Lithiation of 1-alkynyl-1-chlorocyclopropanes and subsequent reactions with electrophilic reagents: synthesis of functionalized alkynyl- and vinylidenecyclopropanes

V. D. Gvozdev,* K. N. Shavrin, and O. M. Nefedov

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. Fax: +7 (499) 135 5328. E-mail: vgvozdev2006@yandex.ru

1-Alkynyl-1-chlorocyclopropanes undergo chlorine-lithium exchange on treatment with Bu^nLi in THF at -40-0 °C. Thus generated organolithium species react with carbon dioxide (dry ice) and acetone to give selectively hitherto unknown 1-alkynylcyclopropanecarboxylic acids and the corresponding alcohols in up to 74% yields. Similar reactions involving methyl chloroformate result in the mixtures of cyclopropylacetylenic and vinylidenecyclopropanic esters, while the use of aliphatic aldehydes as electrophiles provides secondary allenic alcohols in up to 64% yields.

Key words: 1-alkynyl-1-chlorocyclopropanes, *n*-butyllithium, lithiation, electrophilic reactions, regioselectivity, functionalized alkynylcyclopropanes, functionalized vinylidenecyclopropanes.

At present, alkynylcyclopropanes bearing functional groups at the three-membered cycle attract great attention of the researchers. These compounds are widely used in various chemical transformations¹⁻¹⁵ and exhibit valuable pharmacological activities.¹⁶⁻¹⁸ Vinvlidenecvclopropanes that are isomeric to alkynylcyclopropanes are the important building blocks extensively used in organic synthesis.¹⁹ One of the types of alkynylcyclopropanes promising from a synthetic viewpoint is 1-alkynyl-1chlorocyclopropanes that can be readily and efficiently accessed by [1+2] cycloaddition of alkynylchlorocarbenes to the alkene double bonds.^{20,21} 1-Alkynyl-1-chlorocyclopropanes bearing such highly reactive moieties as the triple bond, cyclopropane ring, and the chlorine atom at the propargylic position were earlier subjected to hydrogenation,^{22,23} dehydrochlorination to give conjugated alkynylcyclopropenes,²⁴ cycloaddition to the triple bond,²⁵ and cross-coupling with organozinc reagents.²⁶ A numerous examples of their transformation involving oxygen-,²⁷ nitrogen-,^{9,24} and sulfur-centered nucleophiles²⁸ that proceed following elimination-addition mechanism are known. An unusual domino-reaction between alkynylchlorocycloprpanes and lithium derivatives of diaminoalkanes involving all the three reaction centers of the former to produce nitrogen-containing bicyclic systems was also reported.10,29

Another approach for functionalization of 1-alkynyl-1-chlorocyclopropanes is the chlorine-lithium exchange followed by the reaction of the generated organolithium compounds with electrophilic reagents. Note that this approach was approved only for 1-(trimethylsilylethynyl)-1-chlorocyclopropanes^{30,31} and was not systematically studied to date. At the same time, it is known³² that allenylpropargyllithium intermediates generated upon these reactions are complex equilibrium mixtures of different structures, therefore, depending on the reaction conditions their reactions with electrophiles can result in either cyclopropylacetylenic or vinylidenecyclopropanic products.

Therefore, it would be interesting to study in-depth peculiarities of lithiation of different 1-alkynyl-1-chlorocyclopropanes and regioselectivity of the reactions of thus generated lithium species with a variety of electrophilic reagents.

Results and Discussion

Our study revealed that addition of small excess (1.1 equiv.) of BuⁿLi solution in hexane to a solution of chlorocyclopropane **1a** in THF at $-40 \div -30$ °C followed by treatment of the reaction mixture with dry ice results in previously unknown cyclopropanecarboxylic acid **2a** in 74% yield (Scheme 1). This compound was isolated pure by the conventional aqueous workup of the reaction mixture, acidification of the aqueous layer, and subsequent extraction. It is of note that performing the reaction at lower temperatures dramatically decreases the yield of acid **2a** due to low conversion of the starting compound. Thus,

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1384-1390, July, 2019.

1066-5285/19/6807-1384 © 2019 Springer Science+Business Media, Inc.

1, 2: R¹ = Ph, R² = H (**a**), Me (**b**); R¹ = Bu^t, R² = Me (**c**); R¹ = Buⁿ, R² = Me (**d**)

Reagents and conditions: i. THF, BuⁿLi (1 equiv.), -40÷-30 °C; ii. THF, BuⁿLi (1 equiv.), 0 °C; iii. 1) CO₂, 2) HCl, H₂O.

lithiation of cyclopropane **1a** with BuⁿLi at $-70 \div -60$ °C for 5 h followed by addition of CO₂ gives acid **2a** in only 30% yield and GC analysis of the reaction mixture reveals the presence of large amount of unreacted **1a**.

