation 
loop in the following form: 

   2 1
eff 0.25s s

k s j s ke b Gb c B e R
         ,   21

elast1 1 s
t kR c e e

   ,  (1) 
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  2j j s j j jc w c      , (2) 

where 1 2
eff 0.4R Gb      , 2

elast 0.5e Gb ,   is the relative fraction of forest dislocations,  0.5 1j r    is the 

relative fraction of jog-forming forest dislocations, r  is the relative fraction of reactive dislocations [12], and j  is 

the annihilation rate of jogs moving along the dislocation. For edge dislocation segments, the system of differential 
equations has the following form: 

   1
eff

e e
k e e ke b B e R

        , eR   , (3) 

where     1 2 2 1 1 3
elast 1 8 4 7 6 1e

k t e t t te e c                   ,  1 22 21 ec    , and  1 22 21t e tc    . 

The average free path lengths for helical and edge segments of dislocation loops are determined by sizes of the 
shear zone estimated for the model of interdislocation interaction, according to which 

  1 2 1 22 80D rD         [13]. Calculations by formulas (1)–(3) demonstrated [14] that the edge segments move 

with higher velocities and reach the shear zone boundaries before the helical segments; therefore, the area enclosing 
edge segments can be neglected in the first approximation. 

2. RATE OF INTERSTITIAL ATOM ACCUMULATION 

For stationary segment motion, it is assumed that the stable jog density  1 2
j jс p   is established on the 

segments and that the jog drawing causes generation of vacancy chains with the intensity  1 2
0.25i jс a b p    , 

where b is the Burgers vector modulus, 0.5jp   is the relative fraction of jog-forming forest dislocations, iс  is the 

concentration of interstitial atoms forming chains, and a  is the shear deformation. The factor 0.25 takes into account 
that half the jogs generate vacancy chains and that the average chain length is half the free path length of the helical 
segments. 

The helical segments of the dislocation loop emitted by the Frank–Reed source move with high average 
velocity s  reached during time which is by an order of magnitude smaller than the total time of dislocation motion to 

the shear zone boundary [14]. In this case, the stationary jog density  1 2
j j s jc      determined from Eq. (2) is 

formed on the helical segments. The ratio of the increment of the interstitial atom concentration 20.5 s
i j Dс b c S nN    

in chains formed during jog drawing to the increment of the shear deformation Da bS nN    gives the expression for 

the rate of interstitial atom generation in the following form: 

  1 210.5 0.5 0.5s
i j D D j j s jG bc S S bc b      . (4) 

Limiting cases were considered in [5, 6] for the ratio s j   when s j    and s tс  , and the 

phenomenological dependence was suggested in [8, 11], according to which the rate first increases exponentially, then 
the rate of increase slows down, and in the limit the rate of increase for helical segments of the dislocation loop tends to 

a certain constant value   2 1 1 2
m j j jT w K 

      for a given deformation temperature. The relative fraction of jogs that 

can annihilate was 0.25jw  . It was determined by their distribution over the helical dislocation line [11]. The rate 

  3.56m jT    which can be determined experimentally or by modeling of dislocation motion [11, 15, 16] depends 
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on the jog distribution, annihilation rate j  of jogs during their motion along the dislocation line, and on the 

deformation temperature. 
If we assume that the average velocity of dislocation motion is defined as a harmonic average of the average 

velocity of quasi-viscous dislocation motion through a random field of strong point barriers 

    1 1
0 B 0, expT T k T U          at a certain value   of the deforming stress [17] and the average velocity 

 m T  of viscous dislocation motion between the barriers, we obtain the following expression for the helical 

dislocation velocity [8]: 

 

            

   

111 1 1 1 1 1
0 B 0

12 1 1 2

, , exp

exp .

s m T m

j j j a a a п

T T T T k T U

w V V K V

     

  


             

       

 (5) 

Here 0U  is the activation energy of thermally activated dislocation motion,   is the activation volume, T  is the 

temperature, and Bk  is the Boltzmann constant. 

3. KINETIC EQUATIONS FOR DEFORMATION DEFECTS 

The elementary act of work of dislocation sources increased the deformation products by Da S b n N    (shear 

plastic deformation), m DP n N    (density of the shear-forming dislocations), i
d d d d dn n N       

(density of dislocations in the vacancy and interstitial dipole configurations), W W e sN d F D n N    (density of 

misorientation boundaries), 2s
k k j Dc w c S b n N    (concentrations of point defects, including interstitial atoms ic  for 

k i , monovacancies 1c   for 1k   , and bivacancies 2c   for 2k   ). 

