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CONDENSED-STATE PHYSICS 

FORCED CAPILLARY WAVES IN THE POOL COVERED WITH 
A THIN FILM  

S. E. Savotchenko   UDC 534.1: 530.1 

Forced capillary waves are investigated in the pool of finite dimensions within the framework of linear 
dynamics of an incompressible liquid. Analytical expression for the velocity potential of the liquid in such 
waves is derived. It is demonstrated that amplitude poles of the forced capillary waves determine the frequency 
spectrum of free capillary waves. 
 
 
Many works are devoted to theoretical investigations of waves of various types in liquids (for example, see [1, 

2]). Capillary waves play the important role in various technical and geophysical applications. An active interest has 
been expressed in a study of the effects arising in the capillary waves with allowance for viscoelastic liquid properties 
[3], interaction of a dielectric liquid layer with a charged layer [4], and nonlinear dynamics of capillary waves in 
a viscous liquid jet [5]. 

The present work studies the problem of forced capillary wave propagation in a tank (pool) of finite 
dimensions. Special attention is given to the general problem of coupling of free oscillation frequencies with amplitudes 
of forced oscillations.  

Let us consider a liquid in the pool of finite depth h the surface of which is covered with a thin film from 
an elastic material insoluble in the liquid. The film thickness can be neglected in comparison with the pool depth. We 
consider the pool shape to be cylindrical (with an arbitrary rather than circular contour С). We consider also that the 
surface oscillations of the film are small and the liquid remains always in contact with the film due to the forces of 
surface tension. 

Let us direct the Oz axis along the cylinder axis toward the pool depth and assume that the pool surface covered 
with the film is located on the boundary z = 0 in the xOy plane. We designate by M points from region B = {(M2, z): 

M2 ∈ D ⊂ R2, 0 < z < h} ⊂ R3 occupied by the liquid and by M2 points of the surface (film) from the region D of a plane 
figure of any arbitrary shape with smooth boundary C. 

Let us consider that the liquid is ideal and incompressible. Then the velocity potential of the liquid ϕ(M, t) at 
point M ∈ B and time t is determined from the Laplace equation: 

 0Δϕ = ,  (1) 

where Δ is the Laplace operator.  
The potential must satisfy the conditions of flow along the motionless pool walls, corresponding to the equality 

to zero of the normal velocity components: 

 0
Cn

∂ϕ =
∂

,  M ∈ C,  (2) 
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 0
z hz =

∂ϕ =
∂

,  M2 ∈ D.  (3) 

On the film surface, the potential satisfies the specific boundary condition.  
Let this surface have the shape z = ζ(M2, t), M2 ∈ D. Considering that its deviations from the equilibrium 

position are small, we can write the Laplace formula for pressure p in the liquid and variable external pressure on the 
film pex in the plane z = 0 [1]: 

  p – pex = –σΔ2ζ,  (4) 

where σ is the coefficient of surface tension at the liquid-film interface, Δ2 is the two-dimensional Laplace operator with 
respect to the coordinates M2 ∈ D. 

After differentiation of condition (4) with respect to t, taking advantage of the well-known relations  

 p g
t

∂ϕ= −ρ ζ + ρ
∂

, 
t z

∂ζ ∂ϕ=
∂ ∂

,  (5) 

where g is the free fall acceleration, we can reduce condition (4) to the form 

 
2

ex
22

p
g

z t zt
∂∂ ϕ ∂ϕ ∂ρ − ρ − = −σ Δ ϕ

∂ ∂ ∂∂
. (6) 

The external periodic force applied to the film produces pressure depending on time by a harmonic law: 

  pex(M2, t) = pex(M2)e–iωt,  (7) 

where ω is the frequency of the external force and pex(M2) is the distribution of the external pressure over the film 
surface. The force is considered to be small so that it does not rupture the film covering the pool. External pressure (7) 
caused by forces of surface tension engenders forced capillary waves in the liquid.  

