Reaction of phenyl-containing N-substituted 1,3-oxazolidines and 1,3-oxazinanes with triammine(tricarbonyl)chromium

A. N. Artemov,^a E. V. Sazonova,^a N. A. Aksenova,^a G. K. Fukin,^b A. V. Cherkasov,^b V. I. Faerman,^a and N. Yu. Grishina^{a*}

 ^aLobachevsky State University of Nizhny Novgorod,
 5 korp., 23 prosp. Gagarina, 603950 Nizhny Novgorod, Russian Federation. Fax: +7 (831) 465 8162. E-mail: zarovkinan@mail.ru
 ^bG. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences,
 49 ul. Tropinina, 603950 Nizhny Novgorod, Russian Federation. Fax: +7 (831) 462 7497. E-mail: gera@iomc.ras.ru

New heterocyclic compounds with phenyl chromium tricarbonyl substituents were synthesized by the reaction of triammine(tricarbonyl)chromium with phenyl-substituted 1,3-oxazacycloalkanes bearing acetyl, *tert*-butyloxycarbonyl, or phenyl group at the nitrogen atom. The resulting compounds were isolated in the individual state and characterized by physicochemical methods of analysis.

Key words: $(\eta^6$ -arene)tricarbonylchromium, heterocyclic compounds, 1,3-oxazolidines, 1,3-oxazacycloalcanes, triammine(tricarbonyl)chromium.

The synthesis of 1,3-oxazacycloalkanes is of interest because of their widespread use as biologically active compounds, linkers, as well as chiral ligands necessary for the design of molecules of various important organic products.¹ Transition metal complexes containing 1,3-oxazacycloalkane ligands in their coordination sphere are also promising agents of fine organic synthesis.^{2–5} Continuing our works on the synthesis of (η^{6} -arene)chromium tricarbonyl complexes with N,O-heterocyclic rings,^{6–11} we obtained new metal-containing products by the insertion of a chromium tricarbonyl group into the phenyl substituents of 1,3-oxazolidine and 1,3-oxazinane derivatives.

Results and Discussion

The simplest and most convenient method for the introduction of a $Cr(CO)_3$ group into arenes is a direct reaction of these arenes with chromium hexacarbonyl or its derivatives, for example, triammine(tricarbonyl)chromium $(NH_3)_3Cr(CO)_3$ (see Ref. 12). At the same time, for heterocycles with a lone electron pair of heteroatoms available for interaction, the formation of σ - rather than π -complexes¹³ seems to be very likely in the reactions with transition metal complexes, which in the case of 1,3-ox-azacycloalkanes can lead to the heterocycle opening.^{1,2,5} We assumed that, if the nitrogen atom is protected with a suitable blocking group, the synthesis of (η^6 -arene)chromium tricarbonyl complexes can be accomplished with the heterocycle remaining intact. Acetyl and *tert*-butoxy-

carbonyl were chosen as such groups. Acetic anhydride¹⁴ and di-*tert*-butyl dicarbonate¹⁵ were used for their introduction into the *NH*-heterocycles **1a,b** (Scheme 1). Compounds **3a**—**c** were obtained as the reaction products. It is obvious that the nucleophilicity of their nitrogen atom is reduced compared to the starting compounds **1a,b** due to the involvement of its electron pair into the π ,p-conjugation, as well as due to the steric factors.

1,3-Oxazacycloalkanes **3a-c** were further used in the reactions with triammine(tricarbonyl)chromium (4) to obtain $(\eta^6$ -arene)chromium tricarbonyl derivatives 5a-c (see Scheme 1). The reactions were carried out in refluxing dioxane, the progress was monitored by tracking the amount of released ammonia. Compounds 5a-c were isolated by column chromatography and purified by recrystallization. They were yellow crystalline substances, their purity and structure were confirmed by HPLC, UV, IR, ¹H NMR spectroscopy, and mass spectrometry (Table 1). The HPLC chromatogram of each of compounds 5a-c exhibited one peak. In their IR spectra, the strong bands of stretching vibrations of the CO bonds of chromium tricarbonyl fragments were observed in the range of 1857–1971 cm⁻¹, the expected molecular and fragment ions were present in the mass spectra (see Table 1).

It is known that when the nitrogen atom bears unsaturated groups, for example, a phenyl substituent, the ability for coordination at the heteroatom for these compounds sharply drops due to the π ,p-conjugation.¹³ Therefore, it can be assumed that the reaction of *N*-phenyl-1,3-

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1548-1554, August, 2019.

1066-5285/19/6808-1548 © 2019 Springer Science+Business Media, Inc.

