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INTERACTION OF SOUND VIBRATIONS WITH A DISLOCATION 

CHAIN IN A PIEZOELECTRIC CRYSTAL 

S. G. Gestrin1,2 and E. V. Shchukina1 UDC 538.911; 530.145 

Sound waves in a piezoelectric medium containing a chain of dislocations parallel to each other are 
investigated. It is demonstrated that interaction between vibrations localized on individual dislocations 
engenders waves propagating along the chain in the direction perpendicular to dislocations. The spectrum of 
allowable vibration frequencies consists of bands separated from each other and from the spectrum of volume 
vibrations. The total number of different independent wave vectors corresponding to frequencies forming 
a band is equal to the number of independent states of the vibrating dislocation chain and coincides with the 
number of dislocations contained in it. 
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Various aspects of ultrasound interaction with defects of the crystal structure have been investigated in 

a number of works (for example, see [1–4]). Thus, peculiarities of elastic wave propagation in actual crystals were 
studied in [1], where mathematical modeling was performed of the dynamic behavior of dislocations under the effect of 
ultrasound on a crystal. Possible changes in the dislocation structures under the effect of ultrasound were described, and 
detailed analysis of the influence of these changes on the structure-sensitive properties of crystals was performed. In [2] 
the joint influence of ultrasound and electric field on the dynamics of dislocations in alkaline halide crystals was 
analyzed.  

In [3] a system consisting of two parallel dislocations with sound waves [4] localized on these dislocations in 
a piezoelectric crystal was investigated for the first time. It was demonstrated that a general solution of the differential 
equation describing wave perturbations in this system can be represented as the sum of two solutions. The first solution 
corresponds to inphase vibrations, and the second solution corresponds to antiphase vibrations with frequencies 1ω  and 

2ω . In this regard, it seems natural to consider a more realistic case of the medium containing a significant number of 

dislocations. Wave perturbations in a piezoelectric material with structural defects in the form of a chain of N  
dislocations are investigated below. It is demonstrated that the interaction between sound waves localized on individual 
dislocations [4] leads to the appearance of wave perturbations of new type propagating along the chain (perpendicular to 
dislocation lines) and the law of their dispersion is found. In this case, frequency bands of localized sound vibrations 
arise, separated by a finite gap from frequencies of volume vibrations. 

We note that waves localized on dislocations exist in crystals having different physical nature. Thus, in [5–9] 
the possibility of localization of plasma waves, polaritons, Frenkel’s excitons, and spin waves on dislocations was 
pointed out. Because of the similarity between the differential equations describing localized waves in various media, 
the results obtained below can also be generalized to them. 

Let us consider longitudinal waves in a piezoelectric crystal which belongs to the class 4vC  (tetragonal system) 

localized on dislocations oriented along the 4C  axis. We choose the coordinate system with the z axis coinciding with 
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the 4C  axis and x  and y  axes perpendicular to two of the vertical symmetry planes. The equation for small vibrations 

( ), , ,zu x y z t ( )0 , , exp ( )zu x y k i kz t= − ω  in the crystal containing a dislocation chain has the form 

 
2 2
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   (1) 

The terms of the sum in the right-hand side of Eq. (1), comprising the delta-functions ( ) ( )sx x yγδ − δ , describe 

perturbations in the crystal formed by N  dislocations spaced at identical distances 0d  from each other along the x  

axis parallel to the z  axis, iu  is the deformation vector, 0ρ  is the density of the medium, 0a  is the lattice constant, 
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0 zzzzλ ≡ λ  and 1 zxzxλ ≡ λ  are the components of the stress tensor iklmλ , 1 xx yyε = ε = ε  and 2 zzε = ε  are the 

components of the dielectric permittivity tensor ikε , and 0 ,z zzβ ≡ β  and 2 , ,x xz y yzβ ≡ β = β  are the components of the 

tensor ,i klβ  characterizing the piezoelectric effect [10]: 

 0 ,4 .i i ik k i kl klD D E u= + ε − πβ   (3) 