By virtue of the fact that the external pressure varies by harmonic law (7), we can seek the velocity potential of 
the liquid in the forced capillary wave in the form 

  ϕ(M, t) = Ф(M)e–iωt.  (8) 

With allowance for Eqs. (7) and (8) at z = 0, condition (6) assumes the form 

 2
2 ex 2( )g i p M

z z
∂Φ ∂ρω Φ + ρ − σ Δ Φ = ω
∂ ∂

. (9) 

Thus, collecting Eqs. (1)–(3) and (9), we obtain that the examined model can mathematically be formulated as 
the following boundary problem for the velocity potential of the liquid in the forced capillary wave Ф: 

 ( ) 0MΔΦ = ,  M ∈ B,  (10) 

 0
Cn

∂Φ =
∂

,  M2 ∈ C, 0 < z < h, (11) 

 0
z hz =

∂Φ =
∂

, M2 ∈ D,  (12) 
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 2
2 ex 2

0
( )

z
g i p M

z z =

∂Φ ∂⎛ ⎞ρω Φ + ρ − σ Δ Φ = ω⎜ ⎟∂ ∂⎝ ⎠
, M2 ∈ D. (13) 

A solution of boundary problem (10)–(13) is searched as an expansion of the potential in a generalized Fourier 
series of complete system of functions {ψn} [6]: 

 2( ) ( ) ( )n n
n

M u z MΦ = ψ∑ ,  (14) 

where un(z) are the Fourier coefficients.  
For the complete system of functions {ψn}, we choose the eigenfunctions of the following Storm–Liouville 

problem (SLP):  

  ( ) ( )2 2 2 0n n nM MΔ ψ + λ ψ = , 2M D∈ , (15) 

 0n

Cn
∂ψ

=
∂

,  M2 ∈ C,  (16) 

where λn are the eigenvalues of SLP (15)–(16). The eigenfunctions of SLP (15)–(16) are called the eigenfunctions of 
a membrane [6]; in our context, we call them the eigenfunctions of the film. 

Since problem (15)–(16) is two-dimensional, the subscript n designates the double subscript, and Fourier series 
(14) is also considered doubled. By its construction, the solution in the form of series (14) satisfies boundary condition 
(11) on the pool contour.  

Formal substitution of series (14) into equation (10) with boundary conditions (12)–(13) yields the following 
boundary problem for finding the Fourier coefficients un(z): 

 ( ) ( ) 0nu z u z′′ − λ = ,  0 < z < h,  (17) 

 ( ) 0nu h′ = , (18) 

 2 (0) ( ) (0)n n n nu g u i p′ρω + ρ + σλ = ω , (19) 

where primes denote derivatives with respect to z, and the Fourier coefficients characterizing the force distribution over 
the film are determined by the expression 

  2 22
1 ( ) ( ) ,n ex n M

Dn

p p M M dS= ψ
ψ

∫∫  (20) 

where the norm of the eigenfunctions is  

  2 2
2( )n n M

D
M dSψ = ψ∫∫  (21) 

and dSM is the element of the film surface. 
Thus, the Fourier coefficients un(z) are found by solving boundary problem (17)–(19) for the second-order 

ordinary differential equation. 
A solution of boundary problem (17)–(19) for 0np ≠  does exist, is unique, and can be written as follows: 
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  ( ) ( ) ( )coshn n nu z A h z= ω λ − , (22) 

where the amplitude of oscillations is determined by the expression 

 ( )
( )

n
n

n

i p
A

ω
ω =

Δ ω
, (23) 

 2( ) cosh ( )sinhn n n n nh g hΔ ω = ρω λ − λ ρ + σλ λ . (24) 

Having substituted Eq. (22) into Eq. (14), we obtain the solution of boundary problem (10)–(13): 

 2( ) ( ) ( )cosh ( )n n n
n

M A M h zΦ = ω ψ λ −∑ , (25) 

determining the velocity potential of the liquid in the forced capillary wave by formula (8).  
It should be noted that potential (25) can have another form, namely,  

 ex 2 2 2( ) ( ) ( , , ) N
D

M p N G M N z dSΦ = ∫∫ , (26) 

where dSN means that integration is carried out over points N2 of the film surface, and the Green’s function has been 
introduced for boundary problem (10)–(13): 

