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INTERMARTENSITIC THERMOELASTIC TRANSFORMATIONS 

IN [012]-ORIENTED SINGLE CRYSTALS OF FERROMAGNETIC 

NIFEGA ALLOYS UNDER COMPRESSIVE LOADING  
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Yu. I. Chumlyakov, and A. I. Tagiltsev 
 

The results of investigations of stress-induced intermartensitic transformations in [012]-oriented Ni54Fe19Ga27 
(at.%) single crystals are presented as a function of testing temperature and applied stresses. The sequence of 
intermartensitic transformations L21–14M–L10 at Т < 423 K is observed to change to L21–L10 at Т > 423 K. 
The interval of superelasticity development is controlled by the high value of α2–1 = dσcr/dT = 3.1 MPa/K and 
on the side of high temperatures is limited by the strength properties of the martensite phase; superelasticity is 
observed during L21–14M–L10-transformations below 353 K. It is experimentally found out that with 
increasing temperature and externally applied stresses the value of reversible transformation-induced strain is 
decreased, while the stress hysteresis is increased, and the interval of the forward transformation under 
loading becomes larger than that of the reverse. 

Keywords: thermoelastic intermartensitic transformations, superelasticity, reversible deformation, yield 
strength level of the martensite. 

INTRODUCTION 

It is well known that advanced ferromagnetic NiFeGa alloys undergo martensitic transformations (MTs) under 
variations in temperature and application of stress and magnetic fields [1]. Note that under applied stress multistage 
intermartensitic transformations can develop [2, 3]: the cubic B2(L21)-lattice of the austenite can either immediately 
transform to form tetragonal L10-martensite or through the intermediate layered, long-period, modulated structures 10М 
and 14М. Every type of strain-induced martensite (10М, 14М, L10) is characterized by different values of lattice strain 
and critical stresses causing formation and motion of twin boundaries in the martensite, which is exhibited as a series of 
stages in the σ(ε), ε(Т) and σcr(Т) curves under conditions of the shape memory effect (SME) and superelasticity (SE) 
[2, 3]. Thus, being able to control the sequence of intermartensitic transformations is critical for designing alloys with 
a set of predetermined functional properties, including propensity for magnetically-induced deformations. Therefore, in 
order to control the functional properties of shape-memory NiFeGa ferromagnetic alloys and their future practical 
applications, we need systematic investigations of the mechanisms and behavior of martensitic transformations in them. 
Polycrystalline NiFeGa alloys fail along grain boundaries in the course of evolution of MTs due to the high values of 
crystal anisotropy А = 2С44/(С11 – С12) > 10, which makes their investigation and application difficult [4]. Using 
NiFeGa single crystals, it was found out [2, 3, 5–7] that the sequence of intermartensitic transformations is controlled 
by the orientation of crystals and stress state: martensitic transformations were investigated in NiFeGa single crystals 
oriented along [001]-, [011]- and [012]-directions [2, 3, 5–7]. The deformation induced by transformation is shown to 
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be related to the formation of twinned martensite (CVP-structure) εCVP and its subsequent detwinning εdetw: εCVP + εdetw 
= εCVP+detw. The value of εCVP+detw corresponds to lattice strain ε0 during transformation of a single crystal of the 
austenite into a single crystal of the martensite. In [001]-oriented single crystals in compression and in [011]-oriented 
single crystals in tension, in which the transformation strains εCVP+detw during the formation of 14М- and L10-martensites 

are equal, 01 14
CVP+detwCVP+detw

L Мε = ε , and detwinning of the L10-martensite εdetw makes no contribution into the 

transformation strain 0 01 1
CVPCVP+detw

L Lε = ε , only one stage is observed in the σ(ε) and σcr(T) responses, which is related to 

a stress-induced MT. In [001]- and [012]-oriented single crystals in tension and in [011]-oriented single crystals in 

compression, for which 01 14
CVP+detwCVP+detw

L Мε ≠ ε  and detwinning of the L10-martensite εdetw makes a considerable (up to 

60% of the cumulative value) contribution into the deformation strain 0 01 1
CVPCVP+detw

