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ELECTRIC FIELD STRENGTH AT AND NEAR THE CATHODE 
EDGE IN A MAGNETICALLY INSULATED COAXIAL DIODE 

S. Ya. Belomyttsev, I. V. Romanchenko, and V. V. Rostov UDC 537.2 

For an annular cathode in a coaxial diode it has been shown that the averaged electric field strength at the end 
face of the cathode, nE , depends on the edge thickness h  as nE 1 h∝ . It has been found that the field 

strength varies with distance from the edge approximately as 1 r∝ . The problem of the electric field 
strength at the edge of the cathode in a magnetically insulated coaxial diode has been solved for the case 
where the cathode emissivity is limited with the use of a model assuming a given internal resistance of the 
voltage source. 

INTRODUCTION 

High-current annular electron beams are known to be used in relativistic microwave electronics. To produce an 
electron beam of this type, the thickness of the cathode tube should be made small enough to provide a necessary 
electric field strength for explosive emission to develop at the cathode edge. It is generally believed that once explosive 
emission has developed, the cathode has an unlimited emissivity, and this results in that the electric field strength at the 
cathode edge drops to zero [1]. However, it is of interest to know the field strength at the cathode edge and the field 
distribution near the edge before the development of explosive emission when the field is still not substantially distorted 
by the space charge, i.e. to solve an electrostatic problem. This problem can be solved in good approximation 
analytically. In the present work, for this purpose two methods have been used: one supposing the conservation of the 
longitudinal component of the electromagnetic field momentum and the other seeking an approximate solution of the 
Laplace equation. Based on the solution of the electrostatic problem, the problem of incomplete screening of the electric 
field at the cathode edge in the case of limited emissivity of the cathode has been considered. For this case, an averaged 
electric field strength at the cathode edge has been derived. 

1. THE LAW OF CONSERVATION OF THE Z-COMPONENT OF THE FIELD MOMENTUM IN A 
COAXIAL DIODE 

Let us consider a coaxial diode (Fig. 1) with cathode and anode radii cR and аR , respectively, and with cathode 
tube thickness ch  to which a potential difference U  is applied.  

The potential inside the coaxial diode obeys the Laplace equation (1), which, in cylindrical coordinates, has the 
form 
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which, by virtue of the azimuthal symmetry, does not contain the term 
2

2 2
1
r

∂ ϕ
∂θ

. If we multiply this equation by 

1
4 z

∂ϕ−
π ∂

, it is reduced to the following one: 

  div 0=Σ , (2) 

where the components of the vector Σ  are given by 
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  0θΣ = . 

Integrating equation (2) throughout the volume bounded by the surface S, depicted by the dashed line in Fig. 1, 
and going, following the Ostrogradskii–Gauss theorem, to a surface integral, we write 

 0
S

d =∫ sΣ . (4) 

Let us elucidate the physical meaning of the vector Σ. Consider the z-components of a Maxwellian stress tensor 
in cylindrical coordinates for a region possessing azimuthal symmetry [2]: 

 

Fig. 1. System of conductors of a coaxial diode. 
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Thus, the vector Σ is a vector formed of the z-components of the tensor of an electromagnetic field momentum flux 
density for an azimuthally symmetric system in cylindrical coordinates [3]. Equation (4) can be rewritten as [3] 

  0z

S

dG
d

dt
− = =∫ sΣ , (6) 

where zG  is the z-component of the field momentum in the volume bounded by the surface S . Obviously, this equation 
expresses the law of conservation of the z-component of the field momentum in the volume under consideration. 

Let us now consider the derivation of the expression for the field strength at the end face of an edged cathode 
based on the conservation law (4) for two shapes of the end face: plane and semicircular. 

