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ANALYSIS OF THE MICROWAVE MAGNETIC PERMEABILITY 
SPECTRA OF FERRITES WITH HEXAGONAL STRUCTURE  

V. A. Zhuravlev and V. I. Suslyaev UDC 53.082.72/.78; 537.8.029.6; 621.37.029.6 

This paper presents the results of theoretical and experimental investigations of the microwave magnetic permeability 
spectra of polycrystalline ferrites with hexagonal crystal structure. It is shown that the observed nonmonotone 
frequency dependence of the permeability is due to the features of the natural ferromagnetic resonance in the 
presence of a domain structure. The calculations of the contribution of the rotation of the magnetization vector to 
the permeability performed in the approximation of independent grains adequately describe experimental data.  

INTRODUCTION 

To solve many practical problems it is necessary to create materials with prescribed electromagnetic characteristics. 
For the magnetic materials used in microwave devices, these characteristics are the spectra of their magnetic permeability 
μ(ω) = μ′(ω) − iμ″(ω) and dielectric permittivity ε(ω) = ε′(ω) − iε″(ω) (MP and DP, respectively). The dielectric permittivity 
of the majority of ferrites is related to the ionic mechanism of polarization and weakly varies in the microwave range. The 
frequency dependences of MP are more complicated. Several regions of anomalous dispersion are generally detected that 
are related to the volumetric resonance observed in large specimens; to the oscillations of domain boundaries (DB’s) which 
may be both resonance and relaxation in character [1]; to the natural ferromagnetic resonance (NFMR) [2, 3] caused by the 
rotation of the magnetization vector in the effective internal field of magnetic anisotropy, and to the exchange resonance in 
the internal exchange field in the presence of two or more magnetic sublattices [4]. It is well-known that the NFMR region 
in magnetics with cubic structure can bifurcate due to the magnetic interaction of magnetization oscillations in neighboring 
domains which are differently oriented in relation to the variable magnetic field [5]. Similar observations have been made 
for ferrites with hexagonal structure [6]. Under certain conditions all mentioned regions of anomalous dispersion of MP can 
lie in any band of the microwave frequency range, creating additional maxima and steps in the frequency dependences μ′(ω) 
and μ″(ω) [7–9].  

The main source of information about MP spectra is experiment since theoretical ideas which could be used to 
calculate the frequency dependences of MP by known physical parameters, for example, by static parameters such as 
saturation magnetization, fields of magnetic anisotropy, etc., have not yet been developed. The experimental error hampers 
the interpretation of the obtained data and selection of anomalous dispersion regions related to one or another physical 
mechanism. This leads to inaccuracy in the determination of resonance frequencies and complex values of MP and gives no 
way of precisely predicting the chemical composition of a material, its magnetocrystal structure and domain structure, 
hampering the production of materials with prescribed properties. 

This work considers the method of separation of dispersion regions by the data of an actual experiment processed 
by the technique reported elsewhere [10] with the use of the Cramers–Kronig relations.  

EXPERIMENTAL 

The region of the complicated behavior of the MP spectra of hexaferrites has the features of a significant frequency 
range and a large dynamic range of measurands, leading to the problem of examination of materials with great losses 
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(tanδm > 0.5); therefore, it is insufficient to use only one measuring procedure. In this connection, for the low-frequency 
range (0.1–1 GHz) the coaxial waveguide method was used with a specimen of the test material shaped as a thin washer of 
outer diameter 16 mm, inner diameter 6.95 mm, and thickness 1 mm. For the high-frequency range (0.9–17 GHz) 
rectangular transmission resonators with type Н10n oscillations were used in which a specimen shaped as a thin cylinder of 
diameter 1.6 mm and length equal to that of the wide wall of the resonator was placed [11]. The wide bandwidth of the 
resonance measurements was attained with a set of resonators by using the frequency variation method with multimoding. 
For the intermediate range, where methods with distributed and lumped parameters are equally applicable (0.2–1 GHz), 
measurements were additionally performed on a nonregular microstrip resonator [12] made of high-dielectric-permittivity 
ceramics with a specimen shaped as a thin plate having the dimensions of the air gap between the strip lines, 10×10×1 mm. 
The static initial permeability was determined by the inductance of a toroid measured at a frequency of 1 kHz. The 
measurement error estimated for all methods used was not above 2–5% for the real component and 5–15% for the imaginary 
component of the MP. 

