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PHYSICS OF MAGNETIC PHENOMENA 

REFLECTION OF PLANE BELTRAMI WAVES FROM A PLANE 
INTERFACE IN AN ISOTROPIC CHIRAL MEDIUM 

V. V. Fisanov UDC 537.874 

The reflection of plane electromagnetic waves of circular polatization from a flat, ideally conducting screen 
limiting an isotropic chiral-medium half-space is examined. The equations relating the reflection coefficients with 
the common angle of incidence and material parameters of the medium are discussed. 
 
 
Many substances found in nature are optically active, whereas their artificial analogs – chiral materials – manifest 

electromagnetic activity at ultrahigh frequencies [1]. Despite the fact that a chiral medium has a discrete microstructure, in 
fact, it is homogeneous when chiral inclusions are uniformly distributed over the volume. Phenomenologically, it is 
considered to be a continuous biisotropic medium and is characterized by three macroscopic material parameters: two 
scalars (dielectric constant and permeability) and one pseudoscalar – a chiral-order parameter which is a measure of 
disymmetry of geometrical shape and its structural elements. The medium has a property of birefringence, therefore the 
magnetic field is a superposition of two self-wave fields of circular polarization with opposite direction of the field vector 
rotation and different wave numbers. As applied to the set of constitutive Drude – Born – Fedorov equations, we get 

 ( ) ( ),       ,        = ε + β∇× = µ + β∇× D E E B H H  

where D  and E  are the electric-field induction and strength, B  and H  are the magnetic-field induction and strength, 
ε and µ  are the dielectric constant and permeability, and β  is the chiral-order parameter, and homogeneous vortical 
Maxwell equations for a monochromatic field with the time factor ( )exp i t− ω  reduce to 

 1 1 1 2 2 2,        ,∇× = γ ∇× = −γQ Q Q Q  (1) 

where ( )1 / 1k kγ = − β  and ( )2 k / 1 kγ = + β  are the wave numbers, ( )1/ 2k = ω εµ , and ω is the angular frequency. The 
equations of type (1) describe the Beltrami wave fields, and Silberstein was the first to use them in electromagnetism [2]. 
The electric and magnetic fields in a chiral medium are related to the Beltrami fields by means of the following formulas: 

 1
1 2 2 1iη ,         iη ,−= − = −E Q Q H Q Q  (2) 

where ( )1/ 2/η = µ ε  is the wave impedance. In an infinite homogeneous chiral medium, the Beltrami fields can be excited 
one at a time by special source distributions [3] and propagate independently. The fields appear to be coupled at the 
interface and impermeable boundaries because the boundary conditions are imposed on the electric field (2) rather than on 
the Beltrami fields 1Q  and 2Q . 

In the applied electrodynamic investigations, one comes across different boundaries impermeable for the field. 
Most common are isotropic ideally conducting boundaries, where a tangential electric field (“electric wall”) and a tangential 
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magnetic field (“magnetic wall”) vanish. Though the phenomena of electromagnetic-wave reflection from the foregoing 
boundaries in chiral media are always taken into account in the problems of waveguide propagation, diffraction, and wave 
scattering by objects of various shape, to our knowledge, they were considered in brief in [4] alone as applied to the concept 
of images in chiral media. This paper studies wave phenomena occurring in a chiral medium for the case of the plane waves 
associated with the Beltrami fields, where they fall in combination and one by one, and their reflection from flat, ideally 
conducting screens. 

Let the plane xz be the plane of incidence of the Beltrami waves, аnd a flat, ideally conducting screen is at z = 0. In 
the range 0z > , the incident Beltrami fields i

1 ( , )x zQ  and i
2 ( , )x zQ  propagate at the angles φ and ψ to the z axis, 

respectively, and we have 

 ( ) ( )[ ]1 1 0 0 0 1( , ) cos i sin exp sin cosi x z A y z i x z= ϕ − + ϕ γ ϕ − ϕQ x , (3) 

 ( ) ( )[ ]2 2 0 0 0 2( , ) cos sin exp sin cos ,i x z A iy z i x z= ψ + + ψ γ ψ − ψQ x  (4) 

where 1A  and 2A  are the amplitudes of the incident plane waves and 0x , 0y , and 0z  are the unit vectors of the Cartesian 
rectangular coordinate system. The reflected field is described as 

 ( ) ( )[ ]1 1 0 0 0 1( , ) cos sin exp sin cosr x z B x iy z i x z= − ϕ − + ϕ γ ϕ + ϕQ , (5) 

