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INFLUENCE OF INTERACTIONS OF EXCITED VIBRATIONS ON 
THE MOLECULAR PARAMETERS 

S. P. Gavva   UDC 539.194 

The interaction of vibrations is studied by the algebraic method of perturbation theory. Formulas are derived 
that take into account the influence of interactions on the anharmonic spectroscopic parameters of excited 
vibrations with compound frequencies. 

INTRODUCTION 

The present work studies the excited states of molecules for transitions for which several vibrational quantum 
numbers change. They are called compound transitions [1, 2] and are subdivided into vibrations with summed and 
difference frequencies (ωa + ωb) and (ωa – ωb), where a and b are the serial numbers of vibrations (a, b = 1, 3N – 6) and 
N is the number of atoms in the molecule. Such vibrations together with overtones give rise to additional absorption 
bands in the IR spectra of molecules. However, difficulties caused by the special features of the dynamics of atoms in 
molecules in the excited states, the influence of interaction of vibrations forming transitions with compound frequencies 
that are manifested through the anharmonicity of the spectroscopic parameters and resonances of vibrational states with 
energies close in values to these excited states and forming polyads of the examined bands arise in an analysis and 
identification of spectra in experimental spectroscopy. 

The above-listed problems explain the necessity of application and development of various methods, including 
matrix theory [3, 4], for the determination of the molecular parameters in the IR absorption spectra. The present work is 
aimed at the derivation of an equation for excited vibrations with compound frequencies by means of transformation of 
the basic equation of normal vibrations. To this end, the operation of direct multiplication of matrices is used together 
with its properties for eigenvalues and eigenvectors of matrices-multipliers in the context of the matrix theory of 
perturbations [3]. A solution of the equation yields vibration types and their changes in the first order of the perturbation 
theory. The formulas derived allow the influence of perturbations on the structural and electrooptical parameters, 
centrifugal distortion coefficients, and Coriolis interactions to be investigated. 

EQUATION FOR EXCITED VIBRATIONS 

The theoretical study of integral intensities of IR compound vibration bands based on the valence-optical 
scheme of molecular vibration theory [1, 2] and quantum-mechanical method of contact transformations [5] 
demonstrates that the key parameters in computational formulas are the second-order derivatives of the dipole moment 
with respect to the normal coordinates and the coefficients of rotational-vibrational interaction. The method of direct 
calculations of the anharmonic electrooptical parameters was described in [6]. It is based on semi-empirical quantum-
chemical CNDO/2 method with the use of the method of numerical differentiation of the dipole moment function by 
cubic splines and is implemented in the program complex whose algorithm and description can be found in [7]. 

Calculations by the developed method with the use of the program complex allow redistribution of electric 
charges and dipole moment coordinates accompanying the displacement of atoms calculated by solving the direct 
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mechanical problem for normal vibrations to be determined as well as changes of these structural parameters 
accompanying the subsequent vibrations. A numerical experiment allows vibrations with (ωa ± ωb) compound 
frequencies to be modeled considering that atoms first undergo vibrations with frequencies ωa (a = 1, 3N – 6) 
accompanied by changes of all intramolecular parameters and then vibrations occur with the other frequency. We note 
that the atomic vibrations with the second frequency occur for the intermolecular bond lengths, valence sites, and dipole 
moment coordinates that have already been changed as a result of the first vibrations rather than from the equilibrium 
position. The frequencies b′ω  (b = 1, 3N – 6) of the subsequent vibrations calculated by solving the direct mechanical 
problem with allowance for changes in the matrix of the kinematic coefficients differ from the frequencies of normal 
vibrations ωb (b = 1, 3N – 6) by b b b′Δω = ω − ω . Therefore, the frequencies of compound vibrations ( a b′ω ± ω ) differ 
from the summed or difference frequencies of two normal vibrations by Δωb whose values change from several tens to 
several hundreds of reciprocal centimeters. This is confirmed by experimental measurements of the band centers of 
compound vibrations, for example, for the water molecule and its isotopes that have been much studied from the 
spectroscopic point of view and presented in [8]. Hence, the second compound vibration can be considered excited, and 
the algebraic method of the matrix theory of perturbations [3] can be used to investigate it. 