Here iD  and iE  are the components of the electric induction vector and of the electric field strength, respectively. The 

dislocation spacing 0d  is much greater than the distance 0r  from the dislocation at which the amplitude of localized 

vibrations decreases e  times. 
Furthermore, we assume for simplicity that vibrations localized on dislocation number s  interact only with 

vibrations localized on dislocations with numbers 1s −  and 1s +  neighboring to it. In this case, Eq. (1) assumes the 
form  

 ( ) ( ) ( )[
2 2

2 2 2 20 0
0 0 0 1 0 12 2

1 1 1

,0,z z s z su u k a k y x x u x k
x y

− −
   λ ρ∂ ∂ γ+ − − ω = − δ δ −     λ λ λ∂ ∂   


    

 ( ) ( ) ( ) ( )]0 1 0 1,0, ,0, .s z s s z sx x u x k x x u x k+ ++δ − + δ −   (4) 

The edge dislocations are in special positions, since they have neighbors only on one side. It is clear that for greater 
number N  of dislocations, the influence of the edge effects should be insignificant. To simplify the problem, we 
limited ourselves to the cyclic boundary conditions: 

 01 0 .z z Nu u=   (5) 

All dislocations are in equivalent conditions now. We seek for a solution of Eq. (4) in the form ( )0 ,0, expz s su x k iqx∝ , 

where q  is the projection of the perturbation wave vector onto the x  axis. Then the vibration amplitudes near the 

neighboring dislocations are related by the expressions 

 ( ) ( ) 0
0 1 0,0, ,0, iqd

z s z su x k u x k e−
− = , ( ) ( ) 0

0 1 0,0, ,0, iqd
z s z su x k u x k e+ = .  (6) 

Substituting Eqs. (6) into Eq. (4), we obtain 
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We further take advantage of the delta-function representation:  

 ( ) ( )
( )

( )( ) 2
1 12

1
exp

2
s x s yx x y i x x y d− −δ − δ = κ − + κ

π
 κ .  (8) 

A solution of Eq. (7) we seek in the form 
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where ( ) ( ), and ,s s x yx x y= − = κ κρ κ . Substituting Eqs. (8) and (9) into Eq. (7), we obtain 
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The coordinates of the neighboring dislocations are related by the expressions 

 1 0s sx x d− = − , 1 0s sx x d+ = + .   (11) 

From Eqs. (9), (10), and (11) it follows that  
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Let us represent Eq. (12) in the form of the sum of two components: 

 0 0 0z s z s z su u u= +  ,  (13) 

where 
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Integral (14) is an integral representation of the McDonald function of zero order ( )0K x , and 0z su  is the amplitude of 

vibrations localized on the isolated dislocation number s . For large values of the argument 1x >> , the function 

( ) ( )0 2 expK x x x≈ π ⋅ − . Thus, far from the dislocation, the vibration amplitude exponentially decreases, which 
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confirms its localization on the dislocation. Near the dislocation ( )1x << , the vibration amplitude ( ) ( )0 ln 2K x x≈ −  

has a logarithmic singularity, which is connected with model assumption (1) about the δ-shaped perturbation created by 
the dislocation in the crystal. Replacing in Eq. (14) the upper infinite integration limits by finite ones 0 0~ 1 aκ , which 

allows us to exclude from consideration short-wavelength perturbations having no physical sense and thereby to 
eliminate the logarithmic singularity, we obtain  

 ( ) ( )
( )
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0 0 0

0 2 2 2 2
0 0 01

,0, cos cos
,

2

z s s
z s s

a k u x k a
u k d d

a

πγ θ ⋅ θρ ϕ
ρ = ϕ θ

θ + χπ λ
 




.   (15) 

In Eq. (15) we have used the dimensionless variable 0aθ = κ , ( )2 2
s sx x yρ = − + , and ( )2 2

0 0 1kχ ≡ λ − ρ ω λ  . The 

plot of the function ( ) ( )0 0( ) , ,0,s z s s z sp u k u x kρ ≡ ρ 
 for 0 0.1aχ = , 0 0.74a k = , and 1 5γ λ = , drawn in MATHCAD, 

is shown in Fig. 1. Here ρ  is given in units of the lattice constant. The term  
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κρ κ   (16) 

describes the influence on the dislocation with number s  of vibrations localized on two neighboring dislocations with 
numbers 1s −  and 1s + . 