The subject of investigation was Co1.2Zn0.8W hexagonal ferrite synthesized by standard ceramic technology, whose 
ferromagnetic resonance range falls in the chosen frequency band. At room temperature this material is characterized by 
magnetic anisotropy of “easy-plane” type with the following principal magnetic parameters: anisotropy field НΘ = –4 kOe 
and saturation magnetization 4πM0 = 3.6 kG. The solid-material hydrostatic density ρ is 3.77 g⋅cm–3 and porosity makes 
29%. The single-phase nature of the material is confirmed by x-ray structure analysis, which has shown that a test specimen 
contained 95% of the master W phase [13, 14]. 

SEPARATION OF DISPERSION RANGES 

At the borderline between the methods used some disagreement between the results was observed which could be 
caused by both the different approximations used for different measuring and the systematic errors inherent in these 
procedures. To coordinate the results, the Cramers–Kronig relations were used in the technique proposed by Polivanov [15], 
such that the frequency range is divided into bands for which piecewise linear approximation of one of the permeability 
components is possible, and the integrals for the second component are calculated analytically. It is well known that the 
wider the frequency range of the measurements, the more adequate information is provided by the Cramers–Kronig 
relations. The error builds up as the edges of the measurement range are approached. If we do not apply some artificial 
methods, we have either to resign ourselves with the losses of part of experimental data, or to complete the frequency 
dependences of the imaginary and real components outside the frequency range of the experimental research based on some 
physical suppositions. We used a similar procedure [10] to analyze the MP spectrum of Co2Z hexaferrite with one 
dispersion range. The study performed has also shown that for the case where the MP spectra of the imaginary and real 
components are measured independently it is possibile to use the Cramers–Kronig relations to refine experimental data with 
the purpose to reduce the actual experimental error. 

We use the dispersion relations to analyze and process the measurements of the MP spectrum of Co2–xZnxW 
(х = 0.8) polycrystalline hexaferrite, initially supposing the presence of two dispersion ranges in the spectrum: the low-
frequency range associated with the processes of displacement of domain boundaries (μd(ω)) and the high-frequency range 
associated with the rotation of the magnetization vector in the effective field of magnetic anisotropy (μr(ω)). This 
supposition is most often used in analyzing experimental data [7–9]. For Co1.2Zn0.8W, these ranges are so close to each other 
that their overlapping is observed. In this case, a problem arises in determining exactly the NFMR frequency and the 
maximum value of μ″. To eliminate this problem, we propose a procedure of separation of the two dispersion ranges after 
preliminary processing of experimental data with the use of the Cramers–Kronig relations. 

This procedure is illustrated by Fig. 1. In Fig. 1a, the dark symbols designate the measurements of the real part of 
the MP and the lines with open circles present a piecewise linear approximation of the spectrum. Assuming the absence of 
ranges of anomalous dispersion in the low-frequency part of the spectrum outside the measurement range (f < 0.1 GHz), we 
considered that μ′(ω) retains its value, equal to the static permeability μ(0) = 5.55, up to the test frequency range and tends 
to unity at frequencies above the test range. The value of μ′(ω) at frequencies above 50 GHz and up to 500 GHz was taken 
equal to unity. This extension is necessary to prevent an undesirable effect of the jump in μ′(ω) from unity to zero at the 
upper limit of the approximation range on the μ″(ω) spectrum to be reconstructed. The results of the reconstruction of μ″(ω) 
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by the real part of the permeability are given in Fig. 1. Note that the coordination of the measured spectra was performed 
both by the calculation of μ″(ω) from μ′(ω) and by the inverse re-calculation. The obtained smoothed frequency 
dependences of the complex MP are presented by lines in Fig. 1. 

The separation of the contributions of the DB and NFMR displacements to the MP spectra was carried out as 
follows. According to the data reported in [1], the contribution of the processes of displacement to μ″(ω) on the frequency 
logarithmic scale is described by a near-Gaussian symmetric curve. Therefore, the high-frequency flank in μd″(ω) was 
completed symmetrically relative to the low-frequency maximum in the spectrum of the smoothed imaginary part of the 
MP. Then the spectrum μd″(ω) was point-by-point calculated by the spectrum of full losses μ″(ω) and thus the contribution 
of the processes of rotation of the magnetization vector μr″(ω) was found. The results of this procedure are presented in 
Fig. 1c. The real parts of the permeabilities μd′(ω) and μr′(ω) were calculated with the use of the Cramers–Kronig relations 
by the known μd″(ω) and μr″(ω). The spectra obtained are given in Fig. 1d. Curve 3 represents the total spectrum 
μ′(ω) = (μd′(ω) – 1) + (μr′(ω) – 1) + 1. It practically coincides with the spectrum of the MP real part obtained as a result of 
smoothing that given in Fig. 1. 