Similarly, cyclopropane **1b** bearing four methyl groups at the cyclopropane ring was converted to the corresponding acid **2b** in 68% yield. In contrast, cyclopropanes **1c**,**d** react with BuⁿLi at -30 °C very slowly (CG analysis data) and their transformation into acids **2c**,**d** requires elevation of the reaction temperature to 0 °C (see Scheme 1). Apparently, the chlorine-lithium exchange in cyclopropanes **1c**,**d** is hindered since electronegativity of the alkylethynyl groups is lower than that of the phenylethynyl one.

When the isomeric mixtures of unsymmetrically substituted chlorocyclopropanes 1e-g were used as the starting materials, the corresponding acids 2e-g were prepared (Scheme 2). In all the cases, the isomeric compositions of products 2e-g were close to those of the starting chlorides. For instance, chlorocyclopropane 1e (*trans*-1e : *cis*-1e == 1.12 : 1) produces a 1.2 : 1 mixture of acids *trans*-2e and *cis*-2e in 54% overall yield. Similarly, reactions of the isomeric mixtures of cyclopropanes 1f and 1g (*trans* : *cis* ratio of 1.2 : 1 and 1.4 : 1, respectively) give the corresponding acids 2f and 2g with *trans* : *cis* ratios of 1.1 : 1 and 1.5 : 1, respectively. Thus, the efficiency of metalation and subsequent carboxylation of both isomers of cyclopropanes 1e—g is nearly equal.

We demonstrated that functionalization of alkynylchlorocyclopropanes 1 by lithiation and subsequent reactions with electrophilic reagents is of general character; however, the composition of the products dramatically depends on the nature of the compounds used. Thus, lithiation of cyclopropane 1a in THF followed by addition of anhydrous acetone produces the corresponding tertiary alcohol 3 in 38% yield (Scheme 3). The low yield of compound 3 is apparently due to the side deprotonation of acetone to give hydrocarbon 4 in approximately the same amount as compound 3. The formation of compound 4 was confirmed by the presence of the three characteristic doublets of doublets of the cyclopropane protons in the NMR ¹H spectrum of

Reagents and conditions: i. THF, BuⁿLi (1 equiv.), -40÷-30 °C; ii. THF, BuⁿLi (1 equiv.), 0 °C; iii. 1) CO₂, 2) HCl, H₂O.

the reaction mixture and the peak with m/z 170 corresponding to the molecular ion of **4** in the mass spectrum.

Scheme 3

Reagents and conditions: *i*. THF, BuⁿLi (1 eqiuv.), $-40 \div -30$ °C; *ii*. 1) Me₂CO, 2) H₂O.

When methyl chloroformate was used as an electrophile, all the reactions give the mixtures of two products in 67–71% overall yields. According to the spectroscopy data, these products were identified as isomeric acetylenic (5a-c) and allenic (6a-c) esters (Scheme 4). The ratios of isomers 5 and 6 determined from NMR spectra of the reaction mixtures do not depend on the cyclopropane ring substitution pattern and were equal to 2 : 1 for both dimethyl-substituted cyclopropane 1a and its tetramethylsubstituted analog 1b. The reaction of cyclopropane 1c with BuⁿLi and methyl chloroformate results in a 2.6 : 1 mixture of compounds 5c and 6c in the overall yield of 68%. Thus, the regioselectivity of introduction of the methoxycarbonyl group is only weakly affected by the replacement of the phenyl group at the triple bond by the bulkier electron-donating *tert*-butyl substituent.

Pure compounds **5** and **6** were easily isolated from the obtained product mixtures by silica gel column chromatography. This result allows us to consider the studied reaction as a convenient method to access both cyclopropylacetylenic esters **5** and their hitherto unknown vinylidenecyclopropanic isomers **6**.

The formation of vinylidenecyclopropanic derivatives was most pronounced when aliphatic aldehydes were used as the electrophiles. Thus, the reaction of cyclopropane 1a with Bu^nLi at -30 °C in THF followed by addition of excess acetaldehyde gives allenic alcohol 7a isolated by silica gel column chromatography in 58% yield. According to NMR spectroscopy of the reaction mixture, cyclopropylacetylenic derivative isomeric to alcohol 7a was formed only in the trace amounts (<5%). Lithium species generated from cyclopropanes 1a and 1b react with butyraldehyde equally selectively to give the corresponding alcohols 7b and 7c in the 55–64% yields (Scheme 5). It is of note that owing to two stereogenic moieties (the allenic moiety with four different substituents and the carbon atom bearing the hydroxy group) compounds 7a and 7b are the 1:1 mixtures of two diastereomers. This fact agrees well with earlier described³³ formation of allenic alcohols upon the reaction of lithium derivatives generated by deprotonation of (arylethynyl)cyclopropanes with aromatic and aliphatic aldehydes.