Let us derive the equation for vibrations at compound frequencies. We first write down the basic equation for 
normal vibrations [1, 2] 

  DZ = ΛZ,   (1) 

in which the matrix of the dynamic coefficients D is the product of matrices of kinematic interaction G and force 
constants F: D = GF, the matrix of normal vibration types is designated by Z, and the components of the diagonal 
matrix Λ are numbers proportional to the squared frequencies of normal vibrations: λi = 4π2c2 2

iω  (i = 1, 3N – 6). 
After grouping terms with analogous normal vibration symmetry types in Eq. (1), the matrix D is transformed 

into the block-diagonal matrix with quadratic submatrices along its diagonal. We now write down the matrix D as a 
direct sum of these quadratic submatrices: 

  D = D1 ⊕ D2 ⊕ … ⊕ Dn.   (2) 

Such transformation reduces the order of Eq. (1) and allows us to proceed to a solution of lower-order matrix 
equations of fixed symmetry type. The matrix Z of vibration type components can be expressed analogously:  

  Z = Z1 ⊕ Z2 ⊕ … ⊕ Zn.   (3) 

Based on Eqs. (1)–(3), we now write down the matrix equation for one of the symmetry types of normal 
vibrations 

  DaZa = ΛaZa.   (4) 

Here Λa is the diagonal matrix with the components 2 2 24
i ia acλ = π ω  (i = 1, a). For vibrations with other symmetry type, 

the equation will be analogous to Eq. (4); however, taking into account perturbations of vibrations in the context of the 
matrix theory for eigenvalues and eigenvectors [4], we obtain 

 b b b bD′ ′ ′ ′Ζ = Λ Ζ .   (5) 

The components of the diagonal matrix b′Λ  are numbers 2 2 24 ( )
j jb bc′ ′λ = π ω , where j = 1, b. 

In [4] it was proved that if the analytical representation 

 b b b′Λ = Λ + ε ΔΛ    (6) 
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exists in the first-order approximation of the perturbation theory for the matrix of eigenvalues b′Λ  given by Eq. (5), it 
also exists for other matrices 

 b b bD D D′ = + ε Δ ,  (7) 

 b b b′Ζ = Ζ + ε ΔΖ ,  (8) 

where ε is the order of smallness. The normal vibrations with frequencies 
jbω  (j = 1, b) are determined from a solution 

of the equation 

 b b b bD Ζ = Λ Ζ  . (9) 

The components of the matrix ΔDb in Eq. (7) are equal to changes of the dynamic coefficients, and the matrix 

ΔZb in Eq. (8) comprises the components describing the change of the vibration type. The diagonal matrix ΔΛb from 
Eq. (6) is set by the components 2 2 24 ( )

j jb bcΔλ = π Δω , j = 1, b. 

To derive the equation for vibrations at compound frequencies, we apply the operation of direct multiplication 
of matrices and use its properties for eigenvalues and eigenvectors which follow from theoretical considerations [4]. If 
there exists a matrix polynomial ( , ) i j

i jA B c A Bϕ = ⊗∑  formed from matrices Am×m and Bn×n with real coefficients cij, 

mn numbers ϕ(λi, σj) will be the eigenvalues of the matrix ϕ(A, B), where λi (i = 1, m) are the eigenvalues of the matrix 
A and σi (j = 1, n) are the eigenvalues of the matrix B. 

