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FLUORINATION OF A DEPLETED URANIUM-PLUTONIUM-NITRIDE 
FUEL WITH ELEMENTAL FLUORINE 

V. A. Karelin, V. N. Brendakov, and M. V. Popadeikin UDC 621.039.5 

A physical and a mathematical model have been developed to describe the physicochemical process of torch 
fluorination of an uranium-plutonium-nitride fuel. An algorithm for calculating the velocity, temperature, and 
concentration of the chemical components has been constructed which makes it possible to optimize the parameters 
and operating modes of a torch reactor based on mathematical simulation methods. 

INTRODUCTION 

The uranium-plutonium-nitride fuel that is used in inherently safe fast reactors (BREST) is one of the most 
promising fuels [1] and the reactors in which it is used are highly efficient and technologically advanced. However, 
utilization of depleted fuels is a serious problem [2]. 

The fluoride technology for processing uranium-containing fuels is one of the most promising technologies in 
modern practice [3–5]. The process in which a gas jet containing a dispersed solid phase comes in contact with a chemically 
active oxidizer gas flow is often used in various technologies. To make the process of torch oxidation more efficient and 
technologically advanced calls for relevant research. However, full-scale experiments are very expensive and involve 
special safety measures. To evaluate the factors that affect the stability of process control and to optimize the process mode 
and geometry, it is necessary to use simulation methods. 

Since the processes occurring in a torch reactor are physically intricate and difficult to describe mathematically, the 
basic challenge is choosing approximations which would be suited to the principal physicochemical processes and offer the 
possibility to describe them by a completed system of equations. 

The study under consideration was aimed at developing a physical and a mathematical model of a torch reactor for 
fluorination of uranium nitride. For doing this, it was necessary to choose physically reasonable approximations to 
formulate a mathematical model of the process. In this paper, the relevant differential equations and algebraic expressions 
are given together with boundary conditions. The equations were solved by numerical methods. Some of the results 
obtained are discussed. 

THE MODEL OF THE PROCESS 

Let us consider an apparatus shaped as a cylinder having a round hole in its top flange through which argon inert 
gas is fed which contains a fine powder of mixed uranium nitrides and plutonium. Elemental fluorine is supplied through an 
annular hole in the peripheral part of the apparatus top flange. The outlet of the reactor is made as a central hole of larger 
diameter in the bottom flange. To create conditions which would provide for the onset of the reaction, the top flange of the 
apparatus is heated to Tf = 50°C and the side wall to Tw = 300°C. 

As a heterogeneous jet of the fuel comes in contact with the oxidizer, a burning torch appears in whose flame there 
ocur irreversible heterogeneous exothermal reactions 
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proceed whose rates are assumed to be the same. 
Since the particle size is small, 50–100 µm, it can be shown that the burning mode will be kinetic and the flame 

thickness that would provide complete combustion of a particle should be 1–3 mm. Hence, it can be assumed that the 
reactions (1) proceed within a thin layer at the flame front. The energy balance in the apparatus and the composition of the 
final combustion products can be affected by the secondary reaction in the gaseous phase. Analysis has shown that reactions 
of this type have short lifetimes and the compounds resulting from these reactions are unstable. In the oxidizing medium, 
these compounds interact with the oxidizer to form stable substances that are used in constructing the model. Estimation of 
the flow conditions in the working zone of the reactor shows a high degree of turbulization of the flow. This is favored by 
the entrance conditions for the fuel and oxidizer and by the burning process itself. In view of the great contribution of 
turbulence to the heat and mass transfer, the authors did not restrict themselves to the use of an algebraic formula for the 
calculation of the turbulent viscosity factor, but employed a new three-parameter model of turbulence that was specially 
constructed for flows of this type [6]. The system of equations that describes the heat and mass transfer can be substantially 
simplified by using the Shvab–Zeldovich approximation according to which the effective diffusion coefficients are assumed 
to be the same for all components of the mixture and coincide with the effective thermal diffusivity. For this case, the 
Prandtl and Lewis numbers are equal to unity. 