 2 2
2 2 2

cosh ( )( ) ( )
( , , )

( )
nn n

n nn

i h zM NG M N z
ω λ −ψ ψ

=
Δ ωψ

∑ . (27) 

Poles of oscillation amplitudes (23), that is, zeros of function (24) specify the discrete spectrum of frequencies 

 2 tanhn n n ng hσ⎛ ⎞ω = λ + λ λ⎜ ⎟ρ⎝ ⎠
. (28) 

Spectrum (28) comprises frequencies of free (or natural) capillary waves (that is, waves without external force, 
when pex ≡ 0) in the pool of finite dimensions specified by Eq. (22) in which the amplitude A is an arbitrary constant.  

For short capillary waves for which λnh2 >> 1, the discrete spectrum 

 2
n n ng σ⎛ ⎞ω = λ + λ⎜ ⎟ρ⎝ ⎠

 (29) 

is obtained from Eq. (28), and for long capillary waves for which λnh2 << 1, the discrete spectrum assumes the form 

 2
n n nh g σ⎛ ⎞ω = λ + λ⎜ ⎟ρ⎝ ⎠

. (30) 

For an infinite pool of finite depth λn → k2, and the well-known dispersion law of capillary waves is derived 
from Eq. (28) [1, 2]. 

Let us consider now pools having concrete shapes. First we consider a rectangular pool with sides a and b; then 
D = {(x, y): 0 < x < a, 0 < y < b}. For this case, the eigenfunctions and eigenvalues of SLP (15)–(16) are well known 
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[6]. Then the frequency spectrum of free capillary waves in the rectangular pool assumes the form (further the double 
subscript is written in an explicit form) 

 
2 2 2 2 2 2

2 2 tanhnm
n m n m n mg h
a b a b a b

⎛ ⎞⎧ ⎫⎡ ⎤ σ⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ω = π + + π + + π⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ρ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭ ⎝ ⎠
, (31) 

n = 0, 1, 2, … , m = 0, 1, 2, … . 
For a pool shaped as a circular cylinder with radius R, the surface D = {(r, θ): 0 < r < R, 0 < θ < 2π} ⊂ R2. 

Using the well-known eigenfunctions and eigenvalues of SLP (15)–(16) in this circle D [6], from Eq. (28) we obtain the 
spectrum of frequencies of free capillary waves in the circular pool: 

 
2( ) ( ) ( )

2 tanh
n n n

m m m
nm g h

R R R

⎧ ⎫⎛ ⎞ ⎛ ⎞μ μ μσ⎪ ⎪ω = + ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ρ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
, (32) 

n = 0, 1, 2, … , m = 1, 2, … , where ( )n
mμ  are zeros of the mth-order of the derivative of the nth order Bessel functions, 

that is, roots of the equation ( )( ) 0n
n mJ ′ μ = , where Jn are the nth order Bessel functions.  

In conclusion it should be noted that if the frequency of the external force coincides with one of the frequencies 
of discrete spectrum (28), the amplitude of oscillations (23) will be infinite. This means that a resonance occurs. In 
actual situation, the energy is always dissipated. Consideration of any dissipation process, for example, viscosity of the 
liquid in the model would prevent infinite amplitudes of forced oscillations at certain frequencies. Nevertheless, as is 
well known from the theory of oscillations [7], the maximum amplitude in the model that takes into account dissipation 
processes is reached at the frequency close to the resonant frequency at which the amplitude of oscillations in the model 
disregarding dissipation processes tends to infinity. Therefore, expression (28) can be used to estimate approximately 
the resonant frequencies at which the amplitude of true oscillations is maximum. 

In this work, the analytical expression has been derived for the potential of the liquid in the forced capillary 
wave in the pool of arbitrary shape with finite dimensions. Of special significance is the fact that the amplitude poles of 
the forced capillary wave are observed at frequencies of free capillary waves. This is analogous to the fact that 
amplitude poles of an elastic wave and quasiparticle scattering on crystal defects determine the spectra of frequencies of 
their natural oscillations [8–11]. 
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