 ( ) ( )[ ]2 2 0 0 0 2( , ) cos sin exp sin cosr x z B x iy z i x z= − ψ + + ψ γ ψ + ψQ , (6) 

where 1B  and 2B  are the amplitudes of waves departing from the boundary. The angles of arrival and reflection obey the 
generalized Snell law 

 1 2sin sin .γ ϕ = γ ψ  (7) 

For the sake of definiteness, let us assume that the chiral-order parameter is positive ( )0β > . Then 1 2 0γ > γ > , since there 
is a restriction on the maximum chiral-order parameter ( 1kβ < ) [5]. It follows from Eq. (7) that both angles are real 

( ψ > ϕ ), as long as the angle ϕ  is in no excess of the critical value 2
кр

1
arcsin

γ⎛ ⎞
ϕ = ⎜ ⎟γ⎝ ⎠

. For кр / 2ϕ < ϕ < π  the Beltrami 

fields with the wave number 2γ  take on the structure of nonuniform plane waves. 
It follows from Eqs. (2) and (3)–(6) that for the case of electric wall, the boundary condition at 0z =  becomes 

 ( ) ( )1 2 0 1 2 0 0.i i r ri z i z− η + − η =Q Q Q Q  (8) 

The amplitudes of reflected waves are related to the amplitudes of incident waves by the following formulas:  

 1 11 1 12 2 2 21 1 22 2,     ,     B R A R A B R A R A= + = +  (9) 

where  ijR ( i and j  are 1 or 2) form a matrix of reflection coefficients. Upon substitution of Eqs. (3)–(4), (5)–(6), and (9) 

into the boundary condition (8), we get algebraic relations for determination of the ijR  coefficients as  

 ( )[ ] ( )[ ]11 21 1 12 22 21 cos cos cos 1 cos 0,R i R A R i R A− ϕ + η ψ − ϕ + η − ψ =   

 ( ) ( )[ ]11 21 1 12 22 21 1 0,R i R A R i R A+ + η + + η + =   
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whence it follows that 

 11 12
cos cos 2i cos        ,      
cos cos cos cos

R Rϕ − ψ − η ψ= =
ϕ + ψ ϕ + ψ

, (10) 

 
( )21 22

2cos cos cos   ,     .  
i cos cos cos cos

R R− ϕ ϕ − ψ= = −
η ϕ + ψ ϕ + ψ

 (11) 

For the case of magnetic wall, using the boundary condition  

 ( ) ( )1 1
2 1 0 2 1 0 0i i r ri z i z− −− η + − η =Q Q Q Q  (12) 

we get the same ijR , only cross coefficients 12R  and 21R  change their signs. The coefficients ijR  are interrelated; of 

interest are the following relations: 

 ( ) ( )1
12 22 21 111 ,       1 ,R i R R i R−= − η + = η +  (13) 

and the invariant 

 11 22 12 21 det 1.ijR R R R R− = = −   

It follows from Eqs. (10) and (11) that 22 11R R= − , and taking in to account Eq. (13), all reflection coefficients can be 
expressed using 11R . 

Let us simultaneously consider of two interrelated realizations of reflection of the plane Beltrami waves having 

a common angle of incidence θ . In the first case, the angles of incidence ϕ = θ  and 1

2
arcsin sin

γ⎛ ⎞ψ = θ⎜ ⎟γ⎝ ⎠
 have the 

corresponding reflection coefficient 

 ( )

1/ 22
21

21
111 1/ 22

21

2

cos 1 sin

,

cos 1 sin

R r

⎡ ⎤γ⎛ ⎞θ − − θ⎢ ⎥⎜ ⎟γ⎢ ⎥⎝ ⎠⎣ ⎦= =
⎡ ⎤γ⎛ ⎞θ + − θ⎢ ⎥⎜ ⎟γ⎢ ⎥⎝ ⎠⎣ ⎦

 (14) 

whereas in the second case, the angles of incidence ψ = θ  and 2

1
arcsin sin

γ⎛ ⎞
ϕ = θ⎜ ⎟γ⎝ ⎠

 have the following reflection 

coefficient: 

 ( )

1/ 22
22

12
211 1/ 22

22

1

cos 1 sin

.

cos 1 sin

R r

⎡ ⎤γ⎛ ⎞θ − − θ⎢ ⎥⎜ ⎟γ⎢ ⎥⎝ ⎠⎣ ⎦= =
⎡ ⎤γ⎛ ⎞θ + − θ⎢ ⎥⎜ ⎟γ⎢ ⎥⎝ ⎠⎣ ⎦

 (15) 
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Provided the angle θ  is in no excess of the critical value, it follows from Eqs. (14) and (15) that 1 0r >  and 2 0r < . 
Eliminating the radicals, we get a relation invariant with respect to the material parameters of the chiral medium as 