In summary, in the present work we demonstrated that lithiation of alkynylchlorocyclopropanes 1 followed by the reactions of generated species with electrophilic reagents is of general character and can be considered as an efficient synthetic approach to functionalized alkynyland vinylidenecyclopropanes. The regioselectivity of the reactions substantially depends on the nature of the electrophile used.

Reagents and conditions: *i*. THF, BuⁿLi (1 equiv.), -40÷-30 °C; *ii*. THF, BuⁿLi (1 equiv.), 0 °C; *iii*. 1) ClCOOMe, 2) H₂O.

1: $R^1 = H$ (**a**), Me (**b**) **7:** $R^1 = H$, $R^2 = Me$ (**a**), Pr (**b**); $R^1 = Me$, $R^2 = Pr$ (**c**)

Reagents and conditions: i. THF, BuⁿLi (1 equiv.), $-40 \div -30$ °C; ii. 1) R²CHO, 2) H₂O.

Experimental

The starting compounds and the synthesized products were analyzed by GC using a Hewlett—Packard 5890 Series II system equipped with an HP-1 capillary column (30 m×0.153 mm) and a Hewlett—Packard 3396A series II integrator. ¹H and ¹³C NMR spectra were run on a Bruker AC-200p spectrometer in CDCl₃; the chemical shifts are given in the δ scale relative to SiMe₄ as an internal standard.

High resolution electrospray ionization (ESI) mass spectrometry was performed with a Bruker micrOTOF II instrument operating in a positive ion mode (capillary voltage of -4500 V). Masses were scanned in the range from m/z 50 Da to m/z 3000 Da, external or internal calibrations were performed with an Electrospray Calibrant Solution (Fluka). The samples were prepared in MeCN and injected into the mass spectrometer *via* syringe inlet at a flow rate of 3 µL min⁻¹. The nebulizer gas was nitrogen (4 L min⁻¹), the capillary temperature was set at 180 °C.

Tetrahydrofuran was dried by distillation over LiAlH_4 immediately prior to use. The starting cyclopropane **1a** was synthesized from 1,3,3,3-tetrachloropropylbenzene and 2-methylpropene according to our previous work.²¹ Cyclopropanes **1b**—**g** were synthesized from the corresponding 1,1-dichloroalk-2-ynes and alkenes as described earlier.²⁰

Synthesis of 1-alkynylcyclopropanecarboxylic acids 2a-g from 1-alkynyl-1-chlorocyclopropanes 1a-g (general procedure). To a solution of chlorocyclopropane 1a-g (1 mmol) in anhydrous THF (5 mL), a 1.6 *M* solution of in hexane (0.69 mL, 1.1 mmol of BuⁿLi) was added at either $-30\div-40$ °C (compounds 1a-c) or 0 °C (compounds 1d-g) under dry argon. The resulting mixture was stirred at this temperature for 30 min and excess of dry ice was added. After warming up to room temperature, water (10 mL) and Et₂O (30 mL) were added and the organic layer was separated. The aqueous layer was acidified with diluted HCl and the precipitated product was extracted with CH₂Cl₂ (2×10 mL). The combined organic layers were dried with anhydrous Na₂SO₄. Removal of the volatiles *in vacuo* afforded acids 2a-g, which were purified by recrystallization from hexane or vacuum microdistillation if necessary.

2,2-Dimethyl-1-(phenylethynyl)cyclopropanecarboxylic acid (**2a**) was synthesized in the 74% yield from cyclopropane **1a**. Found (%): C, 78.28; H, 6.71. $C_{14}H_{14}O_2$. Calculated (%): C, 78.48; H, 6.59. ¹H NMR, δ : 1.28 (d, 1 H, C<u>H</u>H, *J* = 4.6 Hz); 1.36 (s, 3 H, CH₃); 1.49 (s, 3 H, CH₃); 1.84 (d, 1 H, C<u>H</u>H, *J* = 4.6 Hz); 7.24–7.35 (m, 3 H, H_m, H_p, Ph); 7.38–7.51 (m, 2 H, H_o, Ph); 9.60 (br.s, 1 H, COOH). ¹³C NMR, δ : 19.6 (CH₃), 24.3 (CH₃), 27.7 (<u>C</u>COOH), 32.0 (CH₂), 33.2 (<u>C</u>(CH₃)₂), 81.7, 87.3 (C=C), 123.3 (C(1), Ph), 127.9 (C(4), Ph), 128.2, 131.7 (C(2), C(3), C(5), C(6), Ph), 176.9 (COOH).