Let us multiply directly both parts of Eq. (4) by the unit diagonal matrix Ib×b from the right and Eq. (5) by Ia×a 
from the left. Taking into account the property of noncommutativity of the direct product, we obtain two equations 

 ( )( ) ( )( )a b a b a b a bD I I I I⊗ Ζ ⊗ = Λ ⊗ Ζ ⊗ , (10) 

 ( )( ) ( )( )a b a b a b a bI D I I I′ ′ ′ ′⊗ ⊗ Ζ = ⊗ Λ ⊗ Ζ .  (11) 

After multiplication of Eq. (10) from the right by the matrix expression ( )a bI ′⊗ Ζ  and Eq. (11) by ( )a bIΖ ⊗  
and application of the property of the direct product ( )( )A B C D AC B D⊗ ⊗ = ⊗ , we obtain the transformed 
equations: 

 ( )( ) ( )( )a b a b a b a bD I I′ ′⊗ Ζ ⊗ Ζ = Λ ⊗ Ζ ⊗ Ζ ,  (12) 

 ( )( ) ( ) ( )a b a b a b a bI D I′ ′ ′ ′⊗ Ζ ⊗ Ζ = ⊗ Λ Ζ ⊗ Ζ  .  (13) 

Subtraction of Eq. (13) from Eq. (12) yields the matrix equation 

 ( )( ) ( )( )a b a b a b a b a b a bD I I D I I′ ′ ′ ′⊗ − ⊗ Ζ ⊗ Ζ = Λ ⊗ − ⊗ Λ Ζ ⊗ Ζ    (14) 

with eigenvalues determined by the diagonal components of the matrix ( )a b a bI I ′Λ ⊗ − ⊗ Λ . They are equal to the 

difference between the numbers ( )i ja b′λ − λ  (i = 1, a and b = 1, j). We express them through the frequencies of normal 

vibrations: 

 ( )22 2 24
i j i ja b a bc ⎛ ⎞′ ′λ − λ = π ω − ω⎜ ⎟

⎝ ⎠
.  (15) 

Let us square both parts of equality (15); we obtain the expression 
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 ( ) ( ) ( )2 2 22 2 2 24 4
i j i j i ja b a b a bc c⎛ ⎞⎛ ⎞′ ′ ′λ − λ = π ω + ω π ω − ω⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
, (16) 

from which it follows that to derive the matrix equation with the eigenvalues determined by Eq. (16), the direct product 
of both parts of Eq. (14) must be squared. Using designations [2]A A A= ⊗ , we finally obtain the equation for 
vibrations at compound frequencies: 

 ( ) ( ) ( ) ( )[2] [2] [2] [2]
a b a b a b a b a b a bD I I D I I′ ′ ′ ′⊗ − ⊗ Ζ ⊗ Ζ = Λ ⊗ − ⊗ Λ Ζ ⊗ Ζ  .  (17) 

We note that among the diagonal elements of the matrix of eigenvalues in Eq. (17) there are components that 
differ from expression (16). They have no physical meaning and are omitted. The inequality 

i ja b′ω > ω  (i = 1, a and j = 

1, b) should also be satisfied for the frequencies. Cases are possible when a = b, that is, vibrations have the same 
symmetry type; then the serial numbers of vibrations should not coincide (i ≠ j). 

MOLECULAR PARAMETERS 

In the theory of matrices [4], equation (17) belongs to the important class of equations solving the fundamental 
problem of determining the eigenvalues and corresponding eigenvectors. From its solution it follows that the matrix of 
vibrations with summed or difference frequencies is determined by the direct product of the submatrices: 

 ab a b′Ζ = Ζ ⊗ Ζ .  (18) 

Taking into account Eq. (8), we can write the above equation in the form 

 ( )ab a b bΖ = Ζ ⊗ Ζ + εΔΖ  .   (19) 

The column components of the matrix Zab in Eq. (19) at frequencies ( )i ja b′ω ± ω  coincide with the coordinates 

of vectors: 

 ( ),i j i j i j ja b a b a b b′= ⊗ = ⊗ + ε ΔZ Z Z Z Z Z , (i = 1, a; j = 1, b).  (20) 

We now analyze the dependence of 
jbΔZ  on changes in the frequencies 

jbΔω  (j = 1, b). We take advantage of 

the results obtained in [9] where formulas for the eigenvalues and eigenvectors, determining changes in 
jbΔZ  versus 

jbΔω , were derived in the context of the matrix theory of perturbations up to the nth perturbation order. For the 

compound vibrations, we take advantage of the formula for the first-order approximation: 