L Lε ≠ ε , the σ(ε) and σcr(T) responses 

contain a number of stages attributed to a gradual development of the L21–14M–L10 MTs. A change of the MT 
sequence from L21–14M–L10 to L21–L10 in the [001]- and [012]-orientations under tensile loading favors the formation 
of high-temperature SE up to 700 K [2, 3, 5–7]. Single crystals, oriented along the [012]-direction, have not been so far 
investigated in compression. In this connection, the purpose of this work is to investigate the mechanisms of 
development of martensitic transformations in [012]-oriented single crystals of Ni54Fe19Ga27 (at.%) in the course of 

compressive deformation, for which 01 14
CVP+detwCVP+detw

L Мε ≠ ε  and 0 01 1
CVPCVP+detw

L Lε ≠ ε  (contribution from detwinning of the 

L10-martensite into the transformation strain 01
detw
Lε  ~ 30%) (Table 1). 

1. EXPERIMENTAL PROCEDURE 

Single crystals of Ni54Fe19Ga27 (at.%) were grown using the Bridgemann method in the inert-gas atmosphere. 
The specimens oriented along the [012]-direction for compressive tests were shaped as parallelepipeds measuring 3 × 3 
× 6 mm3. In this study, we deal with crystals subjected to no additional heat treatment since as-grown single crystals are 
found in a single-phase state, and their high-temperature phase has an L21-structure [6, 7]. The development of a stress-
induced MT was investigated using the σ(ε) response during isothermal loading/unloading cycles within the 
temperature interval from 100 to 900 K and the ε(Т) response during cooling/heating under a constant load within the 
range of stresses from 0 to 270 MPa. The isothermal loading/unloading cycling was performed in an Instron 5969 
machine and in a vacuum setup at the temperatures Т > 623 K. The heating/cooling tests with application of external 
stresses were carried out in an ad hoc installation measuring reversible strain.  

The starting and finishing temperatures of the forward MT (Ms, Mf) and those of the reverse MT (As, Af) were 
derived from the electrical resistance as a function of temperature. The microstructure of single crystals was examined 
in a Philips CM 12 transmission electron microscope at an accelerating voltage of 120 kV. The specimen orientation 
was determined in a Dron-3 diffractometer using FeKα-emission. 

2. EXPERIMENTAL RESULTS AND DISCUSSION 

As-grown single crystals in a high-temperature phase have an L21-structure and are found in a single-phase 
state [6–9], while when cooled/heated in free state, they undergo single-stage L21–14М MTs [6–9]. The temperatures of 

TABLE 1. Theoretically Calculated Transformation Strains εCVP and εCVP+detw in [012]-
Oriented Single Crystals of Ni–Fe–Ga in Compression [2, 3] 

Martensite structure |εCVP|,% [2, 3] |εCVP+detw|,% [2, 3] 
14М 4.0 4.1 
L10 3.95 6.25 
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are generated during nucleation of the first martensite plate on the free surface of single crystals at Т = Ms' (volume 
fraction of the martensite δ = 0). Accordingly, for the last-forming plate during the reverse MT at Т = Af' |ΔGrev(0)| = 0 
as well. In the case of non-symmetrical hysteresis loops, |ΔGirr| depends on the volume fraction of the martensite. Thus, 
the relationship between the MT temperatures derived from ε(Т), and |ΔGrev| and |ΔGirr| for δ = 0 and 1 could be written 
in the following form [18]: 

 

ch ch
rev

ch ch
irr irr

| (1) | ( ' ') ( ' ') ,
2 2

| (0) | ( ' '), | (1) | ( ' ').
2 2

s f f s

f s s f

S S
G M M A A

S S
G A M G A M

Δ Δ
Δ = − + −

Δ Δ
Δ = − Δ = −

 (2)  

In expressions (2), Δ'1 = Ms' – Mf', Δ'2 = As' – Af', 
1TσΔ  = |Af' – Ms'|, 

2TσΔ  = |Mf' –As'|. Since 1TσΔ  is proportional to 

|ΔGirr(0)|, and 2TσΔ  ~ |ΔGirr(1)|, then, as follows from Fig. 7, for the external stresses within σ = 2–150 MPa, |ΔGirr(0)| = 

|ΔGirr(1)|, while at σ > 150 MPa, |ΔGirr(1)| > |ΔGirr(0)|. Thus, as the externally applied stresses increase, an increase in 
the values of |ΔGirr(1)|, compared to those of |ΔGirr(0)|, would suggest the presence of obstacles to phase boundary 
motion in the case of a forward MT during cooling/heating under loading. Similarly, during isothermal 
loading/unloading cycles with increasing testing temperature in the second stage of the MT, L21–L10, there is 
an increase in the strain hardening coefficient θ = dσ/dε (see Fig. 1) and an increased stress hysteresis value due to, 
among other things, the difficulties of detwinning of the L10-martensite.  