2. THE AVERAGED FIELD STRENGTH AT THE END FACE OF A CATHODE 

Let us evaluate the integral (4) over the surface S for the case where the end face of the cathode is a plane 
surface, as shown in Fig. 1. Surfaces I and IV are chosen so far from the cathode end face that the field at them is equal 
to zero, i.e. Σ 0= . At surfaces II, which are the surfaces of the conductors, we have 0zE = , and, hence, 
Σ 0rd ds= Σ =s . The nonzero contribution to the integral (4) is made by surfaces III, V, and VI. We are interested in 
the case where the length L  of surface V (see Fig. 1) tends to zero. The flux of the vector Σ through this surface is 

proportional to the integral 
0

L

r zE E dl∫ . The relation between the field strength and the distance l  from the right angle of 

the conductor, as follows from the solution of Problem 3, Sec. 3 in Ref. 4, for small l  has the form 

  ( ) 1 3E l l−∝ .  

Thus, the integral 
0

L

r zE E dl∫  is proportional to 1 3L , so that the flux of the vector Σ through surface V also tends to zero 

with L as 1 3L . The flux of the vector Σ through surface III can be written as 

  
2

а cIII
Σ

4 ln
Ud
R R

= −∫ s , (7) 

and the flux of the vector Σ through surface IV (the cathode end face) with L  tending to zero in the form  

  ( )
к

к к
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From here, in view of equation (4), we obtain for the field strength at the cathode end face averaged over the 
surface 
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where c
c а cln

UE
R R R

= −  is the field at the exterior cylindrical surface of the cathode far from the end face. 

If the cross-section of the cathode end face in Fig. 1 ends not with a vertical line but with a semicircle of radius 
c c 2r h= , surface V–VI should also be chosen as a semicircle of radius cr r= , and the flux of the vector Σ through this 

surface is approximately given by 

  ( )
c c

2 2
c c

V VI
2

1Σ
4 n

r R
d R r E d

π

<< π− −

≈ θ θ∫ ∫s , (10) 

where 2 2
n z rE E E= +  is the normal component of the field strength vector at the surface of the semicircle. The polar 

angle θ  is measured counterclockwise from the middle of the semicircle. Thus formula (9) will be rewritten as 

  ( ) ( )
c c

c
c а c

c

2lnn
r R

RE E R R
h<<

θ ≈
π

. (11) 

The dependence of the averaged field strength at the edge on ch  as c1 h∝  holds not only for a coaxial diode. 
Based on the conservation law for the z-component of the field momentum, it can be shown that the averaged field 
strength at the flat end face of a semi-infinite plane capacitor (strip line) can be given by 

  
c

00
c2z z h d

dE E
h=+ <<

≈ , (12) 

where 0
UE
d

=  is the field strength inside the capacitor far from its edges. Thus, the relation c0 1z zE h=+ ∝  seams 

to be considered general for the whole class of thin-edged conductors when the problem on the potential distribution 
near the edge can be reduced to a local two-dimensional problem. Such a problem is solved below. 

3. THE FIELD STRENGTH AT A DISTANCE FROM THE EDGE OF A CATHODE 

For the electric field strength in a coaxial diode at some distance from the edge ch>> , we can use 
an approximate solution of the Laplace equation for a potential. It corresponds to the solution of the problem on the 
potential distribution near the edge of a plane blade [4]: 

  const sin
2

r θϕ ≈ . (13) 

This solution is the first term of the series being a solution of the Laplace equation. Formula (13) is written in polar 
coordinates r , θ  for a plane perpendicular to the border of the edge. The angle θ  is measured from the surface of the 
blade and r  from the edge of the blade. 

Expression (13) approximately describes the behavior of the potential in some range of r  values outside which 
it has no physical meaning. The bottom limit is related to the thickness of the edge: cr h>> , and it corresponds to the 
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approximation of an infinitely thin edge. The limit superior for r  can be written as r D<< , where D  is the distance 
from a point at the border of the edge to the nearest charged body. If there is no charged body in the neighborhood of 
the edge, i.e. the field of a solitary charged conductor, such as, a thin plate, is considered, the characteristic size of the 
conductor, such as the plate width or length, is taken for the parameter D . The limit superior for r  can also be imposed 
by the radius of curvature cR of the edge: cr R<< . 

