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ACOUSTIC WAVE CORRELATION OF ELEMENTARY 

DEFORMATION EVENTS IN A LOW-STABILITY CRYSTAL 

LATTICE OF FCC-METALS 

S. V. Makarov,2 V. A. Plotnikov,2,3  UDC 669.71:539.382:620.179.17 
A. I. Potekaev,1,4 and L. S. Grinkevich1 

A discrete pattern of the low-frequency acoustic emission spectrum under conditions of high-temperature 
plastic deformation of aluminum is analyzed. It is attributed to re-distribution of vibrational energy of the 
primary acoustic signal over resonant vibrations of standing waves of the resonators. In a low-stability crystal 
medium, standing-wave oscillations initiate elementary deformation displacements in a certain material 
volume. The linear dimensions of this volume are related to the length of the standing wave, thus determining 
the macroscopic scale of correlation. The correlated deformation displacements in turn generate acoustic 
signals, whose interference results in the formation of a single acoustic signal of abnormally high amplitude. In 
a low-stability state of the crystal lattice, activation of the elementary plastic shears could result from 
a combined action of static forces, thermal fluctuations and dynamic forces of standing acoustic waves. 
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INTRODUCTION 

A large body of information has been accumulated by now, concerning a specific deformation behavior of 
condensed systems in a low-stability state (e.g., [1–8]), in particular: localized strain [9], stepwise deformation effects 
[10], high-temperature deformation jumps and high-amplitude acoustic signals [7]. An analysis of these data allows us 
to treat acoustic emission as a factor of correlation of elementary deformation events in low-stability condensed systems 
during plastic deformation, activating elementary plastic shears along with mechanical stresses and thermal fluctuations. 
The phenomenon of acoustic emission, which accompanies a large number of processes, can no longer be perceived as 
a passive acoustic effect. 

Within the framework a model of acoustic autoemission, certain postulates have been formulated on its active 
role in the processes of deformation and fracture of crystals [11]. According to the model [12], the presence of stepwise 
deformation and discrete acoustic emission suggest a spatial-temporal ordering of defect motion in a crystal. In this 
case, the crystal represents a self-oscillatory system, which is characterized by excitation of oscillations. The 
macroscopic processes occur in a cooperative, self-consistent mode, favoring synchronization of oscillations and 
excitation of quasi-periodic relaxation oscillations. Mode synchronization and self-synchronization is, in fact, 
an interference of stress waves with different frequencies. These processes are underlain by a correlation of elementary 
emitters in a non-equilibrium (active) medium, which result in the formation of short compressive and tensile pulses, 
whose duration is the shorter, the larger the number of waves with differing frequencies involved in this interference 
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[13]. This implies that fracture represents breaking of the most stressed bonds by not only thermal but also acoustic 
fluctuations [13]. In this work we assume the concept of an active role of acoustic emission in the processes of plastic 
deformation of a low-stability crystalline medium to be quite relevant. This would allow us to consistently interpret the 
principal effects observed in the course of plastic flow. In particular, this concerns strain localization at the macroscopic 
level and association of plastic shears not only with thermal fluctuations but also with localized acoustic vibrations.  

The objective of this work is to perform a comparative analysis of acoustic emission and strain accumulation 
during heating of FCC-metals under mechanical stresses. 

LOW-STABILITY STATE AND ACOUSTIC FACTOR OF CORRELATION 

A special state of crystal lattice, which is referred to as a low-stability state [1–8] and is related to the state of 
an atomic ensemble in the field of mechanical stresses and thermal fluctuations, whose combined action allows 
overcoming the potential barrier of breaking bonds [7, 14], shall be added with a factor associated with acoustic 
emission. 

Under the conditions of mechanical stresses and temperature [14, 15], the average waiting time for 
an elementary bond rupture depends on the effective value of the potential barrier, which is overcome via thermal 
fluctuations. The value of the barrier is decreased by the work of external forces, γσ, localized on a small atomic 
ensemble, and thus can vary in a wide range. Here σ is the mechanical stress and γ is a certain parameter. The effective 
activation threshold could therefore decrease down to zero, thus corresponding to a special state of the atomic ensemble 
weakly stable to an external action (close to the over-the-barrier motion). Plastic flow in this state of the crystal lattice is 
associated with local low stability (or stability loss) with respect to a shear acting in the stress-concentrator zone [7], 
where the dislocation segment motion occurs in an over-the-barrier athermic manner. 

