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METHOD OF ORBITS OF COASSOCIATED REPRESENTATION IN 
THERMODYNAMICS OF THE LIE NONCOMPACT GROUPS 

V. V. Mikheev and I. V. Shirokov UDC 530.145.531.19 

In the present paper, an efficient method of solving the main problem of thermodynamics of homogeneous spaces is 
presented. The method is based on the formalism of the noncommutative harmonic analysis relying on the method 
of orbits of coassociated representation. In the present work, the formula is derived that allows one to construct 
effectively the density matrix and the statistical sum in space of any arbitrary generally noncompact non-
unimodular Lie group. To illustrate the method, an example is given of exact calculation of the statistical sum and 
density matrix in the Riemannian space of the noncompact Lie group with left-invariant metric. 

INTRODUCTION 

The present work is aimed at the construction of a method for solving the main problem of thermodynamics of 
homogeneous spaces for an arbitrary Lie group unrestricted by a unimodular group. The main problem of thermodynamics 
of homogeneous spaces is the calculation of the statistical sum (the distribution function) 

 exp( )n n
n

Z d Eβ = −β∑ ,   (1) 

where summation is carried out over the states of the system, dn is the degree of degeneracy of the corresponding energy En, 
and β is the reciprocal temperature. The statistical sum can be found as the trace of the density matrix (the thermal kernel):  

 ( , ) ( ), ( ) | |Z x x d x d x g dxβ β= ρ µ µ =∫ ,   (2) 

where integration is carried out over the entire volume of the manifold. 
This problem is of interest not only from the physical viewpoint, because the statistical sum and density matrix are 

important quantities for a given manifold and determine the thermodynamic properties of particles in this space [1]. In 
addition, a solution of the main problem of thermodynamics of homogeneous spaces for an arbitrary manifold brings us one 
step closer to a solution of the problem formulated by Katz: can we hear the drum shape? Or in other words, it brings us 
closer to the understanding of the influence of the global geometrical and topological space characteristics on the spectral 
properties of the Laplacian operator acting in it [2–4].  

A great volume of the results was obtained in this direction for compact and noncompact spaces with limited 
volumes. Generally, there is no algorithm for constructing the statistical sum for any arbitrary noncompact manifold, since 
in this case series (1) and integral (2) diverge by virtue of the infinite volume of the manifold. We have already considered 
in [5, 6] the problem of finding the density matrix in spaces of the noncompact unimodular Lie groups with the left-
invariant Riemannian metric. In the present work, the results are generalized to an arbitrary Lie group with the left-invariant 
Riemannian metric without assumption about the unimodularity.  

The density matrix (the thermal kernel) is determined from the Bloch equation (the equation for the thermal kernel) 
in the manifold with the special initial condition: 
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  0
( , ')

( ) ( , ') 0, ( , ') | ( , ').
x x

H x x x x x x xβ
β β β=

∂ρ
+ ρ = ρ = δ

∂β
 (3) 

A solution of Eq. (3) faces two serious problems that can hardly be solved by the existing methods of integration of 
linear differential equations, in particular, by the widely used method of separation of variables. First, a global solution of 
the equation should be constructed in the entire manifold, but the method of separation of variables depends significantly on 
the system of coordinates in the manifold and hence can give only local solutions. Second, a solution satisfying the initial 
condition in the form of the δ-function should be constructed from the basic solutions of Bloch equation (3), which is also 
a challenge.  

1. NONCOMMUTATIVE INTEGRATION OF THE BLOCH EQUATION ON THE LIE GROUPS 

Let us consider Bloch equation (3) on the n-dimensional real Lie group G with operator H being a quadratic 
function of left-invariant vector fields ξ on the group. Thus, the operator H is the Laplacian operator in the group manifold 
supplied with the Riemannian metric: 

 2 2( ) ab
a bH i G− ξ = − ξ ξ = − ∆= = = .   (4) 

In the present work, a solution of Eq. (3) is derived within the formalism of the noncommutative harmonic analysis 
on the Lie groups based on the method of orbits. 

To this end, we now introduce a special irreducible representation of the Lie algebra G (the so-called  
λ-representation) in the Lagrangian submanifold to the orbit of the coassociated representation *O Gλ ∈ , where *G  is the 
space dual to the Lie algebra G: 

  ( , , ), ( , , ) ( , , )k
i q j q ij k ql q l q C l q⎡ ⎤∂ λ ∂ λ = ∂ λ⎣ ⎦ , (5) 

k
ijC  are the structural constants of the Lie algebra G , and ( , , )k ql q ∂ λ  are the first-order differential operators. 

We can demonstrate that any irreducible representation of the Lie algebra can be expressed as an λ-representation 
constructed for a definitely chosen linear functional *Gλ ∈ . This linear functional depends on the parameters j : ( )jλ ≡ λ , 
whose number is equal to the number of the Casimir functions, that is, to the index of the Lie algebra G. Therefore, the 
measure ( )dµ λ  is a spectral measure of the Casimir operators on the corresponding Lie group. 