1: n = 1 (a), 2 (b); 2: R = Me (a), OBu^t (b) 3, 5: n = 1, R = Me (a), OBu^t (b); n = 2, R = Me (c).

oxazacycloalkanes with triammine(tricarbonyl)chromium (4) should lead to the desired complexes. In fact, the reactions of compounds 6a-h with an equimolar amount of 4 in dioxane afford products 7a-i with the Ph[Cr(CO)₃] group at the nitrogen atom (Scheme 2). In the case of

2,3-diphenyl derivatives **6f,g**, the complexation selectively proceeded at the "aniline" benzene ring to give mononuclear complexes **7f,g**. The compounds were isolated in the individual state and characterized by physicochemical methods of analysis (see Table 1).

Scheme 2

i. Dioxane. $n = 1, R' = Pn[Cr(CO)_3], R'$

Table 1. Some characteristics of the complexes 5a-c and 7a-i

Com- pound	M.p./°C	Yield (%)	IR (KBr), $v(C=O)/cm^{-1}$	EI MS (70 eV), <i>m/z</i> (<i>I</i> _{rel} (%))
5a	90—91	73	1948, 1857	327 [M] ⁺ (1)
5b	128-129	71	1902, 1873	385 [M] ⁺ (1)
5c	110-111	53	1971, 1894	$341 [M]^+ (1)$
7a	127-128	44	1957, 1883	285 [M] ⁺ (7)
7b	70-71	31	1948, 1882	299 [M] ⁺ (10)
7c	131-132	32	1947, 1852	299 [M] ⁺ (2)
cis-7d	84-85	24	1938, 1855	$313 [M]^+ (2)$
trans-7d	105-106	27	1935, 1849	$313 [M]^+ (5)$
7e	111-112	30	1942, 1869	313 [M] ⁺ (29)
7f	99-100	40	1948, 1855	361 [M] ⁺ (5)
7g	116-117	19	1944, 1856	$375 [M]^+ (2)$
7 h	114-115	22	1948, 1848	$299 [M]^+ (52)$
7i	167—168	35	1956, 1873	497 [M] ⁺ (7)

The starting dimethyl-substituted substrate **6d** was a mixture of *cis*- and *trans*- isomers.¹¹ Therefore, the reaction of this mixture with **4** led to a mixture of *cis*-/*trans*-**7d**, which was separated by column chromatography.

Note that compounds 7a-d and 7h were obtained by us earlier by the condensation of chromium tricarbonyl

complexes of phenyl-substituted amino alcohols with the corresponding aldehydes.¹¹ However, attempted synthesis of compounds **7f,g** by this method was unsuccessful,¹¹ probably, for steric reasons, while the reactions of **6f,g** with **4** gave the desired products.

The reaction of 2,3-diphenyl-1,3-oxazinane (**6f**) with **4** at a 1 : 1 ratio of reactants after evaporation of the solvent and recrystallization of the residue from a hexane—ethyl acetate solvent mixture (4 : 1) gave the individual product **7f** in 40% yield (HPLC data). Its IR spectrum exhibited two strong absorption bands at 1848 and 1955 cm⁻¹ characteristic of the stretching vibrations of the CO groups in the chromium tricarbonyl fragment. The mass spectrum exhibited the peaks corresponding to the molecular ion with m/z 361 [M]⁺ (5) and fragment ions with m/z 277 [M - 3 CO]⁺ (72), 247 [M - 3 CO - CH₂O]⁺ (100),

Fig. 1. Molecular structure of η^6 -[(2-phenyl-1,3-oxazolidin-3-yl)benzene]chromium tricarbonyl (7f). Thermal ellipsoids are given with a 30% probability. Hydrogen atoms of phenyl substituents are omitted.

Table 2. Principal bond lengths (d) and bond angles (ω) in complex 7f

Bond	d/Å	Bond	d/Å	Angle	ω/deg
Cr(1) - C(1)	1.799(9)	N(1)–C(9)	1.363(9)	C(1) - Cr(1) - C(3)	87.8(5)
Cr(1) - C(2)	1.844(8)	N(1) - C(10)	1.454(9)	C(1) - Cr(1) - C(2)	90.1(4)
Cr(1) - C(3)	1.839(8)	N(1) - C(12)	1.473(9)	C(3) - Cr(1) - C(2)	91.1(4)
Cr(1) - C(4)	2.249(7)	C(10) - C(11)	1.53(2)	C(9) - N(1) - C(10)	122.2(6)
Cr(1) - C(5)	2.210(8)	O(4) - C(11)	1.44(2)	C(9) - N(1) - C(12)	122.8(6)
Cr(1) - C(6)	2.224(9)	O(4) - C(12)	1.425(8)	C(10) - N(1) - C(12)	111.0(6)
Cr(1) - C(7)	2.177(9)	C(12) - C(13)	1.52(2)	O(4) - C(11) - C(10)	103.7(6)
Cr(1) - C(8)	2.235(8)			C(12) - O(4) - C(11)	106.3(6)
Cr(1) - C(9)	2.332(7)			O(4) - C(12) - N(1)	103.3(5)
	. ,			N(1)-C(10)-C(11)	100.8(6)

143 $[M - 3 CO - CH_2CH_2OCH(Ph)]^+$ (66), 52 $[Cr]^+$ (20). The structure of compound **7f** was also confirmed by X-ray diffraction analysis (Fig. 1, Table 2).