2,2,3,3-Tetramethyl-1-(phenylethynyl)cyclopropanecarboxylic acid (2b) was synthesized in the 68% yield from cyclopropane **1b**. Found (%): C, 79.16; H, 7.58. $C_{16}H_{18}O_2$. Calculated (%): C, 79.31; H, 7.49. ¹H NMR, δ : 1.38 (s, 6 H, 2 CH₃); 1.40 (s, 6 H, 2 CH₃); 7.25–7.36 (m, 3 H, H_m, H_p, Ph); 7.37–7.50 (m, 2 H, H_o, Ph); 9.32 (br.s, 1 H, COOH). ¹³C NMR, δ : 17.9 (2 CH₃), 20.8 (2 CH₃), 33.6 (<u>C</u>COOH), 37.5 (2 <u>C</u>(CH₃)₂), 83.4, 87.2 (C=C), 123.6 (C(1), Ph), 127.9 (C(4), Ph), 128.3, 131.8 (C(2), C(3), C(5), C(6), Ph), 175.7 (COOH).

1-(3,3-Dimethylbut-1-ynyl)-2,2,3,3-tetramethylcyclopropanecarboxylic acid (2c) was synthesized in the 66% yield from cyclopropane **1c**. Product **2c** was purified by recrystallization from hexane. Found (%): C, 77.85; H, 9.79. $C_{14}H_{22}O_2$. Calculated (%): C, 75.63; H, 9.97. ¹H NMR, δ : 1.17 (s, 9 H, C(CH₃)₃); 1.18 (s, 6 H, 2 CH₃); 1.23 (s, 6 H, 2 CH₃); 10.63 (br.s, 1 H, COOH). ¹³C NMR, δ : 17.8 (2 CH₃), 20.5 (2 CH₃), 27.7 (<u>C</u>(CH₃)₃), 31.2 (C(<u>C</u>H₃)₃), 33.1 (<u>C</u>COOH), 35.6 (2 <u>C</u>(CH₃)₂), 75.5, 92.6 (C=C), 175.7 (COOH).

1-(Hex-1-ynyl)-2,2,3,3-tetramethylcyclopropanecarboxylic acid (2d) was synthesized in the 47% yield from cyclopropane **1d**. The pure product was isolated by vacuum microdistillation (bath temperature of 150–170 °C, 1 Torr). Found (%): C, 77.72; H, 10.06. $C_{14}H_{22}O_2$. Calculated (%): C, 75.63; H, 9.97. ¹H NMR, δ : 0.90 (t, 3 H, CH₃ of Bu, J = 7.0 Hz); 1.25 (s, 6 H, 2 CH₃); 1.30 (s, 6 H, 2 CH₃); 1.36–1.55 (m, 4 H, CH₃CH₂CH₂); 2.26 (t, 2 H, C=CCH₂, J = 6.9 Hz); 10.35 (br.s, 1 H, COOH). ¹³C NMR, δ : 13.6 (CH₃ of Bu), 17.9 (2 CH₃), 18.7 (C=CCH₂), 20.7 (2 CH₃), 22.1 (CH₂), 31.1 (CH₂), 33.4 (CCOOH), 35.7 (2 C(CH₃)₂), 76.9, 84.0 (C=C), 175.6 (COOH). **2,2,3-Trimethyl-1-(phenylethynyl)cyclopropanecarboxylic acid (2e)** was synthesized in the 54% yield from cyclopentane **1e** as a mixture of two stereoisomers (*trans*-**2e** : *cis*-**2e** = 1.2 : 1). Product **2e** was isolated by recrystallization from hexane. Found (%): C, 79.06; H, 6.89. $C_{15}H_{16}O_2$. Calculated (%): C, 78.92; H, 7.06.

 $\frac{(1R^*, 3S^*)-\text{Isomer}(trans-2e)}{(1R^*, 3S^*)-\text{Isomer}(trans-2e)} \stackrel{1}{\to} \text{NMR}, \delta: 1.34 (s, 3 H, CH_3); 1.35 (s, 3 H, CH_3); 1.37 (d, 3 H, CHCH_3, J = 6.4 Hz); 2.03 (q, 1 H, CHCH_3, J = 6.4 Hz); 7.26-7.37 (m, 3 H, H_m, H_p, Ph); 7.41-7.54 (m, 2 H, H_o, Ph); 11.60 (br.s, 1 H, COOH). \stackrel{13}{\to} \text{CNMR}, \delta: 9.6 (CHCH_3), 18.2 (CH_3), 21.2 (CH_3), 32.1 (CCOOH), 33.8 (CHCH_3), 36.6 (C(CH_3)_2), 81.0, 84.2 (C=C), 123.4 (C(1), Ph), 127.9 (C(4), Ph), 128.2, 131.8 (C(2), C(3), C(5), C(6), Ph), 177.4 (COOH).$

