Tantalum-catalyzed reaction of disubstituted acetylenes with EtAlCl₂

R. N. Kadikova,^{*} I. R. Ramazanov, A. K. Amirova, O. S. Mozgovoj, and U. M. Dzhemilev

Institute of Petrochemistry and Catalysis, Ufa Federal Research Center of the Russian Academy of Sciences (Institute of Petrochemistry and Catalysis UFRC RAS), 141 prosp. Oktyabrya, 450075 Ufa, Russian Federation. E-mail: kadikritan@gmail.com

> Tetraalkyl-substituted (E, E)-buta-1,3-dienes were synthesized regio- and stereoselectively by the tantalum(v) chloride-catalyzed reaction of dialkyl-substituted acetylenes with EtAlCl₂ and sodium metal in toluene followed by hydrolysis or deuterolysis. A mechanism of these transformations was suggested. The *in situ* generated organoaluminum intermediates reacted with methylsulfonyl chloride and iodine to give tetraalkyl-substituted (Z,Z)-1,4dichlorobuta-1,3-dienes and 1,4-diiodobuta-1,3-dienes, respectively.

> Key words: acetylenes, sodium metal, (E,E)-buta-1,3-dienes, tantalum(v) chloride, diethylaluminum chloride.

Transition metal-catalyzed carboalumination of acetylenic compounds with organoaluminum compounds is the efficient tool for the C-C bond formation.^{1,2} On the whole, a combination of carbometallation and cross-coupling of the in situ generated organometallic intermediates is one of the general approaches to different classes of organic compounds.³ Currently, carboalumination of acetylenes includes two main strategies. The first strategy is the Cp₂ZrCl₂catalyzed methylalumination using Me₃Al under the Negishi conditions⁴ and the second strategy is the Cp₂ZrCl₂-catalyzed cycloalumination using Et₃Al under the Dzhemilev conditions.^{5,6} The analysis of the literature on carboalumination of the functionally substituted acetylenes indicated that the methylalumination reaction is limited to terminal acetylenes,⁷ heterosubstituted arylacetylenes bearing the O, S, Cl, and Si⁸ atoms, and homopropargylic alcohols.⁹ We have shown earlier that cycloalumination of such functionallysubstituted acetylenic compounds as 2-alkynylamines, 3-alkynols,¹⁰ (1-alkynyl)phosphines,¹¹ (1-alkynyl)phosphine sulfides¹², 1-alkynyl selenides,¹³ and 1-alkynyl sulfides¹⁴ as well as methylalumination of 1-alkynyl sulfones¹⁵ and ethylalumination of (1-alkenyl)phosphine oxides¹² is a very effective approach to regioand stereoselective synthesis of N-, O-, P-, Se-, and S-containing trisubstituted olefins. The obtained experimental data show that the use of Cp₂ZrCl₂ allows carboalumination of both non-functionalized and functionally substituted triple bond. The zirconiumcatalyzed cycloalumination of acetylenes is of special

interest due to its effectiveness in the construction of the (2-aluminioethyl)aluminum structural unit bearing two active Al-C bonds. Subsequent reaction of the in situ generated organoaluminum intermediates with electrophilic reagents can serve as simple and convenient one-step synthetic approach to different polyfunctionalized olefins. Another advantage of the Cp₂ZrCl₂-Et₃Al system is the possibility to synthesize the buta-1,3-diene derivatives. We also have demonstrated¹⁶ that the reaction of Cp₂ZrCl₂ with 2 equiv. of Et₃Al in toluene enables regio- and stereoselective intramolecular coupling of (1-alkynyl)trimethylsilanes to give high yields of 1,4-bis(trimethylsilyl)-substituted buta-1,3-dienes. We believe that the formation of the diene systems is based on the homocoupling of two acetylene molecules that occur on Cp₂Zr generated by the reaction of Cp₂ZrCl₂ with 2 equiv. of Et₃Al. However, this method is limited only to (1-alkynyl)methylsilanes. For instance, the reaction of dec-5-yne with 0.5 equiv. of Cp₂ZrCl₂ and 2 equiv. of Et₃Al carried out in toluene for 18 h quantitatively gave ethylalumination product, (Z)-5-ethyldec-5-ene.¹⁶ Despite the thorough studies of the reaction of acetylenes with the Et₃Al-Cp₂ZrCl₂ system, no efficient methods for the zirconium-catalyzed intramolecular coupling of the acetylene derivatives are known. Thus, Negishi et al.⁴ described the reaction of diphehylacetylene with Et₃Al in the presence of 10 mol.% of Cp₂ZrCl₂ in benzene at 55 °C that resulted in a 1 : 1 mixture of ethyl-substituted olefin and diene in 90% total yield. However, the Cp₂ZrCl₂-catalyzed carboalumination of dec-5-yne

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2149–2155, October, 2022.