From cyclic boundary condition (5) we obtain that ( )01 exp iqNd= ; whence 

 ( )0 0 0cos 1 2 2 /j jqNd q Nd j q j Nd=  = π  = π , 0, 1, 2,...j = ± ±   (17) 

As an example, Fig. 2 shows ( )0 0( ) ( , ) ,0,s z s s z sh u k u x kρ ≡ ρ 
 for 100N = , 50j = , 0.74ak = , 0.1aχ = , and 

0 010d a= . In this case, the wavelength of the perturbation propagating along the dislocation chain is 0 02 20j d aλ = = . 

Figure 3 shows the plot of ( ) ( ) ( )u p hρ = ρ + ρ  near the dislocation with number s.  

Setting 0s =ρ  in Eq. (12), we obtain the dispersion equation for the sound waves interacting with the 

dislocation chain: 
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Taking advantage of the method of stationary phase [3] to calculate the second and third integrals in Eq. (18), we obtain 
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In calculations of integral (19), the infinite limits of integration over xκ  have been replaced by finite ones, where 

0 0~ 1 dκ .  

Analogous integral containing ( )0sin xdκ  in Eq. (18) is equal to 0. Thus, we have suggested that vibrations 

localized on dislocations interact mainly by means of long-wavelength perturbations with 0 0~ 1x dκ < κ . We also 

have replaced ( )jω  in Eq. (19) by the frequency 0ω  of localized vibrations observed in the crystal in the presence of 

only one dislocation: 

 2 2 20 1 1
0 0 2 2

0 0 0

4
expk

a k

 λ λ πλ
ω ≈ − κ −  ρ ρ γ 

  
,  (20) 

and assumed that the condition ( )2 2 2 2
0 1 0 0exp 4 a kκ − πλ γ >> κ  was satisfied. From the given inequality for the typical 

values of the crystal parameters: 0 5ρ =  g/cm3, 12
0 6 10λ = ⋅  dynes/cm2, 12

1 10λ =  dynes/m2, 125 10γ = ⋅  dynes/cm2, 
8

0 5 10a −= ⋅  cm, and 71.26 10k = ⋅  cm–1 we obtained 0 024d a> , and from Eq. (20), we obtained 13
0 1.38 10ω ≈ ⋅  Hz. 

Let us further substitute Eq. (19) into Eq. (18). Taking the remaining integrals assuming that 

( )( )2 2 2
0 0 1 0k jλ − ρ ω λ << κ  , we find the expression for the possible vibration frequencies: 

 ( ) ( ) ( )2 2 2 0 00 1 1 1
0 02 2 2 2

0 0 0 00 0

sin κ4 2
exp exp 4cos exp ,j

d
j k q d

da k a k

    λ λ πλ πλ
ω ≈ − κ −         ρ ρ κγ γ    

   
  (21) 

where jq  is given by Eq. (17). By virtue of the periodicity of dependence (21), values 2j N>  do not cause new 

states of the vibrating chain. Each of the states represents a wave running along the chain, where ( )jω  is the wave 

frequency and jq  is the wave vector. However, unlike a continuous medium, the possible independent q  values are 

limited by the condition 0q d≤ π . Therefore, the total number of different independent q  values is equal to the 

number of independent states of the vibrating chain being equal to N . 
If the crystal represents a plate bounded by the planes 0z =  and z L= , the modulus of the wave vector k  

takes values , 1, 2,3...nk n L n= π = , and the vibrations localized on dislocations represent standing waves. Then from 

Eq. (21) we obtain 

 ( ) ( ) ( )2
0 001 1 1

2 2 2 2
0 00 00 0

sin κ4 21 2
, exp exp 4cos exp ,

2 n n n

dj
n j n

k N da k a k

    κλ πλ πλπ ω ≈ Ω − −          κ γ γρ λ     

  


  (22)  
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where ( ) 0 0 nn kΩ = λ ρ ⋅  is the frequency of volume vibrations. We note that for 4j N= , the frequency ( ),n jω  

coincides with the frequency ( )0 nω  of vibrations localized on a single dislocation. 