According to the X-ray diffraction data, the conformation of heterocycle in the structure 7f can be characterized as an *envelope*: the N(1), C(10), C(11), and C(12) atoms lie almost in the one plane, while the oxygen atom deviates from it. The angle between the C(11)C(10)N(1)C(12) and C(11)O(4)C(12) planes is 36.5(5)°. The phenyl substituent at C(12) atom and the chromium tricarbonyl group are arranged on the opposite sides of the plane of heterocycle. In the arene chromium tricarbonyl fragment, the Cr-C_{arene} and Cr-(CO) distances are 2.177(9)-2.332(7) Å and 1.799(9)-1.844(8) Å, respectively (Table 2). The lengths of all its C-C bonds are close to each other (1.38(2)-1.43(2) Å). The C(1)-O(1) distance is slightly longer (1.20(2) Å) than the C–O bond lengths in the two other carbonyl ligands (1.16(2) Å). The carbonyl groups are in an eclipsed conformation, and the C-Cr-C angles in the chromium carbonyl fragment are within the 87.8(5)-91.1(4)° range.

The reaction of **6f** with an excess of **4** (at a 1 : 2 ratio of reactants) resulted in a mixture containing two organochromium compounds **7f** and **7i**. The structure of binuclear $\eta^6, \eta^6-(1,3-oxazolidine-2,3-diyl)bis[(benzene)chromium tricarbonyl] was assigned to product$ **7i**.

7i

7f

The X-ray diffraction results show that in the structure **7i**, like in **7f**, all atoms of the heterocyclic ring except the oxygen atom lie almost in one plane: the angle between the C(11)C(10)N(1)C(12) and C(11)O(4)C(12) planes is equal to $37(2)^{\circ}$. The O–C bond lengths in the 1,3-ox-azolidine ring are 1.46(2) and 1.47(2) Å, the N–C distances are 1.44(2) and 1.46(2) Å, and the angles are in the 99(2)–111(2)° range (see Table 3). The Cr–C_{arene} distances in **7i** are close to each other (2.19(2)–2.24(2) Å) and are comparable to those in **7f** (2.177(9)–2.332(7) Å). The Cr–(CO) bond lengths lie in a wide range of values, 1.74(2)–1.93(2) Å. The C–Cr–C angles in Cr(CO)₃ fragments are close to 90° (see Table 3), which is typical of arene chromium tricarbonyl complexes.¹⁶

In conclusion, the present studies showed that the reactions of triammine(tricarbonyl)chromium (4) with various phenyl-containing 1,3-oxazacycloalkanes (3a-c, 6a-h), which do not have free N—H bonds, proceed with the formation of the corresponding (η^6 -phenyl)chromium tricarbonyl complexes. These reactions can be used to obtain the products, which are unavailable by alternative condensation method. If two phenyl substituents are present in the starting 1,3-oxazacycloalkane, the coordination first involves the *N*-phenyl ring (with an equimolar ratio of reactants) and then both aromatic rings (with an excess of 4).

Fig. 2. Molecular structure of η^6 , η^6 -(1,3-oxazolidine-2,3-diyl)bis[(benzene)chromium tricarbonyl] (7i). Thermal ellipsoids are given with a 30% probability. Hydrogen atoms of phenyl substituents are omitted.

Bond	d/Å	Bond	d/Å	Angle
Cr(1) - C(1)	1.74(2)	Cr(2) - C(18)	2.24(2)	O(4) - C(12) - N(1)
Cr(1) - C(2)	1.85(2)	Cr(2) - C(19)	1.86(2)	C(11) - O(4) - C(12)
Cr(1) - C(3)	1.80(2)	Cr(2) - C(20)	1.84(2)	O(4) - C(11) - C(10)
Cr(1) - C(4)	2.24(2)	Cr(2) - C(21)	1.93(2)	C(10) - N(1) - C(12)
Cr(1) - C(5)	2.22(2)	N(1) - C(9)	1.45(2)	N(1) - C(10) - C(11)
Cr(1) - C(6)	2.20(2)	N(1) - C(10)	1.46(2)	C(1)-Cr(1)-C(2)
Cr(1) - C(7)	2.20(2)	N(1) - C(12)	1.44(2)	C(2) - Cr(1) - C(3)
Cr(1) - C(8)	2.23(5)	C(10) - C(11)	1.55(2)	C(1) - Cr(1) - C(3)
Cr(1) - C(9)	2.24(2)	O(4) - C(11)	1.47(2)	C(20) - Cr(2) - C(19)
Cr(2) - C(13)	2.22(2)	O(4) - C(12)	1.46(2)	C(20) - Cr(2) - C(21)
r(2) - C(14)	2.20(2)	C(12) - C(13)	1.52(2)	C(19)-Cr(2)-C(21)
r(2) - C(15)	2.19(2)			
Cr(2) - C(16)	2.21(2)			

