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Abstract

 

—The field of an arbitrary finite defect in a 3D semispace is calculated. This problem is solved
by reduction to a 2D case that yields an integral equation on the surface of the defect alone. Calculation
formulas for a spherical defect are presented. Results of calculations using these formulas for the case
of a uniform external field normal or tangential to the surface of a magnetic semispace are presented in
a graphical form.

 

Solving the magnetostatic problem for different models of bodies containing defects remains a challeng-
ing task for practical use of magnetic testing methods. The internal defect is approximated mainly by an
infinite elliptic cylinder placed either in an infinite magnetic space, in a semispace, or in a plate. (Such an
approximation is used owing to its simplicity.). The symmetry of the model enables significant simplifica-
tion of the problem, which can be reduced to a 2D case. Corresponding results can be found, e.g., in [5].

A solution of the magnetostatic problem for a defect with finite dimensions has only been found for an
infinite magnetic space containing a cavity (insert) with an ellipsoidal surface [5]. In continuation of [6], we
solve in this study the problem of a semispace containing a defect with finite dimensions. A technique was
used in [6] that allows reduction of the problem of finding the field of a defect with finite dimensions located
in a semispace to calculation of the value of the normal field component on the defect’s surface alone. Then,
the case of a spherical defect was considered where the external field was assumed to be uniform and
directed normally to the surface of the semispace. Publication [6] contains typographical errors. We apolo-
gize to the readers for them and briefly iterate the main stages of the study and the most important formulas
since, moreover, they are of importance for this study as well.

 

1. 

 

Let us use an integrodifferential approach to the magnetostatic problem. The equation for the strength
vector of the magnetic field has the form

(1)

where 
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 is the area occupied by a magnetic matter with magnetic permeability 
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.
Using Eq. (1), let us consider the following problem: a defect characterized by a finite diameter and mag-

netic permeability 

 

µ

 

d

 

 = const and confined within smooth surface 

 

S

 

 is located in the semispace 

 

z

 

 

 

≤

 

 

 

d

 

 (

 

d

 

 > 0)
with 

 

µ

 

 = const. The frame origin is placed at the center of the defect. In this case, area 

 

Ω

 

 in (1) is a semispace
containing the defect. Let us denote the area occupied by the defect as 

 

Ω

 

d

 

 and 

 

Ω

 

1

 

 = 

 

Ω

 

/

 

Ω

 

d

 

. The described
situation where the defect is approximated by a sphere is illustrated by Fig. 1. It is worth stressing that, for
the calculations made in the first part of this study to hold for a defect of any form, it only needs to be finite.
The result of the first stage is formulated as Eq. (7) applicable to solution of the problem for a defect of any
form. Moreover, Eq. (7) is preferable for practical usage since it requires the normal component of the mag-
netic-field strength to be known on the defect’s surface alone. (To this end, Eq. (8) is presented, which can
be deduced easily from (7).) In the second part of this publication, a spherical defect is considered, while
this part is devoted to deduction of the promised equations.

If the magnetic permeability is constant, div

 

H

 

 = 0 and can be reduced by Ostrogradskii–Gauss’s theorem
Eq. (1) to

(2)
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where 
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 = (
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, 
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) is a 2D radius-vector, 
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) is a projection of the field measured on surface 
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 from
the interior of area 
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1

 

 on normal 
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 set to the same surface also from area 
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1

 

, and 
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 is a normal component
of the field on the semispace surface from the interior of 
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.

Consider expression (2) while assuming that 

 

r

 

 

 

∈

 

 

 

Ω

 

1

 

. Having found the limit of the 

 

z

 

 component in both
parts of formula (2) when 

 

z

 

  

 

d

 

, we arrive at

(3)

During deduction of (3), formula

(4)

was used. The latter, in turn, can be proved easily by applying Parseval’s equality
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) is equal to the integral of their Fourier transforms (
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) and (
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).

Substituting (3) into the left-hand side of (2), we obtain

(6)

where 

 

λ

 

 = (

 

µ

 

 – 1)/(µ + 1). If the notations τ = r' – r, t = r'' – r, a = |z – d |, and b = d – z'' are introduced,
the internal integral in the second term in the braces can be written as
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Fig. 1. Semispace with a defect.
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The internal integral in the expression above can be calculated analytically with expression (5). Having
calculated Fourier transforms of the factors and using tables of integrals [1, pp. 967, 721], we arrive at J =

1/ . With allowance for this result, expression (6) can be rewritten in the form

(7)

where R* =  and R0 = .