1066-5285/22/7110-2149 © 2022 Springer Science+Business Media LLC

described by Negishi *et al.*⁴ and the reaction of dec-5yne with Et₃Al in the presence of 0.5 equiv. of Cp₂ZrCl₂ described by us¹⁶ produced only ethyl-substituted olefin, (*Z*)-5-ethyldec-5-ene. To develop new catalytic systems for homocoupling of acetylenic compounds, we studied herein the TaCl₅-catalyzed reaction of acetylenes with EtAlCl₂ and described the first results of the tantalum-catalyzed homocoupling of symmetrical dialkyl-substituted acetylenes under the organoaluminum synthesis conditions.

We found that the reaction of dialkyl-substituted acetylenes **1a–c** with 3 equiv. of EtAlCl₂ and 2 equiv. of magnesium metal in the presence of 5 mol.% of TaCl₅ in toluene at room temperature followed by hydrolysis (or deuterolysis) gave regio- and stereoselectively tetraalkyl-substituted (E,E)-buta-1,3-dienes **3a**—**c** with the *E* configuration of the double bond (Scheme 1). The structures of the products of hydrolysis **3a-c** and deuterolysis 3'c were established by 1D and 2D NMR spectroscopy. The discovered reaction is accompanied by trimerization of alkynes to give 5-9% of cyclic trimers, namely, hexaalkylbenzenes 4a-c. Increasing the loading of TaCl₅ to 10 mol.% increased the fraction of cyclic trimer 4c to 20% (see Scheme 1). When the reaction was carried out in the absence of Mg, the fraction of trimer 4c dramatically increased to 77%.

The closest electronic analog of tantalum is niobium. Narula and coworkers have described¹⁷ the reduction of niobium(v) chloride with magnesium activated by HgCl₂ to niobium(III) chloride. Siemeling and Gibson¹⁸ have synthesized the niobium(III) complex by the reac-

tion of Nb(η^5 -C₅Me₅)Cl₄ with Mg. It was assumed^{19–21} that the TaCl₅-catalyzed carbomagnesiation of the olefins proceeded via the generation of alkene-TaCl₃ complexes. The described by us earlier selective synthesis of (Z)-2-alkenylamines by the NbCl₅-EtMgBrcatalyzed reduction of propargylamines with Et_2Zn^{22} is apparently initiated by NbCl3 stabilized by the ethylene ligand.²³ The literature on the reduction of alkynes with the TaCl₅-Mg²⁴ and TaCl₅-Zn²⁵ systems indicated that the reduction of TaCl₅ with Mg and Zn gave tantalum(III) chloride. The closest analogs of the considered herein TaCl₅-catalyzed reaction of homocoupling of dialkyl-substituted acetylenes are the TaCl₅-catalyzed carbozincation of terminal olefins with diethylzinc²⁶ and TaCl₅-catalyzed carbomagnesiation of olefins with alkylmagnesium.²⁰ According to these publications, the exchange reaction between TaCl₅ and Et_2Zn (or EtMgBr) gave unstable complex Et_2TaCl_3 , which disproportionated to generate low-valence complex of TaCl₃ with the ethylene ligand. The suggested by us approach to buta-1,3-dienes based on the TaCl₅catalyzed intramolecular coupling of disubstituted acetylenes in the presence of EtAlCl₂ and Mg closely resembles the earlier described synthesis of aluminacyclopenta-2,4-dienes by the Cp2ZrCl2-catalyzed homocoupling of disubstituted acetylenes in the presence of EtAlCl₂ and Mg (Scheme 2).²⁷ According to a suggested mechanism,²⁷ the acetylene homocoupling is initiated by the Cp₂Zr complex generated by the reduction of Cp₂ZrCl₂ with Mg. Subsequent coupling of two acetylene molecules on low-valence Cp2Zr gave zircona-