The ratios of m , d , WN , and kс  to a  give expressions for deformation defect generation rates 

(G) [8 9, 14]:  1 1 1
m s s e eG F D F D b     for shear-forming dislocations, 1 1 1 1 1 22i s

d d d D D d dG G F S S b F b         for 

dislocations in dynamical dipole configurations, 1 12W W e eG d F D b   for low-angle tilt walls, and i jw c b , 1 jw c b , and 

2 jw c b  for point defects. Considering that the numbers of vacancy and interstitial jogs are the same, we take 1 2iw  . 

Due to higher mobility of bivacancies, vacancy chains break so that most of them escape from the chains in the form of 
bivacancies ( 2 5 12w   ), and the rest vacancies escape as single vacancies ( 1 1 12w   ) [8]. 

The deformation-induced point defects are precipitated on sinks representing edge dislocation segments and 
point defects of alternative type. We define the power of sinks of a certain type as the squared precipitation surface of 

the point defect per unit volume. Let us use the following designations for the power: ( 2m e mbw    , 2 i
id db    , 

and 2d db 
    ) for dislocation sinks of different types and ( 2 1

R4i ir b c   , 2 1
1 R 14 r b c
    , and 

2 1
2 R 24 r b c
    ) for point defects of different alternative types. The sums of sink powers for point defects are 

sum
2 1i m d        , sum

1 1m id i       , and sum
2 m id i     . We denote by sumk

kk kw     the 

ratio of the sum of the surface areas of sinks of the kth type to the sum of the surface area of all sinks for point defects 
of the kth type.  

The recombination (R) and annihilation rates (A) can be written in the form [8, 9] 

 1 1 1
i

i R i iR K w c c D   , 2 2 2
i

i R i iR K w c c D   , 1
1 1i R i i iR K w c c D
  ,  21

1 1 1RR K w c D
    ,  
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 2
2 2 2i R i iR K w c c D
   ,  i e m d i iA w c D

    ,  1 1 1
i

e m dA w c D      ,  2 2 2
i

e m dA w c D     ,  

where 328R RK r b  , 38.38Rr b T ,  1 1 3 1 1
0 B Bexp m

k kD D U k T m b k T       is the diffusion coefficient of the 

point defects of the kth type ( , 1 , 2k i   ) drifting to sinks under the action of internal stresses m , and 2
0 12 DD b   

is the pre-exponential factor. 

If we denote generation rates of point defects as follows:  i Gi m mG K   , 

  1 2
1 1 2G m m i iG K a w R 
       , and   1 1

2 2 1G m mG K a w R 
        , where 1s

Gk k j D DK w bc S S , then we 

obtain the balance equations for point defects in the form 

 1 2i i i i ic aG A R R       , 2
1 1 1 1 2i i ic aG A R R w R
           , 

 1
2 2 2 2 1ic aG A R w R          . 

Let us write down the balance equation for the shear-forming dislocations in the form 

   8e k
m m mW e m e m m k k

k

a G G w w w c D b       . 

Here we have taken into account that   1 11e m
m e WG w w FD b    is the rate of generation of edge dislocations whose 

relative fraction m
Ww n n   forms nuclei of fragment boundaries, dyn(1 )n D     

   1
ln 8 ln 3m j mb D


       is the number of dislocations emitted during one act of source operation, 1000n   is 

the number of dislocations emitted by the source, 1
mW W WG a K N d

   is the rate of wall decay, K  is a constant, 
2 10.125 ( 1)W aW j md K D b n       is the distance between dislocations in the wall, 0.22j   is the relative 

fraction of jog-forming forest dislocations, and the factor aWK  takes into account the effect of annihilation on the wall 

formation. 
The balance equation for the density of misorientation boundaries can be written in the form 

  dyn
W Wm WWmN a G G A     . 

Here W WA K N   is the decay rate of misorientation boundaries, 1 1
Wm Wm WG a b w D   k

k m k W e m W
k

D w c d w N   is 

the rate of their expansion, and dyn 1 1m
W e WWmG d w w FD b   is the rate of their dynamical nucleation. 

Balance equations for the densities i
d  and d

  of the interstitial and vacancy dislocation dipoles have the form 

  1 2 1 1
1 1 2 2

i i
d Gd m d daK w h b D c D c  

            , 1 2 1 1i
d Gd m d d i iaK w h b c D           . 