Thus, as a result of the analysis performed, smoothed experimental frequency dependences of the MP of 
Co1.2Zn0.8W hexaferrite have been obtained which can be used for practical calculations of various microwave devices, in 
particular, of radioabsorbing materials and coatings, for a given frequency band with sufficient accuracy. Besides, the 
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Fig. 1. Processing of the spectrum of Co1.2Zn0.8W hexaferrite by the Cramers–Kronig relations: (a) 
measurements of μ′ and their piecewise linear approximation; (b) the real (curve 1) and the imaginary 
part (curve 2) of the permeability (dots: experiment; lines: calculation); (c) separation of dispersion 
ranges: μd″(ω) (curve 1), μr″(ω) (curve 2); the initial smoothed spectrum of the imaginary part of the 
permeability (curve 3), and (d) calculation of the real parts of the permeabilities from their imaginary 
parts: μd′(ω) (curve 1), μr′(ω) (curve 2), and the total permeability (curve 3). 
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application of dispersion relations has made it possible to separate the contributions of the processes of DB and NFMR 
displacement to the spectra, and this opens prospects for target control of the properties of hexaferrites in various bands of 
the microwave range. This can be attained either by modifying their microstructure, which primarily affects μd(ω), or by 
varying the fields of magnetocrystalline anisotropy, which mainly determines the μr(ω) spectrum [1].  

ALLOWANCE FOR THE DOMAIN STRUCTURE ON MAGNETIC PERMEABILITY SPECTRA  

It should be noted that careful comparison of the experimental MP spectra of the hexaferrite under investigation in 
the frequency range above 1 GHz with their description by two simple smooth curves reveals appreciable discrepancies. In 
the experimental data some peculiarities – additional local maxima and steps in the frequency dependences μ′(ω) and μ″(ω) 
– are seen which fall outside the limits of the experimental error. It is natural to suppose, that these peculiarities are due to 
the effect of the domain structure on the natural ferromagnetic resonance. The problem of the effect of the DS on the MP 
spectra of hexaferrites in the NFMR range was already considered theoretically [16].  

The magnetic anisotropy fields of the hexaferrites are, as a rule, greater in magnitude than the saturation 
magnetization, and to analyze the behavior of these materials on the microwave scale, the model of independent grains is 
applicable. In this case, the starting point of calculations is deriving an expression for the MP of an individual 
monocrystalline grain. Let a grain have the shape of an ellipsoid of revolution with the domain structure and anisotropy of 
the easy magnetization plane (EMP) type. The axis of revolution of the ellipsoid coincides with the c-axis of the hexagonal 
crystal, and the DS is a system of plane-parallel domains normal to the hexagonal axis. The magnetic permeability of such 
a specimen, after averaging over the domain structure in the directions of the easy axes in the base plane can be written in 
the form of a diagonal tensor with components 

  μxx = μ1,  μyy = μ1,  μzz = μz ,  (1) 

where μx(z) = 1+ωM(ω1+iαω)/[(ω1+iαω)(ω2+iαω)–ω2]; μ1 = (1+μx)/2; ωM = γ4πM0, ω is the circular frequency of the variable 
magnetic field, α is the damping constant in the equation of motion, γ is the gyromagnetic ratio, and M0 is the saturation 
magnetization. Expressions for the frequencies ω1 and ω2 of the components μx and μz are given in Table 1, where the 
following designations are used: ωΘ = γHΘ, ωΦ = γHΦ. Here, HΘ = 2(k1+2k2+3k3–3k4)/M0 and HΦ = 36k4/M0 are the fields of 
magnetic crystallographic anisotropy relative to the hexagonal axis and in the base plane, respectively; ki is the anisotropy 
constant of the ith order in the expression for the energy of magnetic crystallographic anisotropy of the hexagonal crystal; Nt 
and Nl are the transverse and the longitudinal demagnetizing factor of a grain, respectively, and 2Nt + Nl =1. The resonance 
frequencies of the components μx(z) will be written in the form  

  ω2
res x(z) = ω1ω2 .  (2) 

From formula (2) and Table 1 it can be seen that the resonance frequencies of the components μx and μz are 
different and they coincide only for a specimen shaped as a thin disk. 