R = Et (a), Pr (b), Bu (c)

Reagents, conditions, and yields: *i*. TaCl₅ (5 mol.%), Mg (2 equiv.), EtAlCl₂ (3 equiv.), toluene, ~20 °C, 0.5 h; *ii*. KOH, H₂O; *iii*. KOH, D₂O; yields: **3'c** 77%, **4c** 9% (25 mol.% TaCl₅, 2 equiv. Mg); **3'c** 59%, **4c** 20% (10 mol.% TaCl₅, 2 equiv. Mg); **3'c** 7%, **4c** 77% (5 equiv.% TaCl₅).

Scheme 2

cyclopentadiene, which underwent transmetallation with EtAlCl₂ to give aluminacyclopentadiene.

Thus, we suggested that the discovered by us Tacatalyzed intramolecular coupling of acetylenes proceeded via the following mechanism. Homocoupling of acetylenes is initiated by low-valence TaCl₃ generated upon reduction of $TaCl_5$ with Mg (Scheme 3, route *a*). Next, similarly to the Zr-catalyzed homocoupling of acetylenes in the presence of EtAlCl₂ and Mg, the coupling of two acetylene molecules coordinated to TaCl₃ took place to give tantalacyclopentadiene.²⁷ Transmetallation of tantalacyclopentadiene with EtAlCl₂ resulted in the replacement of tantalum by aluminum to give aluminacyclopentadiene, which further hydrolyzed to the target tetraalkyl-substituted butadiene derivatives of the type 3. Formation of aluminacyclopentadiene is supported by such experimental facts as low conversion of dec-5-yne (1c) ($\leq 5\%$) in its reaction

with Mg catalyzed by 10 mol.% of $TaCl_5$ in the absence of EtAlCl₂ and described below functionalization of the intermediate aluminacyclopentadienes with methylsulfonyl chloride (Scheme 4).

In the absence of Mg, the reaction path is altered to give rise to 1,2,3,4,5,6-hexabutylbenzene **4c** in 77% yield (see Scheme 1). The observed transformation of dec-5-yne (**1c**) can reflect the generation of the tantalum—ethylene complex **A** that resulted from the alkylation of TaCl₅ with EtAlCl₂ and subsequent disproportionation (see Scheme 3, route *b*). The similar reaction of TaCl₅ with Et₂Zn that generated the tantalum—ethylene complex **A** has been described earlier.²⁶ Displacement of ethylene from the coordination sphere of tantalum in the tantalum—ethylene complex **A** by the stronger nucleophile can result in tantalacyclopropene complex **B**. Cotton and Hall²⁸ have described the synthesis and X-ray diffraction analysis of tantalacyclo-

propene complex ($[pyH][TaCl_4(py)(PhC=CPh)]$ bearing the similar tricyclic moiety. According to the suggested by us Scheme 3, the generated tantalacyclopropene complex **B** reacted with the second molecule of acetylene to give tantalacyclopentadiene C. The first cyclopentadiene derivative obtained by the reduction of Ta(DIPP)₂Cl₂(OEt₂) (DIPP is 2,6-diisopropylphenoxide) with sodium amalgam in the presence of hex-3yne has been characterized by NMR spectroscopy by Wigley and coworkers.²⁹ Subsequent coordination of the tantalum atom in tantalacyclopentadiene complex C with dec-5-yne (1c) can result in cyclotrimerization product, hexabutylbenzene 4c. The similar mechanism of trimerization of dialkyl-substituted acetylenes upon the reaction of $Ta_2Cl_6(SC_4H_8)_3$ with acetylenes has been described by Cotton and coworkers.³⁰