Formula (22) determines the possible values of frequencies of sound vibrations in a piezoelectric crystal 
containing a dislocation chain. As can be seen from Eq. (22), the interaction between vibrations localized on individual 
dislocations leads to splitting of each frequency in the discrete spectrum depending on the number n  into a series of 
side frequencies characterized by different values of the number j  given by Eq. (17) and to the formation of dislocation 

zones. 
To estimate the width of the range occupied by allowable frequencies, we used the following values of the 

parameters of piezoelectric material: 0 5ρ =  g/cm3, 12
0 6 10λ = ⋅  dynes/cm2, 12

1 10λ =  dynes/cm2, 
125 10γ = ⋅  dynes/cm2, and 8

0 5 10a −= ⋅  cm. Let us consider a film with the thickness 010L a= ; for this film, the 

possible values of the number n  will lie in the limits from min 1n =  to max 10n = . Wavelengths smaller than 2a0 

correspond to maxn n> , and their consideration has no physical sense. We assume that the chain contains 100N =  

dislocations. From Eq. (22), for example, for 2n =  we obtain 2 010 aλ = ⋅ , 7
2 1.257 10k = ⋅  cm–1, and the frequency of 

volume vibrations ( ) 131.377 10nΩ ≈ ⋅  Hz. The frequency of vibrations localized on a non-interacting dislocation is 

( ) 13,25 1.3765 10nω ≈ ⋅  Hz. Results of calculations using MATHCAD for the indicated distances 0d  between 

dislocations are shown in Figs. 4 and 5. 
It can be seen that the width of the dislocation zone increases with decreasing distance between dislocations 

and, hence, strengthening the interaction between the vibrations localized on them. We now estimate the width of the 
range occupied by the allowable frequencies. From Eq. (22) we obtain 
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The plot of the dependence ( )nΔω  is shown in Fig. 6. With increasing number n , the width of the frequency range first 

increases, reaches a maximum at 5n = , and then slightly decreases. For a crystal plate we obtain  
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 Fig. 4. Results of calculation for d0 = 50a0. Fig. 5. Results of calculations for d0 = 100a0. 
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The wave perturbation propagates along the chain with the group velocity ( )v j d dq= ω . The dependence 

( )v j  is shown in Figs. 7 and 8 for 0 050d a=  and 0 0100d a= . The maximum group velocity of waves propagating 

along the chain is 4~ 5 10⋅  cm/s for 0 050d a=  (Fig. 7), which is much less than the velocity of volume vibrations 

6
0 0 10λ ρ ≈  cm/s. With increasing distance between dislocations and hence, weakening of the interaction between 

them, the group velocity decreases down to 41.5 10⋅  cm/s for 0 0100d a=  (Fig. 8). 

The same frequency ω  corresponds to j  values that differ only by their signs for fixed n value (see Figs. 4 and 

5); therefore, the standing wave ( )0~ cos jq sd  can exist in the chain along with perturbations ( )0~ exp ji q sd  running 

in the direction perpendicular to dislocations. 
Thus, sound vibrations in the piezoelectric crystal containing a dislocation chain have been investigated in this 

work. It was demonstrated that the interaction between the vibrations localized on individual dislocations caused the 
occurrence of waves propagating along the chain with the group velocity much smaller than the velocity of volume 
vibrations. In this case, the number of different independent values of the wave vector was equal to the number of 
independent states of the vibrating dislocation chain and coincided with the number of dislocations contained in it. The 
width of the frequency range occupied by the allowable frequencies of localized vibrations was estimated for different 
values of the parameters characterizing the piezoelectric medium and the dislocation chain. The ranges of allowable 
frequencies were separated both from each other and from the spectrum of volume vibrations.  
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