Localization of low-stability (or unstable) state of crystal structure during plastic deformation is generally 
associated with self-organization of dislocations, which results in the formation of slip lines and bands [16, 17]. Note 
that acoustic emission accompanying structure evolution indicates low-stability (or instability) and elementary 
processes in the atomic subsystem under external forcing [18]. 

The above considerations suggest that the macroscopic volume of potential acoustic-emission sources would 
also [12, 13] get synchronized (or correlated) by an ensemble of emitters. It is evident that such synchronization could 
be achieved using wave propagation as follows. An acoustic emission signal produced during the formation of a single 
strain band propagates as a wave packet, within which the oscillation phase controls the direction (specifically, sign) of 
displacement of atoms from their equilibrium positions. Naturally, these displacements overlap with static atomic 
displacements due to a static stress field. 

A special mention should be made that a local low-stability state of the crystal lattice is a decisive factor in the 
wave synchronization of a system of elementary deformation events. Under this condition, an oscillatory shift of 
an acoustic wave is sufficient to activate dislocation slip, which is in fact over-the-barrier, athermic sliding. 

This implies that in the expression for the bond-rupture waiting time [7, 14], in addition to the static-force work 
function U0, we have to include the dynamic-force work function Ud as follows: 

 τ(σ, T) = τ exp[(U0 – γσ – Ud)/kT], 

where σ is the mechanical stress, γ is a certain parameter, and γσ is the external-force work function. 
Thus, the effective activation threshold is decreased due to thermal fluctuations and work of the static and 

dynamic forces of the acoustic wave localized on the structural element. The dynamic-force work of the acoustic pulse 
exerts a perturbing action on the ensemble of slip systems, whose activation would depend on the oscillation phase in 
the wave packet.  

In the case of a high-temperature deformation of FCC-metals, there were two scenarios of strain accumulation: 
monotonous and stepwise. It should be noted that the stepwise deformations (jumps) represent macroscopic deformation 
events followed by high-amplitude acoustic emission signals [7]. It follows that under thermomechanical conditions, the 
loss of crystal-lattice stability at the macroscopic scale is manifested as deformation jumps and high-amplitude acoustic 
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noteworthy that the spectral density from the region undergoing deformation is quite high for a stable standing wave to 
form. Thus, in the stepwise stage of strain accumulation, considerable energy of standing-wave oscillations is stored in 
the resonator representing a strain-localization region. 

ACOUSTIC WAVE FACTOR OF SELF-ORGANIZATION OF ELEMENTARY DEFORMATION EVENTS 

The concept of low stability of crystal lattice implies that the crystal system in this state is an active medium 
[13, 22]. In other words, during plastic flow the crystal lattice represents an oscillatory system excited in a standing-
wave mode. Activation of an elementary deformation event results both from thermal fluctuations [7, 14] and acoustic 
vibrations [8]. Since a standing wave has a macroscopic nature, the elementary deformation events are activated at the 
macroscopic level. This occurs in a certain collection of slip planes favourably oriented with respect to the oscillatory 
displacements of the standing wave. Under low-stability condition, these oscillatory displacements activate unit shears 
in the crystal lattice, which represent a correlated macroscopic ensemble of elementary deformation events building 
a macroscopic deformation jump. A standing acoustic wave thus determines the macroscopic scale of correlation of 
elementary strain-induced shears. On the other hand, it naturally controls the region of strain localization, which could 
be presented, according to [23], as an area of a high concentration of acoustic-emission sources. The ensemble of 
correlated elementary deformation events it its turn forms a single acoustic signal resulting from the interference of 
a certain number of unit acoustic signals satisfying the coherence condition. As a result, the system appears to be rigidly 
synchronized both with respect to elementary deformation events and generated acoustic signals. 

SUMMARY 

Activation of elementary plastic shears in the case of low crystal-lattice stability can occur via a combined 
action of static forces, thermal fluctuations and dynamic forces of standing acoustic waves. 

An analysis of the low-frequency acoustic emission spectrum in the mode of high-temperature plastic 
deformation of aluminum has shown that its discrete pattern is attributed to re-distribution of the oscillatory energy of 
the primary acoustic signal over the resonant vibrations of standing acoustic waves of the resonators. In a low-stability 
medium, oscillations of a standing wave activate elementary deformation shears in a certain volume, whose size is 
related to the length of the standing-wave determining the scale of macroscopic correlation. The correlated deformation 
shears generate acoustic signals, whose interference results in a single acoustic signal of anomalously high amplitude. 
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