Our experience showed that the reaction of (1-al-kenyl)alanes with hetero derivatives of sulfonic acids (trialkylsilyl sulfonates, *S*-methyl thiosulfonate, and sylfonyl halides) is a versatile one-pot method to convert acetylenes to halo- and sulfur-containing olefins of variuos structure.^{15,31,32} In the present work, we involved the generated *in situ* organoaluminum intermediates in the reaction with methylsulfonyl chloride (see Scheme 4). The reaction of dialkyl-substituted acetylenes **1b,c** with Mg (2 equiv.) and EtAlCl₂ (3 equiv.) catalyzed by TaCl₅ (5 mol.%) in toluene at room temperature followed by addition of methylsulfonyl chloride

Scheme 4

1, 2, 5, 6: R = Pr (b), Bu (c)

Reagents and conditions: *i*. TaCl₅ (5 mol.%), Mg (2 equiv.), EtAlCl₂ (3 equiv.), toluene, 30 min, $\sim 20 \ ^{\circ}$ C; *ii*. $0 \rightarrow 20 \ ^{\circ}$ C, MeSO₂Cl (4 equiv.), $\sim 20 \ ^{\circ}$ C; *iii*. 1) I₂ (13 equiv.), $-78 \ ^{\circ}$ C $\rightarrow 20 \ ^{\circ}$ C, 18 h; 2) KOH (25%), Na₂S₂O₃ (saturated aqueous solution). (4 equiv.) within 8 h gave high yields of tetraalkylsubstituted (Z,Z)-1,4-dichlorobuta-1,3-dienes **5b,c** (see Scheme 4). It is of note that the cross-coupling of organomagnesium compounds with alkyl- and arylsulfonyl chlorides catalyzed by the iron and palladium catalysts proceeded with the formation of the carbon carbon but not the carbon—heteroatom bond.^{32–35}

To additionally confirm the structures of the synthesized substituted buta-1,3-dienes **3**, we preformed iodinolysis of organoaluminum intermediates **2b,c**, generated *in situ* by TaCl₅-catalyzed reaction of acetylenes **1b,c** with 3 equiv. of EtAlCl₂, using 13 equiv. of I₂ to give (4Z,6Z)-4,7-diiodo-5,6-dipropyldeca-4,6diene (**6b**) and (5Z,7Z)-6,7-dibutyl-5,8-diiodododeca-5,7-diene (**6c**), respectively (see Scheme 4).

In summary, we first showed that the reaction of dialkyl-substituted acetylenes with $EtAlCl_2$ and Mg catalyzed by tantalum(v) chloride in toluene regioand stereoselectively gave the tetraalkyl-substituted (E,E)-buta-1,3-dienes. The selective synthesis of tetraalkyl-substituted (Z,Z)-1,4-dichlorobuta-1,3-dienes by the reaction of methylsulfonyl chloride with aluminacyclopentadienes generated *in situ* by the TaCl₅-catalyzed reaction of dialkyl-substituted acetylenes with EtAlCl₂ and Mg was developed.

Experimental

Gaz chromatography was carried out on a Shimadzu GC-9A instrument equipped with a 2000×2 -mm column, stationary phase was silicon SE-30 (5%) on Chromaton N-AW-HMDS (0.125-0.160 mm), carrier gas was helium (30 mL min⁻¹), temperature programming: heating from 50 to 300 °C at a heating rate of 8 deg min⁻¹. ¹H and ¹³C NMR spectra were recorded in CDCl₃ on Bruker Avance-400 (working frequencies of 100 (13 C) and 400 MHz (1 H)) and Bruker Avance-500 (working frequencies of 125 (¹³C) and 500 MHz (¹H)) spectrometers. The chemical shifts are given in the δ scale relative to Me₄Si. Numbering of the carbon atoms in compounds 3b,c and 5b,c is given in Fig. 1. Gas chromatographymass spectrometry was performed on a Shimadzu GCMS-QP2010 Plus instrument (glass capillary column SLB-5ms 60000×0.25 mm×0.25 m (Supelco, USA), ion source temperature was 200 °C, 70 eV). Elemental analysis was carried out on a Karlo Erba model 1106 elemental analyzer. IR spectra were recorded on a Bruker VERTEX 70V FTIR spectrometer for the liquid samples. Yields of the products were determined by gas chromatography. Monomers with purity no less than 90% were used. Toluene was refluxed and distilled over sodium metal under argon. Argon (pure grade; State Standard GOST 10157-73) was used to provide the inert atmosphere. The following commercially available reagents were used: tantalum(v) chloride, sodium metal, mag-