4. RESULTS OF MODELING 

The above-discussed balance equations for deformation defects and the expression for the deforming stress 

  1
1 0.25 lnf m W WGb Gb GbN N b

          , 
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where m
W m W Ww N d     is the excess dislocation density, form the closed system of equations whose solution 

allows theoretical dependences of the densities of deformation defects on the deformation degree and deforming stress 
to be obtained. Calculations were performed for uniaxial deformation of a copper single crystal at the constant 

temperature T = 300 K and 4 110 sa    with the deformation axis oriented along the [001] direction with the following 

initial conditions:   6 20 10 mmm
  ,  0 0d

  ,  0 0i
d  ,  0 0kc  , and   10 0 mmWN   and the following 

parameter values: G ≈ 55710 MPa; the Burgers vector modulus b ≈ 2.5610–7 mm; the interdislocation interaction 
parameter α = α1 ≈ 0.25; Br ≈ 200, F ≈ 5, ( ) 0.1Gm rK F b B b   ; the relative fraction of helical dislocation 

components 1 2sw    ; 4n  , 16aV  , 13 110 sD
  ; the energy of point defect migration 201.87 10 Jm

iU   , 
20

1 14 10 JmU 
   , and 20

2 11 10 JmU 
   ; and 29  , 0.00029K  , 4WK  , 6h b  , and 0.39DK  . 

Figure 1 shows the dependences of the concentrations of accumulated point defects on the deformation degree. 
The calculated results are in agreement with the experiment not only qualitatively, but also quantitatively. Results of 
theoretical calculation predicted the two-stage increase in the point defect concentration depending on the deformation 
degree, including the stage of fast increase in the point defect concentration for intermediate deformation degree 
followed by the stage of saturation during which the point defect concentration varies slightly. This is in agreement with 
observations. The good agreement between the calculated results and the experimentally observed dependence 
(Fig. 1a) [3] as well as the agreement with the experimental data on dislocation densities, parameters of substructure 
fragments, and macroscopic hardening curves [8, 9] allows the model to be considered as well verified that can be used 
to analyze the process of generation and accumulation of deformation interstitial atoms. 

Figure 2 shows the dependences of the current concentrations of accumulated (curves 1) and generated mono- 
and bivacancies (curves 3) and of the concentration of mono- and bivacancies annihilated on dislocations (curves 2) on 
the deformation degree. Analogous dependences for the residual concentration of interstitial atoms, concentration of 
generated interstitial atoms, and concentration of interstitial atoms annihilated on dislocations are shown in Fig. 3a. The 
concentrations of annihilated point defects were close in values to the concentration of generated ones, which led to 
a significant decrease of the current concentrations. The overwhelming majority of the generated point defects were 
spent on relaxation. The interstitial atoms take more active part in the annihilation and relaxation processes. The 
concentration of accumulated interstitial atoms is by many orders of magnitude lower than concentrations of mono- and 
bivacancies. It should be noted that the accumulated point defects were in a nonequilibrium state, and after the 
termination of deformation, the relaxation processes continued. Hence, experimental observations of point defects can 
provide reliable information only when measurements are performed in the process of deformation. 
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Fig. 1. Dependences of the concentrations of accumulated monovacancies (a), 
bivacancies (b), and interstitial atoms (c) on the deformation degree. Solid curves are for 
calculated results, and symbols are for the experimental data [3]. 
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Results of modeling demonstrated that by the end of the third deformation stage, the concentration of point 
defects in the absence of mechanisms of annihilation on dislocations can reach values of 10–3–10–2 physically unrealistic 
for the crystalline state. However, the precipitation of point defects on dislocations does not allow this to be the case by 
reducing the density of point defects down to actually observed values. A significant part of interstitial atoms (6%) is 
involved in the dynamical formation of nuclei of the dislocation walls. 

Interstitial atoms have a very strong effect on dislocations. This can be the determining factor in the evolution 
of dislocation substructures. Consideration of this circumstance is particularly important for an analysis of processes of 
nanostructure formation in materials subjected to intensive treatment with high degree of plastic deformation. The 
interaction of interstitial atoms with the dislocation ensemble remains intensive at low temperatures. This is due to 
retention of the mobility by interstitial atoms at low temperatures due to low activation energy of their drift. High 
concentration of interstitial atoms generated in the process of deformation can be the important factor causing the 
occurrence of dislocation substructures in materials deeply deformed at low temperatures. 

This work was supported in part by the Program of Improving the Competitiveness of Tomsk State University 
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