Table 3. Principal bond lengths (d) and bond angles (ω) in complex 7i

Experimental

2.23(2)

Cr(2) - C(17)

Solvents were distilled over metallic sodium at atmospheric pressure. Ethyl acetate was dried with calcium chloride and distilled.¹⁷ 1,3-Oxazacycloalkanes 1a,b and 6a-h were obtained by the condensation of amino alcohols, such as 2-(N-phenylamino)ethanol, 1-(N-phenylamino)propan-2-ol, 3-(N-phenylamino)propan-1-ol, with commercial aldehydes (paraformaldehyde, acetaldehyde, propionic aldehyde, benzaldehyde).^{11,18} 2-(N-Phenylamino)ethanol, 1-(N-phenylamino)propan-2-ol, 3-(N-phenylamino)propan-1-ol were synthesized by arylation of the corresponding commercial amino alkanols with iodobenzene in the presence of copper(1) chloride according to the procedure.¹⁹ Compounds **3a,c** were obtained by acylation of 1,3-oxazacycloalkanes 1a,b with acetic anhydride.¹⁴ 1,3-Oxazolidine **3b** was synthesized according to the procedure for the Boc group introduction into the amino acid esters by treatment with di-tert-butyl dicarbonate in chloroform.¹⁵ Triammine-(tricarbonyl)chromium (4) was synthesized according to the procedure described in the literature.²⁰

The products of the reactions of 5a-c and 7a-i with 4 were isolated and purified by column chromatography on Acros silica gel 0.035–0.070 mm under argon atmosphere, using a hexane– ethyl acetate solvent system as the eluent. HPLC analysis was performed on a Knauer Smartline 5000 chromatograph with a S 2600 UV diode array detector (the UV spectra of the eluates were recorded in the 200-500 nm range), a Diaspher-110-C16 column, $5 \mu m$, $4.6 \times 250 mm$, eluent acetonitrile—water (84 : 16); the eluent flow rate was 0.7 mL min⁻¹. The IR spectra were recorded on an FTIR-8400S (Shimadzu) instrument in the 500-4000 cm⁻¹ wave number range in KBr pellets. ¹H NMR spectra were recorded on an Agilent DD2 NMR 400NB spectrometer (400 MHz) in acetone-d₆. Mass spectrometry studies were performed in the m/z range of 50–500 Da, the temperature was programmed from 50 to 450 °C at a heating rate of 100 deg min^{-1} .

Synthesis of chromium tricarbonyl derivatives of phenyl-1,3oxazacycloalkanes 5a—c and 7a—i (general procedure). 1,3-Oxazacycloalkane 3a—c or 6a—h (24 mmol), reactant 4 (24 mmol), and dioxane (60 mL) were placed into a two-neck flask equipped with a reflux condenser and a gas burette filled with dibutyl phthalate. The reaction mixture was heated in an oil bath at 120 °C until 1.5 L of ammonia was evolved, then the flask was cooled and filled with argon. The resulting mixture was filtered through a Schott filter filled with alumina and the solvent was evaporated. The reaction products were isolated from the residue by column chromatography and recrystallized from a mixture of hexane and ethyl acetate. The formed yellow crystals were collected by filtration on a Schott filter and dried in a desiccator.

The yields of products 7a-d and 7h are given in Table 1, their spectral data are reported in our previous work.¹¹

η⁶-[(3-Acetyl-1,3-oxazolidin-2-yl)benzene]chromium tricarbonyl (5a). The yield was 73%, m.p. 90–91 °C. HPLC: one peak, $\tau = 5.2$ min. UV-Vis (MeCN, H₂O), λ/nm: 219, 313. IR (KBr), v/cm⁻¹: 3107 (v(C_{Ar}-H)); 2974, 2907 (v(C-H)); 1948, 1857 (v(C=O)); 1651 (v(C=O)); 1490, 1440 (v(C_{Ar}-C_{Ar})); 860, 815 (ω(C_{Ar}-H)). MS (EI, 70 eV), *m/z* (*I*_{rel} (%)): 327 [M]⁺ (1), 299 [M - CO]⁺ (2), 271 [M - 2 CO]⁺ (2), 243 [M - 3 CO]⁺ (20), 174 [M - Cr(CO)₃ - O - H]⁺ (100), 77 [Ph]⁺ (4), 52 [Cr]⁺ (8)). ¹H NMR, δ: 2.10 (s, 3 H, Me); 3.75 (br.q, 1 H, NCH₂, *J* = 7.0 Hz); 3.90–3.98 (m, 1 H, NCH₂); 4.14 (q, 1 H, OCH₂, *J* = 7.4 Hz); 4.34 (br.d, 1 H, OCH₂, *J* = 7.4 Hz, *J* = 5.1 Hz); 5.53 (dd, 2 H, *m*-H_{PhCr}, *J* = 9.8 Hz, *J* = 5.9 Hz); 5.66 (t, 1 H, *p*-H_{PhCr}, *J* = 5.9 Hz); 5.82, 5.99 (both d, 1 H each, *o*-H_{PhCr}, *J* = 6.7 Hz); 6.02 (s, 1 H, C<u>H</u>(Ph)).