Fig. 1. Numbering of the carbon atoms in compounds **3b,c** and **5b,c** used for the NMR spectra interpretation.

nesium, EtAlCl₂ (OJSC Redkinskii Opytnyi Zavod), hex-3yne, oct-4-yne, and dec-5-yne (Sigma—Aldrich). The ¹H and ¹³C spectral data of compounds **3a**, **4c**, and **6b**,**c** are in good agreement with those published previously.³⁶ Tantalum(v) chloride was purified and dried as earlier described.³⁷

(5E,7E)-6,7-Dibutyldodeca-5,7-diene (3c), Ta-Mg-catalyzed reaction of acetylenes with EtAlCl2. A glass reactor filled with dry argon was successively charged with dec-5-yne (1c) (276 mg, 2 mmol), TaCl₅ (35.8 mg, 0.1 mmol), magnesium metal (96 mg, 4 mmol), and a 0.5 M solution of EtAlCl₂ in hexane (0.82 mL, 6 mmol of EtAlCl₂). The obtained mixture was stirred at 23 °C for 30 min, diluted with diethyl ether (5 mL), treated dropwise with 25% aqueous KOH (3 mL), and stirred at room temperature for 1 h. The aqueous layer was extracted with diethyl ether $(3 \times 5 \text{ mL})$, the combined organic layers were washed with brine (10 mL), and dried with anhydrous CaCl₂. The drying agent was filtered off, the solvent was removed in vacuo. Vacuum distillation of the residue afforded 63 mg (83%) of product 3c. B.p. 138-140 °C (1.5 Torr), colorless liquid. ¹H NMR (CDCl₃), δ : 0.91–0.96 (m, 12 H, C(8)H₃, C(12)H₃, C(16)H₃, C(20)H₃); 1.29–1.38 (m, 16 H, C(6)H₂, C(7)H₂, C(10)H₂, C(11)H₂, C(14)H₂, C(15)H₂, C(18)H₂, C(19)H₂); 2.07–2.11 (m, 4 H, C(5)H₂, $C(9)H_2$; 2.16–2.19 (t, 4 H, $C(13)H_2$, $C(17)H_2$, J=7.2 Hz), 5.35–5.37 (t, 2 H, C(1)H C(4)H, J = 7.2 Hz). ¹³C NMR (CDCl₃), δ: 14.06 (C(8), C(12), C(16), C(20)); 22.47 (C(7), C(11)); 22.79 (C(13), C(17)); 27.72 (C(6), C(10)); 27.91 (C(5), C(9)); 31.17 (C(14), C(18)); 32.31 (C(13), C(17));125.91 (C(1), C(4)); 141.21 (C(2), C(3)). MS (EI), m/z: 204 (15) [M]⁺, 161 (11), 147 (13), 117 (18), 105 (100). Found (%): C, 86.45; H, 13.60. $C_{20}H_{38}$. Calculated (%): C, 86.25;

H, 13.75. IR, v/cm⁻¹: 2958, 2930, 2872, 1753, 1688, 1607, 1564, 1465, 1378, 731.

(4*E*,6*E*)-5,6-Dipropyldeca-4,6-diene (3b) was synthesized similarly from oct-4-yne (1b) (220 mg, 2 mmol). Yield 311 mg (70%). B.p. 98–100 °C (1.6 Torr), colorless liquid. ¹H NMR (CDCl₃), &: 0.88–0.95 (m, 12 H, C(7)H₃, C(10)H₃, C(13)H₃, C(16)H₃); 1.31–1.37 (m, 4 H, C(6)H₂, C(9)H₂); 1.39–1.45 (m, 4 H, C(12)H₂, C(15)H₂); 2.05–2.09 (q, 4 H, C(5)H₂, C(8)H₂, *J*=14.1 Hz, *J*=7.2 Hz); 2.14–2.17 (t, 4 H, C(13)H₂, C(17)H₂, *J* = 7.3 Hz); 5.36–5.38 (t, 2 H, C(1)H, C(4)H, *J* = 7.0 Hz). ¹³C NMR (CDCl₃), &: 13.93 (C(7), C(10)), 14.11 (C(13), C(16)), 22.05 (C(12), C(15)), 23.21 (C(6), C(9)), 30.06 (C(5), C(8)), 30.31 (C(11), C(14)), 126.00 (C(1), C(4)), 141.27 (C(2), C(3)). Calculated (%): C, 86.40; H, 13.60. C₁₆H₃₀. Found (%): C, 86.20; H, 13.8. IR, v/cm⁻¹: 2960, 2933, 2873, 1709, 1464, 1379, 1362, 1100, 1020, 613.