Similar calculations can be performed for a material whose anisotropy is of the easy magnetization axis (EMA) 
type. For a specimen shaped as an ellipsoid of revolution with the revolution axis coinciding with the hexagonal axis of the 
crystal and with a plane-parallel DS normal to the y-axis, the tensor averaged over the domain structure has a diagonal form 
with components 

  μxx = μx,  μyy = μy,  μzz = 1.  (3) 

 
The components μx(y) are determined by the same formula as μx(z), and the frequencies ω1 and ω2 are given in 

Table 2: ωa = γHa, where Ha = 2k1/M0. From Table 1 and Table 2 it can be seen that both the resonance frequencies and the 
permeability depend substantially on the demagnetization factors of the ellipsoidal grain. In actual ferrite materials there 
always exists a distribution of grains both in size and in shape, which is determined by the production technology. This 
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results in a difference in resonance frequencies in different crystal grains, which must be taken into account when 
calculating the permeability of a polycrystal. In this connection, based on micrographs of metallographic speciments of the 
materials under investigation, the form of the distribution function f(Nl) of demagnetization factors has been found for the 
grains, which were approximated by ellipsoids of revolution, and the permeability for the polycrystal was averaged by the 
formula 

  μav = (1/3)∫f (Nl)(μxx + μyy + μzz) dNl .  (4) 

The integration was carried out within the limits from Nl = 1/3 (grain shaped as a sphere) to Nl = 1 (thin disk).  
To construct theoretical MP spectra of the hexaferrites by formula (4), it is necessary to know the static parameters, 

such as the fields of anisotropy HΘ and HΦ of the materials with EMP, Ha of the hexaferrites with EMA, and the saturation 
magnetization M0. These quantities, alongside with the demagnetization factors of grains and their distribution, determine 
the values of the initial static permeability μr(0) = μr′(0) and resonance frequencies of the spectra of polycrystalline 
hexaferrites, and an increase in saturation magnetization increases, while an increase in anisotropy fields decreases μr(0). 
The imaginary part of the MP under resonance is directly proportional to the saturation magnetization and inversely 
proportional to the damping constant α. The rate of fall of the real part of the permeability in the resonance range is also 
inversely proportional to the damping constant. The values of the anisotropy fields HΘ and Hа and magnetization M0 for the 
type Co2–xZnxW hexaferrites are taken by us from [13, 14]. The value of the saturation magnetization of the polycrystal that 
was substituted in the calculation formulas was obtained taking into account the correction for the porosity p of the material: 
<M0> = M0(1 – p). Figure 2 presents a comparison of the smoothed experimental spectra μr′(ω) and μr″(ω) of Co1,2Zn0,8W 
hexaferrite (curves 1) with the spectra calculated by formula (4) (curves 2). In constructing the calculation curves, it was 
assumed that HΘ = –4 kOe, 4π<M0> = 3.6 kG. The parameters that were varied in constructing theoretical curves were the 
damping constant α and the anisotropy field in the base plane, HΦ. The spectra given in Fig. 2 have been obtained for 
α = 0.15 and HΦ = 0.8 kOe. From this figure it can be seen that the presence of different resonance frequencies for the 
components of the MP tensor of a multidomain grain leads to a complicated structure of the spectrum in the NFMR range, 
which shows up in two maxima in the spectrum of the MP imaginary part and in a step in the dependence μr′(ω).  

TABLE 1    TABLE 2   

 ω1 ω2   ω1 ω2 

μx ωΘ + ωM ωΦ + NtωM  μx ωa + ωM ωa + NtωM 

μz ωΦ ωΘ + Nl ωM  μy ωa ωa + NtωM 
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Fig. 2. Comparison of experimental smoothed spectra 
(curve 1) with calculated ones (curve 2). 
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Figure 3 presents the measured MP spectra of Co1.2Zn0.8W hexaferrite and the calculation curves that sum up the 
contributions to the spectrum from the processes of displacement of DB’s, μd′(ω) and μd″(ω) (see Fig. 1), and from the 
processes of rotation (curves 2 from Fig. 2). 

The observed good agreement between the calculated spectra and experimental data suggests that the simple model 
of independent grains adequately describes the nonmonotone character of the MP spectra observed in experiment in the 
microwave range with a minimum number of adjustable parameters. Similar results have been obtained for other 
compositions of hexaferrites of the given type, which, at room temperature, show anisotropy of both EMP and EMA types. 
For the hexaferrites with EMP, the agreement between theory and experiment is better than that for the materials with EMA 
both in the position of additional maxima and in their magnitudes. This can be related to the stronger effect of magnetic 
interaction between grains, not considered in the theory, in hexaferrites with EMA than in materials with EMP. To refine 
the proposed approach to a description of MP spectra, it is necessary to invoke the results of the theory of composition 
mixtures.  
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