It has been experimentally found out that an increase in the externally applied stresses results in considerably 
larger intervals of the forward and reverse MTs, Δ'1 and Δ'2. Note that Δ'1 > Δ'2, and their difference (Δ'1 – Δ'2) is also 
increasing with the stresses (Fig. 6). Similar non-symmetrical hysteresis loops are reported in heterophase single-crystal 
alloys, TiNi and NiFeGa [19, 20], which contain disperse particles. The particles undergo elastic deformation in the 
course of MTs and favor storage of the reversible energy. Since the values of (Δ'1 + Δ'2) are proportional to that of 
|ΔGrev|, so in the case of a forward stress-induced MT during cooling/heating the stored reversible energy considerably 
increases. 

It is the reversible |ΔGrev|- and irreversible |ΔGirr|-components of the energy, which control the relationship 
between the starting temperatures of the forward and reverse stress-induced transformations. From [18] and (2) follows 
that  

 irr irr rev
ch

1
' ' (| (0) | | (1) | | (1) |)s sA M G G G

S
− = Δ + Δ − Δ

Δ
. (3) 

The above considerations suggest that using (3) we can estimate the ratio between |ΔGrev| and |ΔGirr|. For  
σ < 100 MPa As' > Ms', hence |ΔGirr(0)| + |ΔGirr(1)| > |ΔGrev(0)|, thus, according to the Tong – Weimann classification, 
the observed transformation is a Type I MT that is accompanied by low values of the stored elastic energy. For  
σ > 100 MPa Ms' and As' change over, |ΔGirr(0)| + |ΔGirr(1)| < |ΔGrev(0)|, and the transformation is a Type II MT 
characterized by large stored elastic energy favoring a reverse MT. The change in the MT type could be attributed to 
an increased elastic modulus of the austenite Еа by a factor of 2 as shown in Fig. 1b, implying that the elastic 
accommodation of the austenite and martensite at high temperatures and stresses is accompanied by higher stored 
elastic energies. 

SUMMARY 

A systematic investigation of thermoelastic intermartensitic transformations in the [012]-oriented single 
crystals of Ni54Fe19Ga27 (at.%) has been carried out under compressive loading and the following principles have been 
identified. 
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1. It has been experimentally demonstrated that the parameters of mechanical and functional properties of the 

crystals investigated under isothermal loading/unloading cycling (σ(ε))-curves) are consistent with each other, which 

confirms both the high quality of these single crystals and the independence of their functional properties of the testing 

procedure. 

2. A change has been experimentally revealed in the sequence of stress-induced intermartensitic 

transformations from L21–14M–L10 at Т < 423 K to L21–L10 at Т > 423 K, which is reflected in the σcr(T) curve as 

a number of stages with different values of α2–1 = dσcr /dT = 3.1 MPa/K and α2–2 = 1.5 MPa/K, since straining in the 

case of formation of the 14М-martensite is lower that that in the case of the L10-martensite. Within the temperature 

interval Т = 300–350 K, the stress-induced intermartensitic transformations L21–14M–L10 are accompanied by 

a number of stages in the σ(ε) response and different values of the stress hysteresis. 

3. Superelasticity in the [012]-oriented single crystals of Ni54Fe19Ga27 (at.%) under compressive loading is 

observed within a narrow temperature interval 80 K, which is determined by the high value of α2–1 = 

dσcr/dT = 3.1 MPa/K and low yield strength of the martensitic L10-phase, whose values exhibit little dependence on 

temperature and are equal within 368–382 MPa.  

4. The maximum reversible strain of the transformation is 6.3% (the value of SME). Note that a significant 

contribution into the transformation strain (~30% of the total reversible strain) comes from detwinning of the  

L10-martensite. The reversible strain decreases with increasing testing temperature Т and external stresses σ, which is 

controlled by large elastic variations in the lattice parameter of the high-temperature phase prior to the stress-induced 

MT and by the differences between the austenite and martensite elastic moduli. 

