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ELEMENTARY PARTICLE PHYSICS AND FIELD THEORY 

POLARIZATION OF TWO IDENTICAL ATOMS IN AN ELECTRIC 
FIELD 

I. I. Khvalchenko UDC 539.186.097/ 098 

The polarization of two atoms which are in a linearly polarized monochromatic field and in a field of optical pulses 
is calculated. The problem is solved for the 2s→3p transitions taking into account the initial states of the atoms. 

INTRODUCTION 

Modern technologies allow production of nanostructured objects consisting of a few atoms and molecules. The 
optical properties of objects of this type have been intensely studied in recent years since they can find applications in 
quantum computers, in quantum cryptography, in investigations of polymers and biologically important molecules, and in 
high resolution spectroscopy ([1, 2] and the cited works). 

Let us consider a problem of the polarization of two identical atoms in an electric field. Suppose that each of these 
atoms can be in the 2s or 3p state. All possible initial states of the system under consideration are described by the wave 
functions [3] 

 µ -µ µ µ
µ

ψ (l, l  )L
m mL, ,ms −= Ψ Ψ∑ , (1) 

where ( , )
, ,
l l

L ms µ −µ  are Wigner coefficients. The overbarred symbols refer to the states of the second atom. 

Relation (1) determines 16 initial states of the system of atoms: 
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 (2) 

Consider two types of electric field acting on the atoms. 
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LINEARLY POLARIZED FIELD 

Let the atoms be under the action of an electric field ( )1 2 3 cosE E E t= + + ωE i j k . The quantum states of a system 
of this type obey the equation 

 ( )0 0
ˆˆ ˆi H H V

t
∂Ψ = + + Ψ
∂

, (3) 

where 
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 ω1 and ω2 are the energies of the 2s and 3p states; 0 0
ˆˆ andH H  are the Hamiltonians of the 

free atoms, and ( )ˆ , ,V = − = +D E D d d , ,d d  are the operators of the dipole moments of the atoms. 
Equation (3) yields the system of differential equations 

  i a Va= . (5) 

To solve system (5), we use the method of successive approximations [4]. This method gives the following set of 
coefficients as a first approximation: 

 
0

( )
tia I V d= − τ τ∫ . (6) 

In relation (6), a denotes a square matrix of order 16 whose each column defines the wave function kΨ  of the atoms-plus-
field system at the corresponding initial state of (2). Let us calculate the polarization of this system using the formula 

 ˆSp k= ρkP D , (7) 

where ˆ k k kρ = Ψ Ψ , and the operator D is constructed on the basis of functions (4). We obtain the following expressions 
for the corresponding initial states (2): 
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 (8) 

where 
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[ ]
( )

2 2
30 0 0 0

20 312 2 2 2
00 0

cos cos sin sin
, , ,

3 3
d t t d t t

X Y d e R R r dr
∞ω ω − ω ω ω − ω ω

= = = −
ω − ω ω − ω

∫  

R20, R31 are the radial functions, e is the charge of a positron, and 0 2 1.ω = ω − ω  
Note that this solution has been obtained for the case ω ≠ ω0. The case of precise resonance demands separate 

consideration. 

FIELD OF RECTANGULAR PULSES 

Let the atoms be subjected to the action of a rectangular pulse. To consider the pulse, which is directed along an 
arbitrarily chosen coordinate axis, we write it as the sum of three terms: 1 2 3( ) ( ) ( )E t E t E t= + +E i j k , where 

 3 31 321 11 12 2 21 22
1 2 3

31 3211 12 21 22

, ,, , , ,
( ) ( ) ( )

0, , .0, , , 0, , ,
A t t tA t t t A t t t

E t E t E t
t t t tt t t t t t t t

< << < < <⎧ ⎧ ⎧= = =⎨ ⎨ ⎨ < >< > < > ⎩⎩⎩
 (9) 

Calculating the wave functions and polarization for the given field again by formulas (3)–(7), we obtain the following 
expressions: 
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where 
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Let us consider the basic results following from this model. Suppose that the atoms are subjected to the action of 
only the first pulse (А2 = А3 = 0), which is applied at a time t11 = 0; then  
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( ) ( )

( ) ( )

( ) ( ) ( )

( )

1 1 1 2 1 1 1 3 1 1 4 1 1 1 5 2

6 3 7 4 8 1 1 1 9 1 1 1 10 1 1

11 1 1 1 12 1 1 1 13 1 1 1

14 1 1 15 1 1 1 16 1 1

4 , , 2 , , ,

, , 2 , , 2 3,

, 2 , ,

2 , , 4 3.

X A X Y A X A X Y A

X Y A X Y A X A

X Y A X Y A X Y A

X A X Y A X A

= = + = = − =

= = = − − = − + = −

= − − = − + = − +

= − = − + = −

P i P i j P i P i j P P

P P P P P i j P i j P i

P i j P i j P i j

P i P i j P i

 

We give the expressions for Х1 and Y1 with four values of t12: 

t12 X1 Y1 

π/2ω0 ( )2
0 02 sin 4 3d t− π − ω ω  2

0 02 cos( 4 ) 3d t− π − ω ω  
π/ω0 2

0 02 cos 3d t− ω ω  2
0 02 sin 3d t− ω ω  

3π/2ω0 2
0 02 cos( 4 ) 3d t− π − ω ω  ( )2

0 02 sin 4 3d tπ − ω ω  
2π/ω0 0 0 

Thus, for the initial states ψ1, ψ3, ψ6, ψ10, ψ14, and ψ16 the polarization vector will make oscillations along the х-
axis; in all other cases, the motion will occur in a circle. For the pulse duration 02 , 1, 2, 3...n nπ ω = , the polarization of the 
medium is equal to zero. Properly choosing the time of application and duration of the second pulse, one can vary the 
polarization created by the first pulse. 
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