A review of the procedure used to deduce (7) shows that the applied technique suits not only the case of
a semispace but the case of any other body containing a defect provided that the problem not involving
defects can be solved analytically and the integral calculated for (6) can be represented in an analytical form.

Equation (7) is only needed to find the value of normal field component Hn on surface S of a defect. Then,
the result obtained is substituted into (7) and the field can be calculated at any point in the space. Let us
multiply expression (7) by ni and then find the limit of the product for surface S by use of the formulas of
the classical potential theory [2]. In this way, we obtain the required equation for normal field component

 on S:

(8)

where r ∈ S, λd = (µ – µd)/(µ + µd). The second term in the left-hand side of (8) is the value of the normal
derivative of the potential of a simple layer on surface S [2]. Kernels 1/R* and 1/R0 are regular on S, and

R* = .

2. Continuing further, let us now specify the shape of the defect. Let us consider a spherical defect that
has radius r0 and µd = 1. Let d be the distance from the center of the sphere, where the frame origin is located,

to the surface of the semispace (Fig. 1). In the spherical system of coordinates,  = –Hr ,  = – , and

Eq. (8) takes the form

(9)

The last equation can be presented in the following shorthand form:

(10)

where  is the unit operator, and the form of operators  (k = 1, 2, 3) becomes clear when comparing
expressions (10) and (9).

Below, the well-known expansion is used repeatedly:
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(11)

where r, θ, and ϕ are spherical coordinates of radius-vector r (primed spherical coordinates refer to vector
r'), r' < r, and spherical harmonics Ym(θ, ϕ) are defined as follows [3]:

(12)

Pl(t) are Legendre polynomials, and l = 0, 1, …, |m | ≤ l. Each spherical harmonic depends on θ and ϕ
(angular coordinates of a vector). Below, if notation Ylm(r) is used, then, of course, we will obtain the angular
coordinates of a given vector in a form that uses independent variables.

Let us consider the action of operators contained in (10).

(a) (13)

Calculating the derivative and using (11), we obtain

(14)

where S1 is a unit sphere. Expression (14) takes into account that, if µ = const, (r)dS' = 0.

(b) (15)

To calculate this integral, notations r1 = (x, y, –z) and D = (0, 0, 2d) are adopted; in that case, R* = |r' – r1 – D|.

When expanding kernel  using formula (11), it is taken into account that |r' – r1| < D, Ylm(D) =

δm, 0 , and the expansion theorem [3] is applied

We obtain

(16)

(c)
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(x', y', d) = (r', d). We arrive at the following expression

1
r r '–
---------------

4π
r

------ 1
2l 1+
-------------- r '

r
---⎝ ⎠

⎛ ⎞
l

Ylm θ ϕ,( )Ylm* θ ' ϕ ',( ),
m l–=

l

∑
l 0=

∞

∑=

Ylm θ ϕ,( ) 2l 1+( ) l m–( )!
4π l m+( )!

--------------------------------------Pl
m θcos( )eimϕ,=

Pl
m θcos( ) θsin–( )mdmPl t( )/dtm

t θcos= , m 0,≥=

Pl
m– θcos( ) 1–( ) m l m–( )!

l m+( )!
----------------------Pl

m θcos( ), m 0,<=
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(17)

where r' =  and cosθ' = d/r'.
Results obtained in this section can be used to solve the problem of a semispace with a spherical cavity

wherein different models of the external-field sources can be chosen.
3. Let us now specify the problem. Let us assume that an external field is directed normally to the semi-

space surface; i.e. H0 = (0, 0, H0). Then,  = H0cosθ and the calculations using expression (17) yield

 = H0cosθ. In the considered case, the solution to Eq. (10) does not depend on angle ϕ as a result of

the symmetry of the problem. Let us introduce new function h(θ) =  and rewrite Eq. (10) for this

function:

(18)

Solution of (18) can be found in the form of a series in spherical harmonics. Since h = h(θ), this series
reduces to a series of the Legendre polynomials
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obtain a set of equations
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Thus, the solution to Eq. (22) yields coefficients  and, hence, . In that case, the field
on the defect’s surface is determined using (19):