 ( )1
j i

j i

b ij
b b

i b b ii j
s=

≠

β
Δ =

λ − λ
∑Z Z ,   (21) 

in which si are calculated as a scalar product of the left transposed eigenvector of the matrix Db from Eq. (9) by its right 
eigenvector 

ibZ . The coordinates of the left transposed eigenvector coincide with the components of the ith row of the 

inverse matrix 1
b
−Ζ . Because these vectors are orthonormalized, all si (i = 1, b) are equal to unity. According to [3], the 

components βij are given by the expression 
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 ( )i j

T
ij b b bβ = Δ ΛY Z .  (22) 

After simple transformations, we write down Eq. (22) in terms of frequencies of normal vibrations 

  2 2
1

j i
j i

b ij
b b

i b b
i j
=
≠

′β
Δ =

ω − ω
∑Z Z  (23) 

with components 

 , ,
1

j

b

ij bk i k b k
k

Y
=

′β = Δω Ζ∑ .  (24) 

Formulas (23) and (24) specify the coordinates of vectors 
ibΔZ  (j = 1, b) and hence the components of the 

matrix ΔZb. 
After substitution of Eq. (23) into Eq. (20), we obtain the expression 

 , 2 2
1

i j i j i
j i

b ij
a b a b b

i b b
i j
=
≠

⎛ ⎞′β⎜ ⎟= ⊗ + ε⎜ ⎟ω − ω⎜ ⎟
⎝ ⎠

∑Z Z Z Z  ,  (25) 

in which the coordinates of the vector ,i ja bZ  and hence the components of the vibration type matrix Zab given by 

Eq. (19) depend explicitly on the change of frequencies caused by the interaction of vibrations. 
The displacements of atoms with normal vibrations at the frequency 

iaω  (i = 1, a) are determined by the 

relation Xa = laQa, where ( )1 1 TT
a a a al M B Q− −= Ζ  according to [2], ( )1 2, , ,a aX = Δ Δ Δ…r r r , M–1 is the diagonal matrix 

of the reciprocal atomic masses, T
aB  is the transposed matrix of the Wilson s-vectors, ( )1 T

a
−Ζ  is the transposed inverse 

matrix of the vibration type Za given by Eq. (4), and Qa = (Qa1, Qa2, …, Qaa)T is the column of the normal coordinates. 
For the second perturbed vibration at the frequency 

jb′ω (j = 1, b), the atomic displacements are written down 

with allowance for changes: 

 ( )b b b b b bX l Q l l Q′ ′= = + ε Δ ,  (26) 

 ( )( )11 TT
b b b bX M B Q−−′ ′= Ζ  .  (27) 

In Eq. (27), the matrix ( )( )1 T
b

−′Ζ  is the transposed inverse matrix ( ) 1
b

−′Ζ . In the matrix theory of 

perturbations [4], the following assertion was proved: if Eq. (6) is obeyed, then together with Eq. (8), the following 
analytical expression can be written for the inverse matrix: 

 ( ) 1 1 1
b b b

− − −′Ζ = Ζ + ε ΔΖ  .  (28) 

After transformations of the left eigenvectors by the algebraic method of the theory of perturbations [3] 
analogous to the transformations described in [9], we obtain the following formula for the components of the jth row of 
the matrix 1

b
−ΔΖ : 
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 2 2
1

j i
j i

b ijT T
b b

i b b
i j
=
≠

′β
Δ =

ω − ω
∑Y Y , j = 1, b.  (29) 

Having substituted Eq. (28) into Eq. (27), we derive the expression for the displacement of atoms with excited 
vibrations: 

 ( )( ) ( )( )1 11 T TT
b b b b bX M B Q− −− ⎛ ⎞′ ′ ′= Ζ + ε Δ Ζ⎜ ⎟

⎝ ⎠
 .  (30) 