(5Z,7Z)-6,7-Dibutyl-5,8-dichlorododeca-5,7-diene (5c). A glass reactor filled with dry argon was successively charged with dec-5-vne (1c) (276 mg, 2 mmol), TaCl₅ (35.8 mg, 0.1 mmol), magnesium metal (96 mg, 4 mmol), and a 0.5 M solution of EtAlCl₂ in hexane (0.82 mL, 6 mmol of EtAlCl₂). The obtained mixture was stirred at 23 °C for 30 min, cooled to 0 °C, treated with methylsulfonyl chloride (916 mg, 8 mmol), and stirred at room temperature for 6 h. The mixture was diluted with diethyl ether (5 mL), cooled to 0 °C, and treated dropwise with 5% HCl (3 ml). The mixture was stirred at room temperature for 1 h, the aqueous layer was extracted with diethyl ether $(3 \times 5 \text{ mL})$, the combined organic layers were washed with brine (10 mL), dried with anhydrous CaCl₂. The drying agent was filtered off, and the solvent was removed in vacuo. Vacuum distillation of the residue afforded 299 mg (88%) of product 5c. B.p. 201–203 °C (2 Torr), colorless liquid. ¹H NMR (CDCl₃), δ: 0.91–0.97 (m, 12 H, C(8)H₃, C(12)H₃, C(13)H₃, C(17)H₃); 1.28–1.41 (m, 12 H, C(6)H₂, C(7)H₂, C(10)H₂, C(11)H₂, C(15)H₂, C(19)H₂); 1.58–1.63 (m, 4 H, C(14)H₂, C(18)H₂); 2.03-2.09 (m, 2 H, C(5)H_A, C(9)H_A); 2.27-2.33 (m, 2 H, C(5)H_B, C(9)H_B); 2.39–2.47 (m, 4 H, C(13)H₂, C(17)H₂). ¹³C NMR (CDCl₃), δ: 13.91 (C(16), C(20)), 14.00 (C(8), C(12)), 22.03 (C(15), C(19)), 23.04 (C(7), C(11)), 29.92 (C(6), C(10)), 30.22 (C(14), C(18)), 31.90 (C(13), C(17)), 34.76 (C(5), C(9)), 131.41 (C(1), C(4)), 135.43 (C(2), C(3)). Found (%): C, 69.36; H, 10.31. C₂₀H₃₆Cl₂. Calculated (%): C, 69.15; H, 10.45. IR, v/cm⁻¹: 2958, 2930, 2872, 2861, 1426, 1379, 1216, 1100, 761, 670, 613.

(4Z,6Z)-4,7-Dichloro-5,6-dipropyldeca-4,6-diene (5b) was synthesized similarly from oct-4-yne (1b) (220 mg, 2 mmol). Yield 483 mg (83%). B.p. 98–100 °C (1.6 Torr), colorless liquid. ¹³C NMR (CDCl₃), δ : 0.92–0.98 (m, 12 H, C(7)H₃, C(10)H₃, C(13)H₃, C(16)H₃); 1.47–1.52 (m, 4 H, C(12)H₂, C(15)H₂); 1.62–1.68 (m, 4 H, C(6)H₂, C(9)H₂); 2.02–2.08 (m, 4 H, C(5)H₂, C(8)H₂); 2.25–2.31 (m, 4 H, C(11)H₂, C(14)H₂). ¹³C NMR (CDCl₃), δ : 13.33 (7, 10), 14,45 (C(13), C(16)), 20.95 (C(12), C(15)), 21.44 (C(6), C(9)), 34.42 (C(11), C(14)), 36.79 (C(5), C(9)), 131.32 (C(1), C(4)), 135.72 (C(2), C(3)). Found (%): C, 65.76; H, 9.56. C₁₆H₂₈Cl₂. Calculated (%): C, 65.97; H, 9.69. IR, v/cm⁻¹: 2962, 2933, 2873, 1649, 1463, 1379, 1216, 1150, 1115, 760, 613.