Thus, a mathematical model to be constructed should describe the motion of a gas mixture and a fine powder of 
uranium nitrides and plutonium that interact in the working zone, taking into account heterogeneous exothermal reactions 
and heat and mass transfer processes. In view of the high degree of dispersion of the solid fuel, we restrict our description of 
the burning torch to the flame front. To obtain a completed system of differential equations and boundary conditions which 
would allow one to calculate the velocity, temperature, and concentration fields in a torch reactor, we use additional 
constraints on the Prandtl and Lewis numbers as a first approximation of the model. 

To describe the field of averaged velocities for a stationary turbulent axisymmetric gas flow in the working 
chamber of a torch reactor, we use the Navier–Stokes equation. The velocity field is written in terms of the stream function 
and vorticity in cylindrical coordinates [7, 8]: 
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This equation relates the velocity vector components, the mixture density, the stream function, and the vorticity. To 
calculate the turbulent viscosity factor µ, we use the turbulence model described in [6]. 

Taking into account that the fine powder of uranium nitride and plutonium in the fuel mixture is in the 1000:1 
proportion, we may use, without sacrifice of precision, only the first reaction of (1). We restrict our consideration to 
a reacting mixture consisting of the five chemical components 
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that are involved in the first reaction of (1). In symbolic form, this reaction can be represented as 
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where m and n are stoichiometric coefficients; the first and the second subscript denote the reaction number and the 
chemical component, respectively. 

The equation of transfer of deceleration enthalpy for a mixture can be written in the form 

 h hh h r r
z r r z z z r r
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This quantity is related with the temperature T and mass fractions Yi of the chemical components (3) at every point 
of the calculation region by the caloric equation of state for the mixture: 
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where hi is the specific enthalpy for the ith component and 0
ih  is its standard formation heat. 

To simplify the problem of mass transfer, we consider the mass fractions Ya of the chemical elements that constitute 
the mixture. Taking into account that the Lewis number for mass fractions of chemical elements is commonly taken equal to 
unity, we obtain differential equations similar to (5): 
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The mass fractions of the elements and components are related as 
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where µai is the mass fraction of the ath element in the ith component of the mixture. However, these four equations are 
lacking for finding the five unknown Yi. 

Let us write down expressions for the mole fractions of the mixture components, xi, in terms of the mass fractions Yi 
of the components, their molecular weights Wi, and the mean molecular weight of the mixture, W: 
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Assuming that the irreversible reaction of fluorination (1) proceeds within a thin layer, we approximate the surface 
of the flame front by an equation of the form 

 ( , ) 0r zϕ = , 



 1157

where the function ϕ is determined from the condition that at the flame front the fuel and the oxidizer are mixed in 
a stoichiometric proportion. Proceeding from the representation of the chemical reaction in the form of (4), we may write 
the relation 
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such that the fuel and the oxidizer content cannot be equal to zero simultaneously at the same point of the calculation 
region. There is no fuel behind the front and no oxidizer at the front. Hence, we may write 
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Thus, relations (8) and (9) constitute a system of five equations for finding Yi, i = 1, …, 5, at every point of the 
calculation region for known values of ϕ, Ya, and T. 

The system of equations involved in the mathematical model is complete with the equation of state for the mixture 
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in which the summation refers to only gaseous components since the volumetric content of the solid phase is as small as of 
the order of 10–4. In view of the low velocities, we assume that the pressure is the same throughout the apparatus volume. 