The second term in Eq. (30) determines the change of displacements caused by the interaction of vibrations. It 
should be taken into account in direct calculations of the spectroscopic parameters of molecules. Therefore, the 
anharmonic coefficients of centrifugal distortion are determined by the relations  

 ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1
i ii i i i i i i i i i

N N N

b bab a a a b a b a b a b
i i i

A l l l l l l l l l l l l
β γαα β γ β β γ γ β β γ γ

= = =
′ ′= + = + + Δ + Δ∑ ∑ ∑ , (31) 

 ( ) ( )( )( ) ( ) ( ) ( ) ( )

1 1
ii i i i

N N

bab a a b b
i i

A l l l l l
βαβ α α β β

= =
′= − = − + Δ∑ ∑ , (α, β, γ = x, y, z),  (32) 

which comprise the terms determined by the interaction of vibrations. 
The Coriolis coefficients that characterize coupling of two vibrations are determined by the coordinates of 

vectors 

 ( )
1 1

i i i i i

N N

ab a b a b b
i i= =

⎡ ⎤⎡ ′ ⎤ζ = = + Δ⎣ ⎦ ⎣ ⎦∑ ∑l l l l l .   (33) 

Calculations were performed for the H2
16O water molecule and its two heavy isotopes H2

17O and H2
18O from 

formulas (31)–(33) using the program for solving the direct mechanical problem taken from [7]. They have 
demonstrated that the terms determining changes of ( )

abA ααΔ , ( )
abA αβΔ , and abΔζ  caused by the interaction of excited 

vibrations at compound frequencies are æ2 times smaller than the unperturbed values of the corresponding parameters 
presented, for example, in [8] (here æ is the Born–Oppenheimer parameter). These results are in agreement with the 
estimates obtained by different methods in [3, 4, 8] in the first order of the perturbation theory. 

The important spectroscopic parameters for vibrations at compound frequencies are the second-order 
derivatives of the dipole moment with respect to the normal coordinates: 

 ( )
2 2 23 6 3 6

, , , , ,
, 1 , 1, , , ,

N N

ai k bj n ai k bj n bj n
k n k na b ai k bj n ai k bj nQ Q S S S S

− −

= =

∂ μ ∂ μ ∂ μ′= Ζ Ζ = Ζ Ζ + ΔΖ
∂ ∂ ∂ ∂ ∂ ∂

∑ ∑ .  (34) 

Here Sai, k and Sbj, n are the coordinates of symmetry of the corresponding vibration types. 
Let us give an example of calculations of the second-order derivative of the х-component of the dipole moment 

2

12 2
1

x x QQ
∂ μμ = ∂∂  and its change 12

xΔμ  determined by the second term of Eq. (34). Calculations were performed by 

the method described in [6] with the use of the program complex described in [7]. For the H2
16O water molecule, we 

obtained the following values: 2
12 0.9998 10x −μ = − ⋅  D and 4

12 0.35 10x −μ = − ⋅  D. They are in agreement with the 

experimental value ( ) 2
12 exp

(0.843 0.18) 10x −μ = − ± ⋅  D [10]. For the H2
17O isotope, we obtained 2

12 0.9973 10x −μ = − ⋅  D 

and 4
12 0.28 10x −Δμ = − ⋅  D. For the other H2

18O isotope, we obtained 2
12 0.9945 10x −μ = − ⋅  D and 4

12 0.25 10x −Δμ = − ⋅  D. 
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However, we failed to find in the literature a comparative experiment for both isotopes. Analyzing the results obtained, 
we note that 12

xμ  and 12
xΔμ  have the same signs, and their contributions to values of the anharmonic electrooptical 

parameters are comparable with changes of the derivatives caused by the effect of isotopic substitution. Therefore, 12
xμ  

and 12
xΔμ  must be taken into account in direct calculations of the anharmonic electrooptical parameters. 
In conclusion, we note that the main theoretical results are formulas (17)–(21), (23), (25), and (27)–(34). They 

allow one to substantiate the interaction of vibrations and to investigate its influence on the spectroscopic parameters of 
molecules vibrating at the compound frequencies. 
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