This work was financially supported by the Russian Science Foundation (Project No. 19-73-10113). Recrystallization of tantalum(v) chloride³⁷ and drying of toluene were performed in the framework of the state assignment from the Ministry of Science and Higher Education of the Russian Federation (FMRS-2022-0076).

No human or animal subjects were used in this research.

The authors declare no competing interests.

References

- E.-i. Negishi, Acc. Chem. Res., 1987, 20, 65. DOI: 10.1021/ ar00134a004.
- I. R. Ramazanov, R. N. Kadikova, Z. R. Saitova, U. M. Dzhemilev, *Russ. Chem. Bull.*, 2020, 69, 61; DOI: 10.1007/ s11172-020-2723-9.
- 3. E.-I. Negishi, *Bull. Chem. Soc. Jpn.*, 2007, **80**, 233; DOI: 10.1246/bcsj.80.233.
- E.-I. Negishi, D. Y. Kondakov, D. Choueiry, K. Kasai, T. Takahashi, *J. Am. Chem. Soc.*, 1996, **118**, 9577; DOI: 10.1021/ja9538039.
- U. M. Dzhemilev, A. G. Ibragimov, *Russ. Chem. Bull.*, 1998, 47, 786; DOI: 10.1007/BF02498144.
- U. M. Dzhemilev, A. G. Ibragimov, I. R. Ramazanov, M. P. Luk'yanova, A. Z. Sharipova, *Russ. Chem. Bull.*, 2001, **50**, 484; DOI: 10.1023/A:1011321526314.
- D. E. Van Horn, E.-i. Negishi, J. Am. Chem. Soc., 1978, 100, 2252; DOI: 10.1021/ja00475a058.
- G. Wang, G. Zhu, E.-i. Negishi, J. Organomet. Chem., 2007, 692, 4731; DOI: 10.1016/j.jorganchem.2007.05.052.
- 9. S. Ma, E.-i. Negishi, J. Org. Chem., 1997, 62, 784; DOI: 10.1021/j09622688.
- I. R. Ramazanov, R. N. Kadikova, U. M. Dzhemilev, *Russ. Chem. Bull.*, 2011, **60**, 99; DOI: 10.1007/s11172-011-0013-2.
- I. R. Ramazanov, R. N. Kadikova, Z. R. Saitova, U. M. Dzhemilev, *Asian J. Org. Chem.*, 2015, 4, 1301; DOI: 10.1002/ajoc.201500274.
- I. R. Ramazanov, R. N. Kadikova, Z. R. Saitova, Z. I. Nadrshina, U. M. Dzhemilev, *Synlett*, 2016, 27, 2567; DOI: 10.1055/s-0035-1562736.
- R. N. Kadikova, I. R. Ramazanov, A. V. Vyatkin, U. M. Dzhemilev, *Synthesis*, 2017, **49**, 4523; DOI: 10.1055/ s-0036-1589062.
- 14. R. N. Kadikova, I. R. Ramazanov, A. V.Vyatkin, U. M. Dzhemilev, *Synlett*, 2018, **29**, 1773; DOI: 10.1055/ s-0037-1610431.