η⁶-[(3-*tert***-Butyloxycarbonyl-1,3-oxazolidin-2-yl)benzene]chromium tricarbonyl (5b).** The yield was 71%, m.p. 128–129 °C. HPLC: one peak, $\tau = 7.9$ min. UV-Vis (MeCN, H₂O), λ/nm: 219, 313. IR (KBr), v/cm⁻¹: 3086 (v(C_{Ar}-H)); 3003, 2976, 2905 (v(C-H)); 1902, 1873 (v(C=O)); 1676 (v(C=O)); 1610, 1540 (v(C_{Ar}-C_{Ar})); 773, 670 (ω(C_{Ar}-H)). MS (EI, 70 eV), *m/z* (I_{rel} (%)): 385 [M]⁺ (1), 357 [M – CO]⁺ (1), 329 [M – 2 CO]⁺ (7), 301 [M – 3 CO]⁺ (26), 244 [M – 3 CO – Bu^t]⁺ (69), 174 [M – Cr(CO)₃ – OBu^t – 2 H]⁺ (100), 52 [Cr]⁺ (12). ¹H NMR, δ: 1.45 (s, 9 H, Bu^t); 3.46 (m, 1 H, NCH₂); 3.82–3.87 (m, 1 H, NCH₂); 4.03 (m, 1 H, OCH₂); 4.20–4.25 (m, 1 H, OCH₂); 5.53–5.57 (m, 2 H, *m*-H_{PhCr}); 5.68 (t, 1 H, *p*-H_{PhCr}, *J* = 6.3 Hz); 5.81 (d, 1 H, *o*-H_{PhCr}).

 η^{6} -[(3-Acetyl-1,3-oxazinan-2-yl)benzene]chromium tricarbonyl (5c). The yield was 53%, m.p. 110–111 °C. HPLC: one peak, $\tau = 5.0$ min. UV-Vis (MeCN, H₂O), λ /nm: 217, 315, 430. IR (KBr), v/cm⁻¹: 3103 (v(C_{Ar}-H)); 2993, 2937, 2873 (v(C-H)); 1971, 1894 (v(C=O)); 1653 (v(C=O)); 1487 (v(C_{Ar}-C_{Ar})); 887, 800 (ω (C_{Ar}-H)). MS (EI, 70 eV), *m/z* (*I*_{rel} (%)): 341 [M]⁺ (1), 313 [M - CO]⁺ (5), 285 [M - 2 CO]⁺ (26), 257 [M - 3 CO]⁺ (100), 229 [M - 3 CO - (CH₂)₂]⁺ (35), 158 [M - 3 CO -- (CH₂)₃N(CO)Me]⁺ (32), 52 [Cr]⁺ (28). ¹H NMR, δ : 2.18 (s, 3 H, Me); 1.62–1.78, 1.84–1.98 (both m, 1 H each, CH₂CH₂CH₂); 3.72–3.82, 3.86–4.00 (both m, 2 H each, NCH₂, OCH₂); 5.53–5.80 (m, 5 H, *o*,*m*,*p*-PhCr); 5.92 (br.s, 1 H, CH(Ph)).

η⁶-[(2-Ethyl-1,3-oxazolidin-3-yl)benzene]chromium tricarbonyl (7e). The yield was 30%, m.p. 111–112 °C. HPLC: one peak, $\tau = 6.3$ min. UV-Vis (MeCN, H₂O), λ /nm: 219, 317, 430. IR (KBr), ν /cm⁻¹: 3099 (ν (C_{Ar}-H)); 2955, 2935, 2876 (ν (C-H)); 1942, 1869 (ν (C=O)); 1549, 1464 (ν (C_{Ar}-C_{Ar})); 808, 682 (ω (C_{Ar}-H)). MS (EI, 70 eV): 313 [M]⁺ (29), 229 [M – 3 CO]⁺ (78), 199 [M – 3CO – CH₂O]⁺ (28), 148 [M – – Cr(CO)₃ – Et]⁺ (100), 52 [Cr]⁺ (20). ¹H NMR, δ: 0.97 (t, 3 H, Me, *J* = 7.4 Hz); 1.59–1.70, 1.79–1.90, 3.36–3.44, 3.47–3.55, 4.02–4.09, 4.11–4.18 (all m, 1 H each, CH₂Me, CH₂Me, NCH₂, NCH₂, OCH₂, OCH₂); 4.95–5.10 (m, 4 H, CH(Et), H_{PhCr}); 5.80–5.85 (m, 2 H, H_{PhCr}).