<u>(1*R**,3*R**)-Isomer (*cis*-**2e**).</u> ¹H NMR, δ : 1.24 (d, 3 H, CHC<u>H</u>₃, *J* = 6.4 Hz); 1.37 (s, 3 H, CH₃); 1.52 (s, 3 H, CH₃); 1.71 (q, 1 H, C<u>H</u>CH₃, *J* = 6.4 Hz); 7.26–7.37 (m, 3 H, H_m, H_p, Ph); 7.41–7.54 (m, 2 H, H_o, Ph); 11.60 (br.s, 1 H, COOH). ¹³C NMR, δ : 8.8 (CH<u>C</u>H₃), 15.1 (CH₃), 26.1 (CH₃), 29.1 (<u>C</u>COOH), 36.0 (<u>C</u>(CH₃)₂), 40.5 (<u>C</u>HCH₃), 84.9, 88.9 (C=C), 123.4 (C(1), Ph), 127.8 (C(4), Ph), 128.2, 131.7 (C(2), C(3), C(5), C(6), Ph), 176.2 (COOH).

1-(3,3-Dimethylbut-1-ynyl)-2,2,3-trimethylcyclopropanecarboxylic acid (2f) was synthesized in the 62% yield from cyclopropane 1f as a mixture of two stereoisomers (*trans*-2f : *cis*-2f = = 1.1 : 1). Found (%): C, 74.82; H, 9.83. $C_{13}H_{20}O_2$. Calculated (%): C, 74.96; H, 9.68.

<u>(1*R**,3*S**)-Isomer (*trans*-**2f**). ¹H NMR, δ : 1.09 (d, 3 H, CHC<u>H</u>₃, *J* = 6.3 Hz); 1.18 (s, 3 H, CH₃); 1.24 (s, 9 H, 3 CH₃); 1.25 (s, 3 H, CH₃); 1.79 (q, 1 H, C<u>H</u>CH₃, *J* = 6.3 Hz); 10.65 (br.s, 1 H, COOH). ¹³C NMR, δ : 9.6 (CHC<u>H</u>₃), 18.0 (CH₃), 21.0 (CH₃), 27.6 (<u>C</u>(CH₃)₃), 31.3 (C(<u>C</u>H₃)₃), 31.6 (<u>C</u>COOH), 32.3 (<u>C</u>HCH₃), 34.7 (<u>C</u>(CH₃)₂), 73.4, 93.2 (C=C), 177.4 (COOH).</u>

 $\frac{(1R^*, 3R^*)-\text{Isomer} (cis-2f).}{(1R^*, 3R^*)-\text{Isomer} (cis-2f).} ^{1}\text{H NMR}, \delta: 1.21 (s, 9 H, 3 CH_3); 1.23 (s, 3 H, CH_3); 1.26 (d, 3 H, CHCH_3, J = 6.3 Hz); 1.27 (s, 3 H, CH_3); 1.43 (q, 1 H, CHCH_3, J = 6.3 Hz); 10.65 (br.s, 1 H, COOH). ^{13}C NMR, \delta: 8.7 (CHCH_3), 15.1 (CH_3), 25.9 (CH_3), 27.6 (C(CH_3)_3), 28.6 (CCOOH), 31.3 (C(CH_3)_3), 34.2 (C(CH_3)_2), 39.5 (CHCH_3), 77.5, 89.8 (C=C), 176.0 (COOH).$

1-(3,3-Dimethylbut-1-ynyl)-2,3-dimethylcyclopropanecarboxylic acid (2g) was synthesized in the 54% yield from cyclopropane 1g as a mixture of two stereoisomers (*trans*-2g : *cis*-2g = = 1.5 : 1). Found (%): C, 74.36; H, 9.24. $C_{12}H_{18}O_2$. Calculated (%): C, 74.19; H, 9.34.

 $\frac{(1r^*, 2R^*, 3S^*) \text{-Isomer } (trans-2g).}{1 \text{H NMR, } \delta: 1.07-1.12}$ (m, 6 H, 2 CHCH₃); 1.25 (s, 9 H, 3 CH₃); 1.78-1.90 (m, 2 H, 2 CHCH₃); 10.33 (br.s, 1 H, COOH). ¹³C NMR, $\delta: 8.8$ (2 CHCH₃), 26.6 (CCOOH), 27.8 (C(CH₃)₃), 29.3 (2 CHCH₃), 31.4 (C(CH₃)₃), 71.7, 94.4 (C=C), 179.2 (COOH).