The electric field strength, according to (13), depends on r  as 1E r∝ . It should be noted that the apparent 
problem of the field strength singularity at the point 0r =  disappears by itself since this point is outside the domain of 
applicability of the solution (13).  

Expression (13) for a potential is valid for all thin-edged conductors [4] if a range of values { }c c,h r D R<< <<  
does exist. The value of the constant in equation (13) can be found by solving the problem for the field as a whole and 
expanding it in a power series of r. 

The family of equipotential lines of the general solution of (13) represents confocal parabolas (Fig. 2) and 
describes a plane field. Therefore, the field between two confocal parabolas (heavy lines in Fig. 2) to which the 
potential difference is applied will exactly obey the solution of (13). 

If for a coaxial diode there exists a range of distances from the cathode edge { }c c а c,h r R R R<< << − , the 
potential in this range is approximately described by expression (13). The value of the constant in this expression can be 
determined from the conservation law (4). To evaluate the integral in (4), it is necessary to choose surface V–VI having 
the shape of a torus [5] whose greater radius is the radius of the cathode, cR , and the smaller radius 

{ }0 c а c,r R R R<< − . The flux of the vector Σ, defined by relation (13), through the surface of the torus is given by 

  
2

c

V VI

constΣ
8

Rd
−

π
=∫ s   (14) 

and it does not depend on 0r . Proceeding from the equality of the sum of expressions (7) and (14) to zero, we obtain an 
expression for the potential: 

  ( ) c
c а c

2ln sin
2

R rE R R θϕ ≈ −
π

, (15) 

 

Fig. 2. The family of force and equipotential lines of the solution (13) 
between two charged confocal parabolas. 
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where c
c а cln

UE
R R R

= −  is the field at the cathode far from the end face. 

The electric field strength corresponding to the potential (13) is given by 

  
( )

( )

c
c а c

c
c а c

ln sin ,
2 2

ln cos .
2 2

r
RE E R R

r

RE E R R
rθ

θ≈
π

θ≈
π

 (16) 

Since a strong guide magnetic field is used in a coaxial diode, we write the expression for the z-component of 
the electric field strength at cr R≈ . Sewing together solutions (16), (9) and (16), (11), we set, in local polar coordinates, 
r z=  and θ = π . Then, in cylindrical coordinates, we can write the following expressions: 

  ( ) ( ) c
c c а c

c c

1, ln
1 2z

RE r R z E R R
h z h

≈ ≈
+ π

 (17) 

for the case that the edge end face is flat and 

  ( ) ( ) c
c c а c

c c

2 1, ln
1 4z

RE r R z E R R
h z h

≈ ≈
π +

 (18) 

for the case that the edge end face is rounded for { }c а c0 ,z R R R≤ << −  and for some r  lying in the range 

c c cR h r R− < < . Since this r  is not known, the writing cr R≈  is used in formulas (17), (18). The solution of the 
electrostatic problem in the form of (17) rather well agrees with the prediction of a numerical simulation. 

4. THE AVERAGED FIELD STRENGTH AT THE END FACE OF A CATHODE UNDER THE PASSAGE OF 
CURRENT WITH MAGNETIC INSULATION 

In the case of the current passage in a magnetically insulated coaxial diode, the electric field strength at the end 
face of the cathode depends on the emissivity of the cathode. As shown by Fedosov and co-authors [1], if the cathode 
emissivity is unlimited, the field at the cathode edge vanishes; the corresponding current has received the name 
Fedosov’s current. The authors of Ref. 5 contend that in the case of an arbitrary emissivity, the field at the cathode does 
not vanish, but increases unrestrictedly as ch  tends to zero. In our opinion, this approach is wrongful since the 
procedure of mathematical trending of ch  to zero is made. It would be more justified to choose the edge thickness ch  to 
be greater than the "physically infinitesimal" linear dimensions of the volumes over which microscopic quantities are 
averaged [4].  