η⁶-[(2-Phenyl-1,3-oxazolidin-3-yl)benzene]chromium tricarbonyl (7f). The yield was 40%, m.p. 99–100 °C. HPLC: one peak, $\tau = 8.3$ min. UV-Vis (MeCN, H₂O), λ /nm: 217, 317. IR (KBr), ν /cm⁻¹: 3094 (ν (C_{Ar}-H)); 2955, 2924, 2876 (ν (C-H)); 1948, 1855 (ν (C=O)); 1547, 1477 (ν (C_{Ar}-C_{Ar})); 810, 756, 683 (ω (C_{Ar}-H)). MS (EI, 70 eV): 361 [M]⁺ (5), 277 [M – 3 CO]⁺ (72), 247 [M – 3 CO – CH₂O]⁺ (100), 143 [M – 3 CO – – CH₂CH₂OCH (Ph)]⁺ (66), 52 [Cr]⁺ (20). ¹H NMR, δ: 3.59 (dd, 1 H, NCH₂, J = 8.6 Hz, J = 6.7 Hz); 3.85 (dt, 1 H, NCH₂, $J = 8.6 \text{ Hz}, J = 6.3 \text{ Hz}); 4.04-4.28 \text{ (m, 2 H, OCH}_2); 4.69 \text{ (dd,} 1 \text{ H, } m\text{-}\text{H}_{\text{PhCr}}, J = 7.0 \text{ Hz}, J = 6.3 \text{ Hz}); 5.01 \text{ (t, 1 H, } o\text{-}\text{H}_{\text{PhCr}}, J = 6.3 \text{ Hz}); 5.14 \text{ (dd, 1 H, } m\text{-}\text{H}_{\text{PhCr}}, J = 7.0 \text{ Hz}, J = 6.3 \text{ Hz}); 5.66 \text{ (t, 1 H, } o\text{-}\text{H}_{\text{PhCr}}, J = 6.3 \text{ Hz}); 5.81 \text{ (s, 1 H, CHPh)}; 5.83 \text{ (t, 1 H, } o\text{-}\text{H}_{\text{PhCr}}, J = 7.0 \text{ Hz}); 7.36-7.47 \text{ (m, 3 H, } o,p\text{-}\text{H}_{\text{Ph}}); 7.48-7.58 \text{ (m, 2 H, } m\text{-}\text{H}_{\text{Ph}}).$

η⁶-[(2-Phenyl-1,3-oxazinan-3-yl)benzene]chromium tricarbonyl (7g). The yield was 19%, m.p. 116–117 °C. HPLC: one peak, $\tau = 13.3$ min. UV-Vis (MeCN, H₂O), λ /nm: 219, 318, 436. IR (KBr), ν /cm⁻¹: 3074 (ν (C_{Ar}-H)); 2918, 2853 (ν (C-H)); 1944, 1856 (ν (C=O)); 1606, 1532 (ν (C_{Ar}-C_{Ar})); 734, 692 (ω (C_{Ar}-H)). MS (EI, 70 eV), *m/z* (I_{rel} (%)): 375 [M]⁺ (2); 291 [M – 3 CO]⁺ (20); 233 [M – 3 CO – (CH₂)₃O]⁺ (100); 91 [M – Cr(CO)₃ – (CH₂)₃OCHPh]⁺ (16); 77 [M – Cr(CO)₃ – - (CH₂)₃OCH(Ph)N]⁺ (13); 52 [Cr]⁺ (24). ¹H NMR, δ: 1.60–1.70, 1.71–1.82, 3.50–3.61, 3.67–3.78, 3.89–4.01, 4.14–4.25 (all m, 1 H each, CH₂C<u>H₂CH₂</u>CH₂, CH₂CH₂, NCH₂, NCH₂, OCH₂, OCH₂); 5.52 (t, 1 H, *p*-H_{PhCr}, *J* = 6.3 Hz); 5.55–5.64 (m, 1 H, H_{PhCr}); 5.65–5.75 (m, 2 H, H_{PhCr}); 5.80 (s, 1 H, C<u>H</u>(Ph)); 5.97 (d, 1 H, *o*-H_{PhCr}, *J* = 6.7 Hz); 6.92–6.98 (m, 1 H, *m*-H_{Ph}); 7.16–7.29 (m, 4 H, *o*,*m*,*p*-H_{Ph}).