<u>(1s*,2*R**,3*S**)-Isomer (*cis*-**2g**). ¹H NMR, δ : 1.19 (s, 9 H, 3 CH₃); 1.20–1.25 (m, 6 H, 2 CHC<u>H₃</u>); 1.78–1.90 (m, 2 H, 2 C<u>H</u>CH₃); 10.33 (br.s, 1 H, COOH). ¹³C NMR, δ : 7.5 (2 CH<u>C</u>H₃), 22.8 (<u>C</u>COOH), 27.4 (<u>C</u>(CH₃)₃), 31.2 (C(<u>C</u>H₃)₃), 33.5 (2 <u>C</u>HCH₃), 79.9, 88.3 (C=C), 175.5 (COOH).</u>

Synthesis of esters 5a and 6a from cyclopropane 1a. To a solution of chlorocyclopropane 1a (410 mg, 2 mmol) in anhydrous THF (5 mL), a 1.6 M solution of BuⁿLi in hexane (1.38 mL, 2.2 mmol of BuⁿLi) was added at $-30 \div -40$ °C under dry argon. The resulting mixture was stirred at this temperature for 30 min and a solution of methyl chloroformate (208 mg, 2.2 mmol) in anhydrous THF (1 mL) was added. After warming up to room temperature, water (10 mL) and Et₂O (30 mL) were added and the organic layer was separated. The aqueous layer was extracted with Et₂O (10 mL) and the combined organic layers were dried with anhydrous Na₂SO₄. Removal of the volatiles *in vacuo* gave a yellow liquid residue containing ~80% of esters **5a** and **6a** in a 2.1 : 1 ratio (GC analysis data). Purification of this residue by silica gel column chromatography (elution with hexane—Et₂O, 20 : 1 \rightarrow 10 : 1) afforded 205 mg (45%) of compound **5a** and 102 mg (22%) of compound **6a**.

Methyl 2,2-dimethyl-1-(phenylethynyl)cyclopropanecarboxylate (5a). MS (ESI), found: m/z 229.1228. Calculated for $C_{15}H_{16}O_2$, [M + H]: 229.1223. ¹H NMR, δ : 1.20 (d, 1 H, C<u>H</u>H, J = 4.5 Hz); 1.28 (s, 3 H, CH₃); 1.47 (s, 3 H, CH₃); 1.81 (d, 1 H, C<u>H</u>H, J = 4.5 Hz); 3.79 (s, 3 H, OCH₃); 7.26–7.36 (m, 3 H, H_m, H_p, Ph); 7.40–7.51 (m, 2 H, H_o, Ph). ¹³C NMR, δ : 19.6 (CH₃), 24.0 (CH₂), 27.7 (<u>C</u>COOH), 31.1 (CH₃), 31.6 (<u>C</u>(CH₃)₂), 52.7 (OCH₃), 81.2, 88.0 (C=C), 123.5 (C(1), Ph), 127.8 (C(4), Ph), 128.2, 131.7 (C(2), C(3), C(5), C(6), Ph), 170.7 (<u>C</u>OOCH₃).

Methyl 3-(2,2-dimethylcyclopropylidene)-2-phenylacrylate (6a). MS (ESI), found: m/z 229.1226. Calculated for $C_{15}H_{16}O_2$, [M + H]: 229.1223. ¹H NMR, δ : 1.44 (s, 3 H, CH₃); 1.46 (s, 3 H, CH₃); 1.89 (d, 1 H, C<u>H</u>H, J = 6.4 Hz); 1.94 (d, 1 H, C<u>H</u>H, J = 6.4 Hz); 3.80 (s, 3 H, OCH₃); 7.23-7.59 (m, 5 H, Ph). ¹³C NMR, δ : 24.3 (CH₃), 24.6 (CH₃), 27.1 (CH₂), 28.8 (<u>C</u>(CH₃)₂), 52.0 (OCH₃), 89.5 (PhC=C=<u>C</u>), 103.2 (Ph<u>C</u>=C=C), 126.9, 128.1, 128.2 (C(2), C(3), C(4), C(5), C(6), Ph), 134.2 (C(1), Ph), 167.9 (<u>C</u>OOCH₃), 194.3 (C=<u>C</u>=C).

Similarly, a 2 : 1 mixture of esters **5b** and **6b** was synthesized from cyclopropane **1b**. Silica gel column chromatography (elution with hexane— Et_2O , 20 : 1 \rightarrow 10 : 1) of this mixture afforded 261 mg (51%) of compound **5b** and 102 mg (20%) of compound **6b**.