 
( ) ( ) ( ) ( )

2
2 21/ 2 1/ 2 1/ 2 1/ 2

2 2 1 1

4sin ,
r r r r− −

θ =
⎡ ⎤ ⎡ ⎤− + − − +⎣ ⎦ ⎣ ⎦

 (16) 

and a relation invariant with respect to the common angle of incidence  

 ( ) ( )
( ) ( )

1/ 2 1/ 2
2 21

1/ 2 1/ 2
2 1 1

,
r r

r r

−

−
− − −γ

=
γ +

   

which allows us to write the dependence of the chiral-order parameter on the reflection coefficients in explicit way, and we 
get 

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1/ 2 1/ 2 1/ 2 1/ 2
2 2 1 1

1/ 2 1/ 2 1/ 2 1/ 2
2 2 1 1

.
r r r r

k
r r r r

− −

− −
− − − − −

β =
− − − + +

 (17) 

Let us consider now a combination of the reflection coefficients for the case where the plane Beltrami waves fall on 
the screen at the same angle, but one at a time. For the incident field 1

iQ  (3), we must assume that ϕ = θ  and 

1

2
arcsin sin

γ⎛ ⎞
ψ = θ⎜ ⎟γ⎝ ⎠

. The reflected waves (5) and (6) do not involve 12R  and 22R , and the coefficient 11R  is calculated 

using Eq. (14) so that 11 1R r=  and ( )1
21 11R i r−= η + . For the incident field 2

iQ  (4), we must assume that ψ = θ  and 

2

1
arcsin sin

γ⎛ ⎞
ϕ = θ⎜ ⎟γ⎝ ⎠

. The reflected waves do not involve 11R  and 21R , аnd the coefficient 22 2R r=  is calculated by means 

of Eqs. (11) and (15), ( )12 21R i r= − η + . Equations (16) and (17) are preserved, and can be shaped to a more symmetric 
form 

 ( ) ( ) ( ) ( )1/ 2 1/ 2 1/ 2 1/ 21/ 2 1/ 2 1/ 2 1/ 2
22 22 11 11 22 22 11 11 2

4
sin

R R R R R R R R− −− −⎡ ⎤ ⎡ ⎤− + − + + − + − − − =⎣ ⎦ ⎣ ⎦ θ
, (18) 

 ( ) ( )
( ) ( )

1/ 2 1/ 2 1/ 2 1/ 2
22 22 11 11

1/ 2 1/ 2 1/ 2 1/ 2
22 22 11 11

R R R R
k

R R R R

− −

− −
− − − − −

= β
− − − + +

. (19) 

Equations (18) – (19) give an alternative way of calculating the coefficients of reflection from an ideally conducting screen 
limiting an isotropic chiral medium half-space. 

In the case where the angle θ  exceeds the critical value, the coefficient 11R  takes the following complex values: 

 

1/ 22
21

2
11 1/ 22

21

2

cos sin 1

,

cos sin 1

i

i

R e

i

−

χ
−

⎡ ⎤γ⎛ ⎞θ − θ −⎢ ⎥⎜ ⎟γ⎢ ⎥⎝ ⎠⎣ ⎦= =
⎡ ⎤γ⎛ ⎞θ + θ −⎢ ⎥⎜ ⎟γ⎢ ⎥⎝ ⎠⎣ ⎦
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where χ is the real phase of the reflection coefficient. To this end, we take a positive branch of the square root from Eq. (14) 

so as to provide an exponential decrease in the filed 2
rQ  along the coordinate z . Since 11 1R = , we observe a total internal 

reflection of the Beltrami wave 1
iQ  at cθ > θ . Equations (18) and (19) are valid provided that ( )1/ 2 1/ 2 1/ 2

11 11 112 ReR R R− + =  is 

a real value. 
A lateral wave is closely related to the phenomenon of total internal reflection both in this case and in the case of 

interface of achiral dielectics [6]. Lateral waves in a chiral medium are excited in the presence of a geometric 
inhomogeneity (e.g., boundary kink). In terms of quasioptical diffraction theory, a lateral wave consists of a ray of the 
Beltrami field 2Q  grazing along the screen and a geometrooptical ray of the Beltrami field 1Q  arriving at the point of 
observation at a critical angle of the total internal reflection [7]. 
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