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AN INVESTIGATION OF PHASE STABILITY OF A COMPOSITE 

ATZ CERAMIC MATERIAL 

A. P. Surzhikov, T. S. Frangylyan, S.A. Ghyngazov, and I.P. Vasiliev UDC 666.3 

An investigation of phase transformations, taking place in a composite ZrO2(Y)–Al2O3 ceramic material 
sintered from ultrafine powders manufactured by a plasmochemical process, is performed during its storage 
and subsequent thermal heating. The composite low-porosity ceramics based on zirconium dioxide is found to 
be stable in interactions with the environment during long-term storage under standard conditions and thermal 
heating. A high efficiency of a spontaneous t→m phase transformation is observed in the composite ceramics 
with an open porosity of more than 6%. The composite ceramics, in which low porosity is combined with 
a reduced content of the stabilizing yttrium impurity in the crystal lattice of zirconium dioxide, is characterized 
by the lowest phase stability. 
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INTRODUCTION 

Zirconia ceramics belongs to high-demand materials due to a perfect combination of a large number of 
physical-mechanical properties [1–3]. The state-of-the-art engineering makes extensive use of yttria-stabilized zirconia. 
An introduction of yttrium cations, having a different valence, into the crystal lattice of zirconium dioxide increases the 
number of oxygen vacancies, thus ensuring stabilization of the high-temperature tetragonal modification of zirconium 
dioxide at room temperature [4]. The grains of the tetragonal modification in the zirconia ceramics under mechanical 
stresses can undergo a martensitic tm-transition, which is accompanied by a pronounced dilatometric effect. It is this 
particular effect, which underlies the mechanism of transformation hardening of ceramics, consisting in absorption of 
the transformation energy due to phase transitions. When a crack initiates and propagates under critical stresses, the 
grains of a metastable tetragonal phase transfer into a monoclinic modification, which is accompanied by an increase in 
their volume. As a result of this structural transition, the crack losses its energy and stops, thus increasing the material 
strength [5, 6].  

In order to provide a high level of physical-mechanical properties of a ceramic material based on yttrium-
stabilized zirconia, it is necessary to sustain the metastable tetragonal phase for a sufficiently long period. On the other 
hand, zirconia ceramics is known to be subjected to such an undesirable phenomenon as so-called low-temperature 
aging. In the course of time, due to interaction with the environment it undergoes a spontaneous transformation from the 
metastable t-phase to a monoclinic phase. Since this process is accompanied by an increase in the volume, cracking of 
the specimens is likely to occur up to their complete fragmentation into pieces. Thus, the issue of phase stability of 
zirconia ceramics is especially critical. 

While low-temperature aging is discussed in a large number of works [7–11], there is no complete 
understanding of the physics of this phenomenon. On the other hand, all investigators unanimously agree that the most 
important role in the low-temperature tm-phase transition of ZrO2(Y) belongs to interaction between the yttrium-
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stabilized crystal lattice of zirconia and the water molecules. According to a viewpoint reported in [11], destabilization 
of the t-phase of ZrO2 occurs as a result of a decrease in the stabilizer concentration in the ZrO2 lattice due to the 
penetration of water molecules into the ceramics and the formation of yttrium hydrates or oxyhydrates. A different 
viewpoint [9] states that the reason for the t-phase destabilization consists in a decreased concentration of oxygen 
vacancies stabilizing the tetragonal lattice, which are filled by the hydroxyl (ОН) – ions forming a proton defect, whose 
fast diffusion controls the process of aging in zirconia ceramics.  

It is impossible to predict the efficiency of aging of ceramics, since it could be affected by a large number of 
technological factors determining the structure-phase state of the end product. From this perspective, it is always 
necessary to examine phase stability of the materials made from zirconium dioxide. 

The present work is a continuation of the earlier studies [12–14] of the structure-phase state and properties of 
zirconia ceramics sintered from ultrafine plasmochemical powders. It deals with investigation of phase transitions 
taking place in the specimens of composite ZrO2(Y)–Al2O3 ceramics during their storage and subsequent high-
temperature heating. A special focus is made on the relationship between phase transitions and chemical composition of 
this ceramic material, as well as between its structural characteristics such as pore volume and grain size. 

EXPERIMENTAL PROCEDURE 

The investigations were performed using composite specimens made from alumina-toughened zirconia 
ceramics (ATZ), ZrO2(Y)–Al2O3. The ceramic material was sintered from ultrafine powders manufactured by the 
plasmochenical process at the Siberian Chemical Combine. The phase composition of the powders was as follows 
mass%: 80ZrO2(Y) – 20Al2O3 and 85ZrO2(Y) – 15Al2O3. The state of ZrO2 was stabilized by introducing 2.5 or 
3 mol.% of Y2O3 impurity.  

The specimens for sintering were compacted by a static uniaxial pressing to form tablets measuring 9 mm in 
diameter and 3–4 mm in thickness at the pressure Р = 150 MPa. The resulting compact density was 2.65 g/cm3. 
Sintering was performed in a resistance furnace in air under different temperature-duration regimes; the heating and 
cooling rate was 10С /min. 

The apparent density and open porosity of ceramic specimens were measured by the method of hydrostatic 
weighing in distilled water using a Shimadzu analytical balance equipped for this purpose with a special attachment. 

It is well known [3–5] that martensitic mt- and tm-phase transformations in zirconium dioxide are 
accompanied by thermal effects and changes in the linear dimensions of the specimen. To study the dynamics of these 
processes, we used the methods of differential scanning calorimetry (DSC) and dilatometry. Prior to the measurements, 
the specimens were subjected to normalization annealing which consisted in heating of the specimens up to Т = 1300С 
and tempering at this temperature for 20 min. 

During DSC examinations of phase transformations in the sintered specimens use was made of an STA 449 C 
Jupiter analyzer (Netzsch, Germany). The crucible used in the experiments was made from Al2O3 and shaped as a cup. 
To ensure a correct measurement of the baselines, the crucible was filled with an inert substance – Al2O3 powder, 
whose mass was equal to that of the material under study. The heating and cooling rate was 30 K/min. 

Variations in the linear dimensions (L) of the sintered ceramic specimens during heating were detected by 
a DIL 402 high-temperature dilatometer (Netzsch, Germany). The resulting dependences (L/L0, where L0 – initial 
specimen length) were calibrated, taking into account the effect of heating on the state of the measurement system. The 
baselines were measured under identical experimental conditions using corundum reference samples. Heating of the 
specimens was carried out in air at the rate 10 deg/min. The temperature interval under study was Т = 25–1300С. 

The X-ray diffraction analysis of the sintered ceramic specimens was performed in an ARL X’tra 
diffractometer using monochromated СuK-radiation. The resulting diffraction patterns were subjected to a full-profile 
analysis using a Powder Cell 2.4 powder pattern calculation program. 

The ceramic microstructure was examined by the method of scanning electron microscopy (SEM). The SEM 
analysis of the fracture surfaces of ceramic specimens was performed at the TPU Nano-Center (Tomsk) in a SEM JSM-
7500F electron microscope. 
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