Methyl 2,2,3,3-tetramethyl-1-(phenylethynyl)cyclopropanecarboxylate (5b). MS (ESI), found: m/z 257.1529. Calculated for C₁₇H₂₀O₂, [M + H]: 257.1536. ¹H NMR, δ : 1.35 (s, 12 H, 4 CH₃); 3.74 (s, 3 H, OCH₃); 7.21–7.34 (m, 3 H, H_m, H_p, Ph); 7.41–7.49 (m, 2 H, H_o, Ph). ¹³C NMR, δ : 18.1 (2 CH₃), 20.4 (2 CH₃), 33.6 (<u>C</u>COOCH₃), 35.1 (2 <u>C</u>(CH₃)₂), 52.1 (OCH₃), 82.7, 87.6 (C=C), 123.7 (C(1), Ph), 127.7 (C(4), Ph), 128.2, 131.7 (C(2), C(3), C(5), C(6), Ph), 169.7 (<u>C</u>OOCH₃).

Methyl 3-(tetramethylcyclopropylidene)-2-phenylacrylate (**6b).** MS (ESI), found: m/z 257.1539. Calculated for $C_{17}H_{20}O_2$, [M + H]: 257.1536. ¹H NMR, δ : 1.43 (s, 6 H, 2 CH₃); 1.46 (s, 6 H, 2 CH₃); 3.78 (s, 3 H, OCH₃); 7.17–7.38 (m, 3 H, H_m, H_p, Ph); 7.52–7.60 (m, 2 H, H_o, Ph). ¹³C NMR, δ : 21.5 (2 CH₃), 21.7 (2 CH₃), 36.6 (2 <u>C</u>(CH₃)₂), 51.9 (OCH₃), 97.2 (PhC=C=<u>C</u>), 102.5 (Ph<u>C</u>=C=C), 126.6, 128.0, 128.1 (C(2), C(3), C(4), C(5), C(6), Ph), 134.7 (C(1), Ph), 168.2 (<u>C</u>OOCH₃), 192.5 (C=<u>C</u>=C).

Similarly, a 2.6 : 1 mixture of esters **5c** and **6c** was synthesized from cyclopropane **1c**. Silica gel column chromatography (elution with hexane— Et_2O , 30 : 1) of this mixture afforded 225 mg (48%) of compound **5c** and 94 mg (20%) of compound **6c**.

Methyl 1-(3,3-dimethylbut-1-ynyl)-2,2,3,3-tetramethylcyclopropanecarboxylate (5c). MS (ESI), found: m/z 237.1853. Calculated for C₁₅H₂₃O₂, [M + H]: 237.1849. ¹H NMR, δ : 1.17 (s, 6 H, 2 CH₃); 1.18 (s, 9 H, C(CH₃)₃); 1.20 (s, 6 H, 2 CH₃); 3.62 (s, 3 H, OCH₃). ¹³C NMR, δ : 17.9 (2 CH₃), 19.9 (2 CH₃), 27.5 (<u>C</u>(CH₃)₃), 31.0 (C(<u>C</u>H₃)₃), 32.8 (<u>C</u>COOCH₃), 33.1 (2 <u>C</u>(CH₃)₂), 51.6 (OCH₃), 75.6, 91.0 (C=C), 170.0 (<u>C</u>OOCH₃).

Methyl 2-*tert*-butyl-3-(tetramethylcyclopropylidene)acrylate (6c). MS (ESI), found: m/z 237.1845. Calculated for $C_{15}H_{23}O_2$,

[M + H]: 237.1849. ¹H NMR, δ : 1.14 (s, 9 H, C(CH₃)₃); 1.28 (s, 6 H, 2 CH₃); 1.31 (s, 6 H, 2 CH₃); 3.59 (s, 3 H, OCH₃). ¹³C NMR, δ : 20.9 (2 CH₃), 21.0 (2 CH₃), 29.5 (C(<u>C</u>H₃)₃), 33.0, 33.3 (<u>C</u>(CH₃)₃, 2 <u>C</u>(CH₃)₂), 50.8 (OCH₃), 96.8 (Bu^tC=C=<u>C</u>), 109.3 (Bu^t<u>C</u>=C=C), 167.8 (<u>C</u>OOCH₃), 190.4 (C=<u>C</u>=C).

Synthesis of alcohols 3 and 7a–c from 1-alkynyl-1-chlorocyclopropanes 1a,b (general procedure). To a solution of chlorocyclopropane 1a,b (1 mmol) in anhydrous THF (5 mL), a 1.6 Msolution of BuⁿLi in hexane (0.69 mL, 1.1 mmol of BuⁿLi) was added at -30÷-40 °C under dry argon. The resulting mixture was stirred at this temperature for 30 min and a solution of the corresponding carbonyl compound (acetaldehyde, acetone, butyraldehyde) (1.2 mmol) in anhydrous THF (1 mL) was added. After warming up to room temperature, water (10 mL) and CH₂Cl₂ (30 mL) were added, and the organic layer was separated. The aqueous layer was extracted with CH₂Cl₂ (3×10 mL), the combined organic layers were dried with anhydrous Na₂SO₄, and concentrated *in vacuo*. Purification of the residue by silica gel column chromatography afforded products 3 and 7a–c.