 $η^6$, $η^6$ -(1,3-Oxazolidine-2,3-diyl)bis[(benzene)chromium tricarbonyl] (7i) was obtained according to the general procedure from 2,3-diphenyl-1,3-oxazolidine 6f (24 mmol) and 4 (48 mmol). The formed mixture of products 7f and 7i was separated by column chromatography, eluting with a mixture of hexane—ethyl acetate (4 : 1). The yield of 7i was 35%, m.p. 167–168 °C. HPLC: one peak, τ = 8.1 min. UV-Vis, (MeCN, H₂O), λ /nm: 218, 317. IR (KBr), v/cm⁻¹: 3094 (v(C_{Ar}-H)); 2961, 2889, 2854 (v(C-H)); 1956, 1873 (v(C=O)); 1543, 1472 (v(C_{Ar}-C_{Ar})); 874, 800, 762 (ω(C_{Ar}-H)). MS (EI, 70 eV): 497

 Table 4. Crystallographic data, parameters of X-ray diffraction experiments and refinement for complexes 7f and 7i

Compound	7f	7i
Molecular formula	C ₁₈ H ₁₅ CrNO ₄	$C_{21}H_{15}Cr_2NO_7$
Molecular weight	361.31	497.34
Space group	<i>P</i> 2(1)2(1)2(1)	Cc
a/Å	6.2114(3)	11.0531(7)
b/Å	11.6366(6)	7.4932(5)
c/Å	22.0483(11)	23.5262(13)
a/deg	90	90
β/deg	90	91.915(3)
γ/deg	90	90
$V/Å^3$	1593.64(14)	1947.4(2)
Ż	4	4
$d_{\rm calc}/{\rm Mg}~{\rm m}^{-3}$	1.506	1.696
μ/mm^{-1}	0.739	1.162
θ -Range for data collection/deg	1.98-26.03	3.29-25.06
Number of reflections		
collected	13542	6408
unique with $I > 2\sigma(I)$	3131	3192
R _{int}	0.0320	0.0533
$GOOF(F^2)$	1.030	1.048
$R_1 (I \ge 2\sigma(I))$	0.0660	0.0758
wR_2 (all data)	0.1651	0.1994
Residual electron density $(\rho_{max}/\rho_{min})/e \text{ Å}^{-3}$	2.33/-0.88	1.20/-0.59

 $[M]^{+}(7), 413 [M - 3 CO]^{+}(9), 361 [M - Cr(CO)_{3}]^{+}(10), 329 [M - 6 CO]^{+}(38), 277 [M - 3 CO - Cr(CO)_{3}]^{+}(100), 247 [M - 3 CO - Cr(CO)_{3} - CH_{2}O]^{+}(22), 225 [M - 2 Cr(CO)_{3}]^{+}(21), 195 [M - 2 Cr(CO)_{3} - CH_{2}O]^{+}(15), 143 [M - 3 CO - Cr(CO)_{3} - CH_{2}CH_{2}OCH(Ph)]^{+}(18), 52 [Cr]^{+}(3). {}^{1}H NMR, 8: 3.54 (dd, 1 H, NCH_{2}, J = 16.0 Hz, J = 7.8 Hz); 3.76-3.83 (m, 1 H, NCH_{2}); 4.21-4.31 (m, 2 H, OCH_{2}); 5.13 (t, 1 H, p-H_{NPhCr}, J = 6.3 Hz); 5.19 (d, 2 H, o-H_{NPhCr}, J = 7.0 Hz); 5.50 (t, 2 H, m-H_{NPhCr}, J = 6.3 Hz); 5.80 (s, 1 H, CH_{2}(Ph)); 5.83-5.89 (m, 3 H, o,p-H_{CPhCr}); 6.00 (t, 2 H, m-H_{CPhCr}, J = 5.9 Hz).$

X-ray diffraction data for compounds **7f** and **7i** were collected on a Bruker D8 Quest diffractometer (Mo-K α radiation, $\lambda = 0.71073$ Å, ω -scan technique, T = 100 K (**7f**) and 200 K (**7i**)). Measurement and integration of experimental sets of intensities, absorption correction, and refinement of structures were carried out using the APEX3,²¹ SADABS,²² and SHELX²³ software packages. The structures were solved by the direct method and refined by the full-matrix least-squares method on F^2_{hkl} in anisotropic approximation for nonhydrogen atoms. Hydrogen atoms were placed in geometrically calculated positions and were refined isotropically with $U(H)_{iso} = 1.2U(C)_{eq}$ of their parent atoms. The structures of compounds **7f** and **7i** were refined as racemic twins with the ratio of isomer 50 : 50 and 80 : 20, respectively. The *RIGU* and *ISOR* instructions were used in the refinement to restrain the anisotropic parameters of atomic displacements.