With this limitation for ch  the averaged field strength at the cathode edge always has a finite value. An 
expression for it can be derived by using the laws of conservation for the z-component of the field momentum and for 
the beam electrons [3]: 

  ( )Σ ,z
S V

d E dV= ρ∫ ∫s  (19) 

where ρ  is the volumetric charge density in the beam and S  is the surface that confines the volume V (it is depicted by 
the dashed line in Fig. 1). 
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Formulas (9) and (11) for the averaged field strength at the cathode edge correspond to no current passage in 
the coaxial diode, i.e. to the zero emissivity of the cathode. The zero field strength at the edge corresponds to 
an unlimited emissivity of the cathode [1]. Let us derive an expression for the averaged field strength at the cathode 
edge for the cathode emissivity varying from zero to an unlimited value and relate it to the current flowing in the diode. 
Assume that the voltage across the diode is a constant equal to U . This statement of the problem, i.e. the assumption of 
a variable current at a fixed voltage across the diode physically corresponds to a controlled variation of the internal 
resistance of the voltage source. 

Neglecting the dependence of the energy of electrons in the generated beam on radius 0
r

∂γ⎛ ⎞=⎜ ⎟∂⎝ ⎠
, we can obtain 

from equation (19) the relation 

  ( ) ( ) ( ) ( )
2

22 2 0
0 0

0

1
1 1 2 0

γ −
Γ − − ξ − Γ − γ − Γ − γ =

γ
, (20) 

where 
( ) c

c а c
c

ln

nE
RE R R
h

ξ =  is the averaged field strength at the end face of the cathode during the passage of current, 

referred to its electrostatic value (9); ( ) 21 eU
mc

Γ − =  and ( ) 0
0 21

e
mc

ϕ
γ − =  are the dimensionless applied voltage and the 

dimensionless potential difference between the generated beam and the anode. The value of ξ  lies in the interval [ ]0,1 . 
The first summand in equation (20) represents the sum of the field momentum fluxes through surfaces III and VI in 
Fig. 1. The second summand is the field momentum flux through surface I. The third summand corresponds to the beam 
electron momentum flux through surface I (the beam is not shown in Fig. 1). The solution of equation (20) has the form 

  ( )2 2

0
2 1 1

2 cos
3 3

Γ + + Γ − ξ φγ = ,  (21) 

where ( )
( )

3 2

2 2
3arccos

2 1 1

⎡ ⎤⎛ ⎞
⎢ ⎥φ = −Γ ⎜ ⎟⎜ ⎟⎢ ⎥Γ + + Γ − ξ⎝ ⎠⎣ ⎦

. 

For 0ξ =  the solution (21) is reduced to the well-known solution [1] 

  F
1 12
4 2

γ = + Γ −   (22) 

and corresponds to Fedosov's current [1] 

  ( )
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( ) 23
F F

F
а c F

1
2 ln

mcI
e R R

⎛ ⎞Γ − γ γ −⎜ ⎟γ =
⎜ ⎟γ⎝ ⎠

.  (23) 

Normalizing the beam current for ( )FI γ  at an arbitrary ξ , we obtain an expression for the dimensionless 
current ς  as a function of Γ and ξ :  

 ( ) ( )
( )

( ) ( )2 2
0 0 0 F F

F 0 F

1 1
,

I
I

⎛ ⎞ ⎛ ⎞γ Γ − γ γ − Γ − γ γ −⎜ ⎟ ⎜ ⎟ς Γ ξ = =
⎜ ⎟⎜ ⎟γ γ γ⎝ ⎠⎝ ⎠

.  (24) 
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Figure 3 presents the plot of the dimensionless current (24) versus the dimensionless averaged field strength for 
two values of the applied voltage. As can be seen from the figure, the field strength at the end face of the cathode 
increases rather abruptly even at an inappreciable decrease in current from ( )FI γ  and then, more smoothly, approaches 
its electrostatic value. This is in direct opposition to the conclusion of the authors of Ref. 5 that the field strength at the 
end face of a cathode has a singularity throughout the range of currents. It should also be noted that the form of relation 
(24) is practically the same for different values of the applied voltage. 
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Fig. 3. The dimensionless current in a magnetically insulated coaxial diode as 
a function of the dimensionless averaged field strength at the edge of the cathode. 
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