(23)

This result can be used to find field Hd created by the defect above a metal: Hd = H – He, where H is the
field created by the semispace with a defect and He is the field created by the same semispace without it.
After the normal component has been found using formula (23), both vectors can be calculated using
expression (7): H corresponds to µd = 1 and He to µd = µ (no defect). Since R* = R for z > d, we obtain the
following expression from (7):

(24)

Then, this formula is used to deduce expressions for the normal and tangential components of Hd on the
outer surface of semispace z = d. Owing to the symmetry of resulting field Hd in the considered case, it is
sufficient to provide formulas for y = 0:

(25)

where ξ = x/d, η = 1/ , and ε = r0/d. During performance of the numerical calculations based on (25),
formula (η) = l(1 – η2)–1{Pl – 1(η) – ηPl(η)} may be of use and the values of the Legendre polynomials
can be computed reliably using recursion relations [1].

4. Let us now consider the case of a uniform external field tangential to the semispace’s surface. If the

ox axis is directed along this field, H0 = (H0, 0, 0); then  = 0 and  = H0sinθcosϕ. Let us introduce

new function h(θ, ϕ) =  and rewrite Eq. (10) for this function:
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This formula shows that hlm ≠ 0 only when m = ±1. Therefore, multiplying this equation by (θ, ϕ),
integrating it over S1, and taking into account the orthogonality relations between spherical harmonics

(θ, ϕ) (θ, ϕ)d  = δlpδmq, we again arrive at an infinite set of equations for coefficients hn, ±1,

n = 1, 2, …:

(28)

The form of system (27) allows the conclusion that it is sufficient to find only hm, 1 since hm, –1 = –hm, 1.

Introducing new variables xm = hm, 1 , we find after some transformations that

(29)

Solution of this set yields  and, with allowance for (12), the field on the defect’s boundary as
well:

(30)

To calculate the defect’s field on the surface of semispace z = d, expressions (30) should be substituted
into (24):

(31)
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ρ2 = x2 + y2); calculate the gradient; and, after having made some transformations, obtain formulas for the
component of the defect’s field on the outer surface of semispace z = d:
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where  = (η) is a first-order associated Legendre function. In (32), notation Gl = 

is used and new variables ξ = x/d and ζ = y/d are introduced. When performing numerical calculations with

(32), it is convenient to use the recurrence formula (l + 1) (η) = (2l + 3)η (η) – (l + 2) (η).

In this case, formulas (32) that determine components of the defect’s field (as well as (25)) contain the
ratio of defect’s radius r0 and depth d at which its center is located (ε = r0/d). One of the problems to be

Hz
d ξ ζ,( )
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1 , ξ
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1 hl 1, εη( )l 2+

πl l 1+( ) 2l 1+( )
---------------------------------------------

Pl 2+
1 Pl 1+

1 Pl
1

solved by nondestructive testing is the separate
determination of each of these parameters’ values.
The next section is devoted to this problem.

5. Initial stages of the numerical calculations in
both problems involve solving an infinite inhomoge-
neous system of equations of the form

(33)

A reduction method can be applied to such sys-
tems [4], which assumes replacement of the infinite
system with a finite system comprising N equations.
The value of N is increased until the required accu-
racy of the solution is attained. Both existence of a
solution and convergence of the procedure are

ensured if the twofold series  con-
verges. It is not difficult to show that systems (22)
and (29) can be majorized as

thus allowing the conclusion that series

 converges.

Codes have been developed that find a numerical
solution of systems (22) and (29) and then calculate
the defect’s field at the semispace’s boundary from
formulas (25) and (32), respectively. A numerical
experiment has shown that four significant digits are
stabilized for N ≈ 200 when 0 ≤ ε ≤ 0.99; N ≈ 10 suf-
fices for smaller values of ε.