Let us consider the representation of group G in the functional space ( )C Q∞  that acts on functions from this space 
as follows: 

  
'

( ) ( ) ( ') ( ')g
qq

T q D g q d qλ λφ = φ µ∫  (6) 

and boosts the λ-representation of the Lie algebra to the group 

 ( , , ) |i q g g eil q T
g

λ
=

∂∂ λ =
∂

.   (7) 

In this case, the linear functional λ should satisfy the integrality condition: 

 
2 ( )

2 ,
H O

in n
λ

λ
γ∈

ω = π ∈∫ Z ,   (8) 
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where λω  is the well-known Kirillov form in the orbit [8]. 

The generalized functions ' ( )qqD gλ  are matrix elements of representation (6) and are a solution of the system of 

linear differential equations  

 ' ' '( ) ( ', , ) ( ) 0, ( ) ( , ')i i q qq qqg l q D g D e q qλ λ⎡ ⎤ξ + ∂ λ = = δ⎣ ⎦ .   (9) 

Here e is unity of the group (the identical element). 
The generalized functions ' ( )qqD gλ  carry out the generalized Fourier transform on the Lie group, thereby solving 

the main problem of harmonic analysis [9]: 

 'ˆ( ) ( , ') ( ) ( ) ( ') ( )j qq
Q Q J

g q q D g d q d q dλ

× ×
ϕ = ϕ µ µ µ λ∫ .   (10) 

Thus, the action of right- and left-invariant vector fields on the group is transformed into the action of operators of 
λ-representation on the Lagrangian submanifold of the orbit of coassociated representation [7]: 

 ' ˆ ˆ( ) ( ', , ) ( , '), ( ) ( , , ) ( , ')i i q j i i q jg l q q q g l q q qξ ϕ ⇔ ∂ λ ϕ η ϕ ⇔ ∂ λ ϕ .   (11) 

After transition from the group space to the Lagrangian submanifold of the orbit Oλ , the Bloch equation for the 
density matrix is reduced to the equation in the orbit with a smaller number of independent variables [10]: 

 0
( , , )

( ) ( , , ) 0, ( , , ) | ( , )
q q j

H i l q q j q q j q qβ
β β β=

∂
+ − = = δ

∂β
R

R R
�

� � �= ,   (12) 

which is an ordinary differential equation integrable in quadratures when the condition 

 (dim ind ) 2 1G G− =    (13) 

is satisfied. 
The density matrix in the orbit ( , , )q q jβR �  in Eq. (12) is connected to the density matrix in the initial space 

( , ')g gβρ  by the expression 

 1( , ') ( , , ) ( ' ) ( ) ( ) ( )qqg g q q j D g g d q d q dλ −
β βρ = µ µ µ λ∫R �� � .   (14) 

Determining the density matrix from Eq. (12), we can obtain the statistical sum on any arbitrary noncompact Lie 
group using the properties of the generalized functions ' ( )qqD gλ : 

 ( ) ( , , ) ( ) ( ) Vol ( , , ) ( ) ( )G
G Q J Q J

Z d x q q j d q d q q j d q dβ β β
× ×

= µ µ µ λ = µ µ λ∫ ∫ ∫R R .   (15) 

It can be seen that integration over the volume of the group manifold in Eq. (15) is independent of integration over 
the measure ( )d qµ  in the orbit of coassociated representation and the spectral measure ( )dµ λ . Thus, we can separate as a 
multiplier of the statistical sum the diverging quantity associated with the infinite volume of the noncompact manifold and 
obtain the following expression for the specific (per unit volume) statistical sum: 
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 / Vol ( , , ) ( ) ( )G
Q J

z Z q q j d q dβ β β
×

= = µ µ λ∫ R ,   (16) 

which is essentially finite. 
As a result, instead of solving Bloch equation (2) on the group with n  independent variables, Eq. (12) must be 

solved in the orbit with a much smaller number of independent variables.  

2. AN EXAMPLE 

As an example of application of the developed method, we now consider the widely known 3-D Lie group (2)E  
frequently used for similar purposes. It is the group of motions of the 2-D Euclidean plane. In spite of the fact that the 
structure of group (2)E  is simple enough, it can illustrate the influence of the nontrivial topology of a noncompact 
manifold on the thermodynamic properties of particles comprised in it. The Lie algebra of group (2)E  is specified by the 
following commutation relations: 

 [ ] [ ] [ ]1 2 2 3 1 1 3 2, 0, , , ,e e e e e e e e= = ε = −ε . 

In this case, the group manifold possesses the topology of the cylinder with the parameter 1
Rε ∼  that means the 

curvature. The contraction of the Lie algebra for 0ε →  carries out a transition to the 3-D Abel group with the topology of 
the 3-D Euclidean space 3R . 