5. The evolution of an MT under high externally applied stresses σ > 100 MPa is accompanied by a storage of 

considerable reversible energy, exceeding the dissipated energy (|ΔGirr(0)| + |ΔGirr(1)| < |ΔGrev(0)|), a change in the 

shape of the (ε(Т) curves – the loops become asymmetric (Δ'1 = Ms' – Mf' > Δ'2 = As' – Af', 
1TσΔ  = |Af' – Ms'| < 2TσΔ  =  

|Mf' – As'|), and the reverse transformation starts at higher temperatures than does the forward MT (As' < Ms') unlike the 

MTs at σ < 100 MPa, for which Δ'1 = Δ'2, 
1TσΔ  = 2TσΔ  и As' > Ms'. 

The work has been performed within the RF President scholarship program No. СП-6909.2013.3 and the 

RFBR grant No. 12-08-00573. 

REFERENCES 

1. K. Oikawa, T. Ota, T. Ohmori, et al., Appl. Phys. Lett., 81, No. 27, 5201–5203 (2002).  

2. Y. Sutou, N. Kamiya, T. Omori, et al., Appl. Phys. Lett., 84, 1275–1277 (2004). 

3. R. F. Hamilton, H. Sehitoglu, C. Efstathiou, and H. J. Maier, Acta Mater., 55, Is. 14, 4867–4876 (2007).  

4. M. M. Karpuk, D. A. Kostyk, and V. G. Shavrov, Phys. Metals Metallogr., 110, No. 2, 138–150 (2010). 

5. K. Otsuka and C. M. Wayman, Shape Memory Materials, Cambridge University Press (1998). 

6. Yu. Chumlyakov, I. Kireeva, E. Panchenko, et al., J. Alloys and Compounds, 577, S393–S398 (2013). 

7. Yu. I. Chumlyakov, I. V. Kireeva, E. Yu. Panchenko, et al., Russ. Phys. J., 51, No. 10, 1016–1036 (2008). 

8. E. E. Timofeeva, E. Yu. Panchenko, Yu. I. Chumlyakov, and H. J. Maier, Russ. Phys. J., 54, No. 12, 1427–

1430 (2011).  

9. E. E. Timofeeva, E. Yu. Panchenko, Yu. I. Chumlyakov, and A. I. Tagiltsev, Vestnik Tambov. Uni., 18, Issue 

4, 1617–1619 (2013). 

10. C. Efstathiou, H. Sehitoglu, J. Carroll, et al., Acta Mater., 56, 3791–3799 (2008).  

11. Yu. I. Chumlyakov, I. V. Kireeva, I. Karaman, et al., Russ. Phys. J., 47, No. 9, 893–911(2004). 

12. J. Dadda, H. J. Maier, I. Karaman, and Y. Chumlyakov, Int. J. Mater. Res., 101, No. 12, 1503–1513 (2010).  

13. A. L. Roytburd and Ju. Slusker, Scripta Metallurg. Mater., 32, No. 5, 761–766 (1995).  

14. X. D. Ding, T. Suzuki, J. Suna, et al., Mater. Sci. Eng. A, 438–440, 113–117 (2006).  



 1277

15. Y. Liu and H. Yang, Mater. Sci. Eng., А260, 240–245 (1999). 

16. E. Panchenko, Y. Chumlyakov, H. J. Maier, et. al., Intermetallics, 18, 2458– 2463 (2010).  

17. E. Yu. Panchenko, Yu. I. Chumlyakov, E. E. Timofeeva, et al., Deform. Razrush., No. 2, 22–29 (2010). 

18. L. Daroczi, Z. Palanki, S. Szabo, and D. Beke, Mater. Sci. Eng., 378, 274– 277 (2004). 

19. Yu. I. Chumlyakov, I. V. Kireeva, E. Yu. Panchenko, et al., Russ. Phys. J., 54, No. 8, 937–950 (2011). 

20. E. Yu. Panchenko, Yu. I. Chumlyakov, I. V. Kireeva, et al., Phys. Metals Metallogr., 106, No. 6, (2008).  
 


	INTRODUCTION
	1. EXPERIMENTAL PROCEDURE
	2. EXPERIMENTAL RESULTS AND DISCUSSION
	SUMMARY
	REFERENCES