The plots presented below show components of
the defect’s field that are normalized to H0. Figures
2a and 2b present plots of the coordinate dependence

of the normal ( ) and tangential ( ) components
of the defect’s field for λ = 0.98 in plane ζ = 0. These
fields are calculated for the problem when external
field H0 = (0, 0, –H0) is transverse to the semispace
surface. 3D figures are obtained by rotating the
obtained curves around the oz axis.
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Fig. 2. Tangential component of a defect’s field in an
external field transverse with respect to the semispace’s
surface (a) and the normal component in an external
field parallel to the semispace’s surface (b) for λ = 0.98.
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The next group of plots refers to the case of the external field H0 = (H0, 0, 0) parallel to the semispace
surface. Figures 3a–3c show the dependences of the three Cartesian components of the defect’s field on
coordinates for λ = 0.98 and ε = 0.5 in the different planes ζ = const. The 3D distribution can be restored
easily with allowance for the symmetry of the solution that follows from formulas (32); namely,

It is worth noting that the y component of the defect’s field vanishes on the oξ and oζ axes, while the z
component of the field vanishes on the oζ axes; the x component of the defect’s field attains a maximum at
the frame origin; the y component has equal maxima in the second and fourth quadrants of the ξoζ frame.
(The minima have, in this case, the same absolute values as the maxima and are located in the first and third
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Fig. 3. x, y, and z components ((a) to (c), respectively) of the defect’s field in an external field parallel to the semispace’s
surface for ε = 0.5 and λ = 0.98.
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quadrants; a maximum of the z component is located on the oζ axis at ξ < 0 and a minimum, which has the
same absolute value as this maximum, is located symmetrically with respect to the frame origin.) These con-
clusions are illustrated more clearly by Fig. 4, which shows the topography of the components of a spherical
defect’s field schematically.

The absolute value of the defect’s field in a configuration where an external field is longitudinal with
respect to the semispace’s surface is about 20 times larger than that in the configuration with a transverse
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Fig. 4. x, y, and z components ((a) to (c), respectively) of the defect’s field.
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field. (This can be seen clearly by comparing at least the absolute values of the field vectors at the frame
origin.) Therefore, a defect can be identified more easily in the case of a longitudinal field. This conclusion
is also supported by experimentalists.

A general scheme for solving the inverse problem (determination of a defect’s radius and location depth)
is proposed in [6]. No significant differences arise if the external field is a longitudinal. An actual defect is
not necessarily a sphere, but it may be approximated with a sphere if field components have a topography
similar to that described above (and illustrated in Fig. 4). Let us assume that such is the case. Apart from
this, it is necessary to somehow specify the value of the magnetic permeability since the problem has been
solved in a linear approximation. Therefore, some value adequate for experimental conditions should be
adopted as µ.

A general scheme for the separate determination of defect’s radius r0 and depth d at which its center is
located comprises the stages described below.

(i) With the use of experimentally found maximum values of the components of the defect’s field

(denoted as , , and ) and the theoretical curves plotted in Fig. 5, the value of parameter
ε is found. If maximum values are measured for all three components of the defect’s field, ε can be deter-
mined first for all three curves and then its average value may be calculated.

(ii) Theoretical extrema of the y component of the defect’s field are located symmetrically with respect
to the frame origin (see Fig. 4b) and ξy, max = ζy, max. (These are the notations used for coordinates of the
y-component extrema; the location in the first quadrant alone is sufficient for this scheme.) In that case,
ξy, max is found from Fig. 6a for a given value of ε.

(iii) Let xy, max and yy, max be experimentally measured coordinates of the point where the maximum of the
y component of the defect’s field is located. These values may differ, but the defect may be approximated
with a sphere if the difference is not very significant. The ratios d1 = xy, max/ξy, max and d2 = yy, max/ζy, max are
then calculated.
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Fig. 5. Dependences of the maximum values of x, y, and z components ((a) to (c), respectively) of the defect’s field on ε in
an external field parallel to the semispace’s surface for λ = 0.98.
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Fig. 6. Dependences of the maximum values of y and z components ((a) and (b), respectively) of the defect’s field on ε in
an external field parallel to the semispace’s surface for λ = 0.98.
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(iv) Accuracy of the solution can be improved further by using the measured location of the point where
the extremum of the defect’s field z component is located. In this case, extrema are located on the ox axis
(or, otherwise, on the oζ axis), so that it is sufficient to determine ζz, max alone using Fig. 6b. Ratio d3 =
xz, max/ξz, ma is calculated.

(v) d is calculated as an average of d1, d2, and d3.
(vi) Finally, r0 is determined: r0 = εd.
Figure 6 also shows that the location of the maximum can be found theoretically most efficiently if

0.5 < ε < 1.
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