CALCULATION RESULTS AND DISCUSSION 

The system of equations involved in the mathematical model developed was solved numerically by the finite 
difference method. The calculation region is shown schematically in Fig. 1; it possesses axial symmetry. The principal 
geometric parameters used in the calculations are indicated. The apparatus diameter is taken as a length scale. The 
calculations were performed for a half of the apparatus. The finite-difference analogs of the differential equations (2), (5), 
and (7) were written for a uniform network. For this purpose, a matrix with 21× 801 nodes was used. The system of 
algebraic equations obtained by discretization was solved by the sweep method with fixation in time. At every step of the 
iteration process, the system of equations for the determination of the temperature and concentration fields was solved for 
the mixture components. For doing this, Eq. (8), in view of the conservation of atoms of each species, was rearranged to the 
form 
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This is the number of atoms with an atomic weight Wa in a molecule of the ith species. 
The boundary conditions for temperature were as follows: 20°С at the inlet holes, 50°С at the top flange, and up to 

300°С on the side wall; at the outlet of the apparatus, the derivative was put equal to zero. The geometric dimensions of the 
torch reactor were chosen to correspond to those of an actual apparatus: 6 m for the height, 0.3 m for the apparatus diameter, 
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0.12 m for the inlet diameter for the fuel, and 0.15 m for the outlet diameter. In all pictures, the radial coordinate scale is 
increased 20 times. 

Figure 2 presents the stream lines for the gaseous components in the calculation region. The dot-and-dash line 
indicates the flame front for the given mode of operation of the reactor. The isolines correspond to different values of the 
stream function with the difference between the values corresponding to neighboring lines being the same. As can be seen 
from this figure, the nonuniform temperature distribution between the top flange and the side walls has no effect on the flow 
pattern. The stagnation zone at the side surface is rather small, increasing toward the bottom flange of the apparatus. The 
outlet condition for the flow at the central hole results in a considerable gradient of the radial component of the velocity 
vector near the bottom flange. 

The isotherms of the temperature field are shown in Fig. 3. The temperature is given in Kelvin degrees; it has 
a maximum of 1450 К at the boundary of the flame front. The lines are drawn with an interval of 100 К. From this figure it 
can be seen that the fuel and oxidizer, when coming in the reactor, create a region of high temperature gradients. 
Downstream of the combustion torch, the temperature field is comparatively uniform. In the top corner of the apparatus 
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Fig. 1. Geometry of the calculation region: r1 – inlet radius for the UN fuel, r2 – inlet radius for 
the F2 oxidizer, r3 – outlet radius for combustion products, D – apparatus diameter, and H – 
apparatus height. 

Fig. 2. Stream lines for gases in a torch reactor: dot-and-dash line – combustion torch front, 
z/D – dimensionless axial coordinate, and 20⋅r/D – radial coordinate scale. 
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there is a low temperature region associated with the temperature of the top flange. Under certain conditions, this region 
may have a detrimental effect on the fluorination process. 

Figure 4 presents the UF6 concentration spatial distribution over the apparatus. The volume content of UF6 in the 
mixture is given in the isolines. The decrease in concentration toward the periphery is related to that the oxidizer, F2, is fed 
in excess. 

CONCLUSION 

The physical and the mathematical model of a plasma reactor discussed above give a simplified representation of 
the actual processes occurring in an apparatus of this type. The use of mathematical simulation methods makes it possible to 
reveal the basic trends in the behavior of various characteristics of the processes in a torch reactor and their variations on 
varying the operation mode and geometry of the apparatus and the fluorination mode. The mathematical model of the 
fluorination process can be used to estimate the basic characteristics of the processes in a reactor and to reveal the trends in 
the behavior of various parameters and their sensitivity on varying the geometric dimensions of the apparatus, the entrance 
conditions for the fuel and oxidizer, and the conditions at the outlet of the reactor. The approximations used in the model are 
well suited to the essence of the processes under consideration and, at the same time, substantially simplify the 
mathematical description of the physicochemical processes taking place in an apparatus of this type. 
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 Fig. 3. Temperature distribution in the apparatus. Fig. 4. UF6 concentration distribution. 
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The algorithms for the calculation of the velocity, temperature, and concentration fields for chemical components 
make it possible to optimize, based on physical and mathematical simulations, the parameters and operation modes of 
a torch reactor. 
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