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ANOMALOUS SERIES OF BANDS IN THE EDGE EMISSION 

SPECTRA OF CdS(О) 

N. K. Morozova,1 A. A. Kanakhin,1  UDC 535.3:537.533.31:539.219.1 
V. G. Galstyan,2 and A. S. Shnitnikov1  

The region of the edge emission spectrum of CdS(O) single crystals with cadmium excess is examined. 
An anomalous series of equidistant bands with leading line at 514 nm and phonon replicas has been revealed. 
These bands grow in intensity with increase of the excitation density up to 1026–1027 cm–3s–1 at 80 K, and the 
leading line of the series is observed even at 300 K. It is shown that luminescence is conditioned by the exciton 
spectrum in perfect bulk single-crystals of CdO. Some characteristics of this spectrum are presented, in 
particular, the dependence on temperature, excitation intensity, composition and size of the crystals, and the 
LO interaction. The results experimentally confirm the theoretically calculated magnitude of the direct band 
gap of CdO. 

Keywords: photoluminescence, edge emission, leading line, stoichiometry, excitation intensity, cadmium 
oxide, exciton.  

INTRODUCTION  

The close connection of edge emission (EE) with intrinsic point defects of gas-phase crystals of CdS(О) was 
discussed in [1–3]. The most intense ЕЕ was observed for stoichiometric samples. It shows up as a series of equidistant 
bands with leading line at 514–516 nm at 80 K and LO replicas. For crystals with maximum sulfur excess, EE is 
completely suppressed. With increase of the cadmium excess the bands of the series broaden, decrease in intensity, and 
the zero-phonon leading line is shifted to 516–525 nm. The observed shift is in agreement with the concentration of the 
oxygen background impurity in the crystals, well known from the analytical data.1 These results were obtained from the 
cathodoluminescence spectra by using the technique described in [3] for an excitation intensity of 1022 cm–3s–1.  

As was shown in [2–4], for stoichiometric crystals of CdS, at high excitation intensities EE is quenched. It is 
suppressed already for G  1023 cm–3s–1. The reason for this is saturation of luminescence centers since their density is 
around 1016 cm–3 [4]. 

As a counterweight to these data, in [5, 6] luminescence in the edge region of the spectrum was also observed 
at a high excitation density for CdS crystals with cadmium excess. The singular nature of this fact lies in the fact that 
the radiation was observed even at room temperature although usually EE in CdS is quenched already at 150–200 K [7, 8].  

To clarify this question, we present here, as a follow-up to [2, 3, 9], results of a study on the nature of the series 
of equidistant bands in the edge region of the spectrum of gas-phase СdS(О) for high excitation intensity at different 
temperatures and compositions.  

 

1 In this work we use the value for the A-exciton shift equal to 90 meV/mole% [OS] from the data in [10] in 
accordance with band anticrossing theory.  
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Figure 3a shows the etched surface of single crystal No. 13 (see Fig. 1) from the cadmium side without an etch 
pit – 0001 layers (2). A detailed consideration of this image reveals a number of nascent little cubes (1). CdO crystals 
have a cubic shape in distinction to the hexagonal structures of Cd and its sulfide. In the pile-ups identification of the 
oxide is sometimes possible (using SEM and methods of light transmission microscopy)).3  

Etching of CdS·Cd from the sulfur side 0001  (Fig. 3d, crystal No. 10) proceeds more slowly, separating out 
the tops of the hexagonal segmented blocks (4). The columnar growth of the blocks presupposes the passage of screw 
dislocations along the block axis with segregation on them of cadmium. At those places where the dislocations make 
their way to the surface, an ejection of finely dispersed Cd was observed in a state of progressive oxidation on the 
surface. The average atomic numbers of CdO (28) and CdS (32) differ noticeably, which enables contrast to be 
observed in the SEM images although the small size of the oxide formations hinders a determination of their 
composition.  

Note that for the crystals with a cadmium excess that we investigated, the spectral position of the 
photoluminescence bands of the series with leading line at 514 nm (80 K) is quite stable. Obviously, unstrained perfect 
sulfur-free crystallites of CdO are formed during growth on the surface. The magnified image in Fig. 3b shows a CdO 
cube (1) that has grown on the surface of a purer 0001 layer. The underlying layers (5), enriched with oxygen and 
cadmium, are the source of the growth of such crystals. Formation of CdO microcrystals takes place, apparently, during 
cooling from the growth temperature of 1100С and subsequent aging.  

If the oxide segregates on the dislocations, then it is possible to include a small amount of sulfur and detect the 
exciton band of CdO(S), shifted in agreement with band anticrossing theory toward longer wavelengths, specifically to 
535–537 nm (300 K). For nanocrystallites of CdO, in agreement with [2, 3], the position of the exciton band was shifted 
to 525 nm (300 K) as a consequence of quantum size effects. The absence of these bands in the spectra of the 
investigated CdS·S crystals with sulfur excess confirms their nature.  

CONCLUSIONS  

The photoluminescence band observed in CdS·Cd crystals at ~530 nm (300 K) correlates with the width of the 
direct band gap of CdO [11, 14, 15]. The series of equidistant photoluminescence bands with leading line at 514 nm 
(80 K) and LO replicas, described here for the first time, corresponds to the allowed exciton spectrum of sufficiently 
perfect crystals of CdO. The results obtained here allow us to define the variation of the width of the CdO band gap 
with temperature (3.7·10–4 eV/deg), the energy of the LO phonons (~35 meV), and the spectral position of the exciton 
bands for unstrained bulk crystals. Identification of this series provides experimental confirmation of the theoretically 
calculated value of the direct band gap of CdO.  
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