- R. N. Kadikova, I. R. Ramazanov, A. V. Vyatkin, U. M. Dzhemilev, *Synthesis*, 2017, 49, 1889; DOI: 10.1055/ s-0036-1588387.
- I. R. Ramazanov, R. N. Kadikova, A. K. Amirova, O. S. Mozgovoj, U. M. Dzhemilev, *RSC Adv.*, 2011, **11**, 39518; DOI: 10.1039/D1RA08268J.
- S. Sharma, O. P. Vermani, A. K. Narula, *Indian J. Chem.*, Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem., 1996, 35, 60; http://nopr.niscpr.res.in/handle/123456789/ 41226.
- U. Siemeling, V. C. Gibson, J. Organomet. Chem., 1992, 424, 159; DOI: 10.1016/0022-328X(92)83146-9.
- R. M. Sultanov, R. R. Ismagilov, N. R. Popod'ko, A. R. Tulyabaev, U. M. Dzhemilev, *J. Organomet. Chem.*, 2013, 724, 51; DOI: 10.1016/j.jorganchem.2012.10.001.
- 20. R. M. Sultanov, R. R. Ismagilov, N. R. Popod'ko, A. R. Tulyabaev, D. Sh. Sabirov, U. M. Dzhemilev, *J. Organomet. Chem.*, 2013, **745**—**746**, 120; DOI: 10.1016/j.jorganchem. 2013.07.017.
- R. M. Sultanov, U. M. Dzhemilev, E. V. Samoilova, R. R. Ismagilov, L. M. Khalilov, N. R. Popod'ko, *J. Organomet. Chem.*, 2012, **715**, 5; DOI: 10.1016/j.jorganchem.2012. 05.023.
- 22. R. N. Kadikova, I. R. Ramazanov, A. M. Gabdullin, O. S. Mozgovoj, U. M. Dzhemilev, *RSC Adv.*, 2021, **11**, 4631; DOI: 10.1039/D0RA10132J.
- 23. F. Sato, S. Okamoto, *Adv. Synth. Catal.*, 2001, 343, 759;
 DOI: 10.1002/1615-4169(20011231)343:8<759::AID-ADSC759>3.0.CO;2-M.
- 24. Y. Kataoka, J. Miyai, K. Oshima, K. Takai, K. Utimoto, J. Org. Chem., 1992, 57, 1973; DOI: 10.1021/ jo00033a015.
- K. Takai, Y. Kataoka, K. Utimoto, J. Org. Chem., 1990, 55, 1707; DOI: 10.1021/jo00293a008.
- 26. R. M. Sultanov, E. V. Samoilova, N. R. Popod'ko, D. Sh. Sabirov, U. M. Dzhemilev, *J. Organomet. Chem.*, 2015, 776, 23; DOI: 10.1016/j.jorganchem.2014.10.039.
- 27. U. M. Dzhemilev, A. G. Ibragimov, L. O. Khafizova, L. R. Yakupova, L. M. Khalilov, *Russ. J. Org. Chem.*, 2005, **41**, 667; DOI: 10.1007/s11178-005-0224-9.
- 28. F. A. Cotton, W. T. Hall, *Inorg. Chem.*, 1980, **19**, 2352; DOI: 10.1021/ic50210a034.
- 29. J. R. Strickler, P. A. Wexler, D. E. Wigley, *Organometallics*, 1991, **10**, 118; DOI: 10.1021/om00047a038.
- 30. F. A. Cotton, W. T. Hall, K. J. Cann, F. J. Karol, *Macromolecules*, 1981, 14, 233; DOI: 10.1021/ ma50003a001.
- R. N. Kadikova, T. P. Zosim, U. M. Dzhemilev, I. R. Ramazanov, *J. Organometal. Chem.*, 2014, **763**, 14; DOI: 10.1016/j.jorganchem.2014.04.004.
- 32. I. R. Ramazanov, R. N. Kadikova, U. M. Dzhemilev, *Russ. J. Org. Chem.*, 2013, **49**, 321; DOI: 10.1134/ S1070428013030020.
- 33. C. M. R. Volla, S. R. Dubbaka, P. Vogel, *Tetrahedron*, 2009, **65**, 504; DOI: 10.1016/j.tet.2008.11.007.

- 34. C. M. R. Volla, D. Marković, S. R. Dubbaka, P. Vogel, *Eur. J. Org. Chem.*, 2009, 36, 6281; DOI: 10.1002/ ejoc.200900927.
- C. M. R. Volla, P. Vogel, Angew. Chem., Int. Ed., 2008, 47, 1305; DOI: 10.1002/anie.200704858.
- 36. R. A. Tuktarova, PhD Thesis (Chemistry), Institute of Petrochemistry and Catalysis of UFRC RAC, Ufa, 2011, 135 pp. (in Russian).
- F. Fairbrother, J. F. Nixon, H. Prophet, J. Less-Common Metals, 1965, 9, 434; DOI: 10.1016/0022-5088(65) 90127-X.

Received April 29, 2022; in revised form July 4, 2022; accepted July 8, 2022