The matrix is diag( , , )abG A B C= , and in the case under consideration, we assume , , 0A B C > . 
The left- and right-invariant vector fields on the group (2)E  have the following form: 

 
1 3 1 3 2 2 3 2 3 1 3 3

1 1 2 2 3 2 1 1 2 3

cos( ) sin( ) , cos( ) sin( ) , ,

, , .

x x x x

x x

ξ = ε ∂ + ε ∂ ξ = ε ∂ − ε ∂ ξ = ∂

η = −∂ η = −∂ η = ε ∂ − ε ∂ − ∂
 

The operator ( )H i− ξ=  of Bloch equation (3) on the group assumes the form 

 2 2 2 2
1 2 3( )H A B C= − ξ + ξ + ξ= . 

The operators of λ-representation of the Lie algebra with the chosen functional ( ,0,0)jλ =  assume the form 

 1 2 3( ) cos( ), ( )sin( ), .ij ijl q l q l
q
∂= − ε = ε =
∂= =

 

Thereby, functions on the Lagrangian submanifold of a simplectic folium to the orbit – a function of the variable q  

– are functions on the sphere 1S , that is, 2π
ε  periodic functions. 

The matrix elements ' ( )j
qqD x  obtained by solving system (9) have the form  

 ( )1 2 3' ( ) exp cos( ) sin( ) ( ')j
qq

ijD x x q x q x q q⎡ ⎤= − ε + ε δ + −⎢ ⎥⎣ ⎦=
. 

The spectral measure ( )d jµ  was chosen in the form 2( ) (2 )d j jdjµ = ε π= . 
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The example considered below is the Boltzmann gas (the gas of noninteracting particles with mass m ). This 
imposes the following restrictions on the elements of matrix abG : 1/ 2A B C m= = = , and hence the operator ( )H i l− =  is 
the Hamiltonian of a free particle. 

The density matrix ( , , )q q jβR �  in the Lagrangian submanifold Q  of the symplectic folium to the orbit Oλ  should 

be 2π
ε  periodic. 

As a result, we obtain the density matrix ( , , )q q jβR �  on the Lagrangian submanifold Q  of the symplectic folium to 

the orbit Oλ  as a solution of Eq. (12): 

 

( )2 2

2 2 2

3

1( , , ) exp ( ) ( )
2 2

( )exp ,exp .
2 2 2 2

n
q q j n j in q q

m

j q q
m m

∞
β

=−∞

ε ⎛ ⎞= − ε + − ε −⎜ ⎟π ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞ε β ε − βε= − θ −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟π ⎝ ⎠ ⎝ ⎠⎝ ⎠

∑R � �=

� =
 

From this expression, according to formula (16), the specific statistical sum zβ  over the volume can be obtained: 

 
3 / 2 2

32 2 2
20,exp

2
m mzβ

⎛ ⎞⎛ ⎞⎛ ⎞ π= θ −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟πβ βε⎝ ⎠ ⎝ ⎠⎝ ⎠= =
.   (17)  

Let us rewrite formula (17) in the form more convenient for investigations of thermodynamic properties: 

 
3 / 2

B
32

0
0,exp

( )2
mk T Tz

Tβ
⎛ ⎞⎛ ⎞⎛ ⎞= θ −⎜ ⎟⎜ ⎟⎜ ⎟ ε⎝ ⎠π ⎝ ⎠⎝ ⎠=

.   (18) 

Here Bk  is the Bolzmann constant and 2 2 2
0 B( ) 2T m kε = ε π= . We have used the standard designation for 3θ  – the well-

known Yacobi θ -function. It can be seen that after contraction at 0ε = , we obtain the statistical sum for the gas of free 
noninteracting particles. Here 3θ  is the correction factor caused by the nontrivial topology of the examined space. 

Now, for the known statistical sum, we can easily find the average kinetic energy of the particle and the specific 
(per particle) heat in this space: 

 2
B

ln , v
z uu k T c

T T
∂ ∂= =
∂ ∂

. 

In this case, the asymptotic transition (contraction) for 0ε →  corresponds to the specific heat of the Boltzmann gas 
of free particles in the 2-D space 3R . 

Figure 1 shows the plot of the specific (per particle) heat of the Bolzmann gas as a function of the parameter 
0/ ( )t T T= ε . 
It can be seen that at low temperatures, one degree of freedom is frozen, and at high temperatures, we have the 

specific heat corresponding to the gas of free particles in 3R . At intermediate temperatures comparable with 0 ( )T ε , 
anomalous behavior of the specific heat is observed for particles in (2)E , which is undoubtedly caused by the nontrivial 
topology of this space. 
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3. RESULTS AND DISCUSSION 

In the present work, the method of solving the main problem of thermodynamics of homogeneous spaces for any 
arbitrary Lie group has been constructed, including noncompact cases, without assumption about the unimodularity. The 
application of the method of noncommutative integration to the Bloch equation allowed us to avoid the complexities of the 
search for a global solution and to bypass the problem of divergence of the statistical sum in noncompact spaces for the Lie 
groups. This method gives no final universal formula for calculation of the statistical sum on the Lie groups supplied with 
the left-invariant Lorentz metric, being as a matter of fact the algorithm that allows one to find and to investigate the density 
matrix and the statistical sum in these spaces. 
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