The crystallographic data, parameters of the X-ray diffraction experiments and structure refinement details are given in Table 4. The structures were deposited with the Cambridge Crystallographic Data Center (CCDC 1879517 (**7f**) and 1879516 (**7i**)) and are available at ccdc.cam.ac.uk/structures.

The authors express their gratitude to the staff of the Chemical Department of the Lobachevsky State University of Nizhny Novgorod Yu. B. Malysheva and E. S. Shchegravina for recording the ¹H NMR spectra.

This work was financially supported by the Russian Science Foundation (Project No. 18-73-10092). X-ray diffraction studies were carried out in the framework of the Russian state assignment (Theme No. 44.2), using the equipment of The Analytical Center of IOMC RAS.

References

- L. I. Kas'yan, V. A. Pal'chikov, A. V. Tokar', Oksaazageterotsikly na osnove aminospirtov, epoksidov i aziridinov [Oxaazaheterocycles based on amino alcohols, epoxides, and aziridines], DNU, Dnepropetrovsk, 2012, 644 pp. (in Russian).
- 2. C. Ding, F. Zeng, J. Ni, B. Wang, Y. Xie, *Crystal Growth & Design*, 2012, **12**, 2089.

- A. Banerjee, S. Ganguly, T. Chattopadhyay, K. S. Banu, A. Patra, S. Bhattacharya, E. Zangrando, D. Das, *Inorg. Chem.*, 2009, 48, 8695.
- 4. T. Mino, S. Hata, K. Ohtaka, M. Sakamoto, T. Fujita, *Tetrahedron Lett.*, 2001, **42**, 4837.
- 5. Y. Okuyama, H. Nakano, H. Hongo, *Tetrahedron Asymmetry*, 2000, **11**, 1193.
- 6. A. N. Artemov, E. V. Sazonova, E. A. Mavrina, N. Yu. Zarovkina, *Russ. Chem. Bull.*, 2012, **61**, 2076.
- A. N. Artemov, E. V. Sazonova, N. Yu. Zarovkina, *Russ. Chem. Bull.*, 2013, **62**, 1382.
- 8. N. Yu. Zarovkina, E. V. Sazonova, A. N. Artemov, G. K. Fukin, *Russ. Chem. Bull.*, 2014, **63**, 970.
- 9. N. Yu. Zarovkina, E. V. Sazonova, A. N. Artemov, G. K. Fukin, *Russ. Chem. Bull.*, 2015, **64**, 923.
- N. Yu. Grishina, E. V. Sazonova, A. N. Artemov, G. K. Fukin, V. I. Faerman, *Russ. Chem. Bull.*, 2017, 66, 313.
- A. N. Artemov, E. V. Sazonova, N. A. Krylova, E. A. Zvereva, N. A. Pechen, G. K. Fukin, A. V. Cherkasov, V. I. Faerman, N. Yu. Grishina, *Russ. Chem. Bull.*, 2018, 67, 884.
- M. D. Raush, G. A. Moser, E. S. Zaiko, A. L. Lipman, J. Organomet. Chem., 1970, 23, 185.
- K. H. Pannel, B. L. Kalsotra, C. Parkanyi, J. Heterocycl. Chem., 1978, 15, 1057.
- 14. S. G. Kon'kova, A. E. Badasyan, O. S. Attaryan, A. Kh. Khachatryan, M. S. Sargsyan, V. V. Dovlatyan, Arm. Zh. Khim. [Arm. Chem. J.], 1997, 50, 161 (in Russian).
- D. S. Tarbell, Yu. Yamamoto, B. M. Pope, *Proc. Nat. Acad. Sci. USA*, 1972, **69**, 730.
- L. J. Farrugia, C. Evans, D. Lentz, M. Roemer, J. Am. Chem. Soc., 2009, 131, 1251.
- A. Weissberger, E. Proskauer, J. A. Riddick, E. E. Toops Jr., Organic Solvents; Physical Properties and Methods of Purification, Intersci. Publ. Inc., New York—London, 1955, 552 pp.
- 18. M. Meltsner, E. Waldman, J. Am. Chem. Soc., 1940, 62, 3494.
- H. Yin, M. Jin, W. Chen, C. Chen, *Tetrahedron*, 2012, 53, 1265.
- M. D. Rausch, G. A. Moser, E. S. Zaiko, A. L. Lipman, J. Organomet. Chem., 1970, 23, 185.
- 21. Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
- 22. L. Krause, R. Herbst-Irmer, G.M. Sheldrick, D. Stalke, *J. Appl. Cryst.*, 2015, **48**, 3.
- 23. G. M. Sheldrick, Acta Crystallogr., Sect. C, 2015, 71, 3.

Received December 12, 2018; in revised form April 9, 2019; accepted April 12, 2019