2-[2,2-Dimethyl-1-(phenylethynyl)cyclopropyl]propan-2-ol (3) was synthesized in the 38% yield from cyclopropane **1a** and acetone. Product **3** was isolated by silica gel column chromatography (elution with hexane—Et₂O, 20 : 1). MS (ESI), found: m/z 229.1584. Calculated for C₁₆H₂₀O, [M + H]: 229.1587. ¹H NMR, δ : 0.74 (d, 1 H, C<u>H</u>H, J = 4.2 Hz); 1.17 (d, 1 H, C<u>H</u>H, J = 4.2 Hz); 1.29 (br.s, 1 H, OH); 1.40 (s, 3 H, CH₃); 1.45 (s, 3 H, CH₃); 1.51 (s, 3 H, CH₃); 1.61 (s, 3 H, CH₃); 7.23—7.34 (m, 3 H, H_m, H_p, Ph); 7.36—7.45 (m, 2 H, H_o, Ph). ¹³C NMR, δ : 14.2 (C=C<u>C</u>), 20.4 (CH₃), 24.0 (CH₂), 24.5 (<u>C</u>(CH₃)₂), 27.0 (CH₃), 27.8 (CH₃), 32.0 (CH₃), 72.2 (<u>C</u>(CH₃)₂OH), 79.7, 94.8 (C=C), 124.3 (C(1), Ph), 127.4 (C(4), Ph), 128.2, 131.4 (C(2), C(3), C(5), C(6), Ph).

4-(2,2-Dimethylcyclopropylidene)-3-phenylbut-3-en-2-ol (7a) was synthesized in the 58% yield from cyclopropane 1a and acetaldehyde as a 1 : 1 mixture of two diastereomers. Product 7a was isolated by silica gel column chromatography (elution with hexane—Et₂O, 20 : 1 \rightarrow 10 : 1). MS (ESI), found: *m/z* 215.1436. Calculated for $C_{15}H_{18}O$, [M + H]: 215.1430. ¹H NMR, δ : 1.38 (s, 3 H, CH₃); 1.40 (s, 3 H, CH₃); 1.41 (s, 3 H, CH₃); 1.42 (s, 3 H, CH₃); 1.44 (d, 3 H, C \underline{H}_3 CH, J = 6.2 Hz); 1.45 (d, 3 H, CH_3CH , J = 6.2 Hz; 1.63 (d, 1 H, CHH, J = 6.7 Hz); 1.65 (d, 1 H, CHH, J = 6.7 Hz); 1.66 (d, 1 H, CHH, J = 6.7 Hz); 1.69(d, 1 H, CHH, J = 6.7 Hz); 1.95 (br.s, 1 H, OH, for both diastereomers); 4.92 (q, 1 H, C<u>H</u>OH, J = 6.2 Hz); 4.94 (q, 1 H, CHOH, J = 6.2 Hz); 7.13–7.51 (m, 5 H, Ph, for both diastereomers). ¹³C NMR, δ: 22.6, 23.0 (CH₃), 23.9, 24.1 (CH₂), 24.2, 24.5 (<u>C</u>(CH₃)₂), 24.6, 24.65, 24.7, 24.75 (2 CH₃), 66.0, 66.2 (CHOH), 93.3, 93.5 (PhC=C=<u>C</u>), 113.0, 113.1 (Ph<u>C</u>=C=C), 126.2, 126.3, 126.4, 126.5, 128.5 (C(2), C(3), C(5), C(6), Ph), 136.5, 136.6 (C(1), Ph), 182.2 (C=<u>C</u>=C, for both diastereomers).

1-(2,2-Dimethylcyclopropylidene)-2-phenylhex-1-en-3-ol (7b) was synthesized in the 64% yield form cyclopropane 1a and butyraldehyde. Product 7b was isolated as a 1 : 1 mixture of two diastereomers by silica gel column chromatography (elution with hexane—Et₂O, 20 : 1 \rightarrow 10 : 1). MS (ESI), found: *m*/*z* 243.1747. Calculated for C₁₇H₂₂O, [M + H]: 243.1743. ¹H NMR, δ : 0.94 (t, 3 H, CH₃CH₂CH₂, *J* = 7.2 Hz); 0.94 (t, 3 H, CH₃CH₂CH₂, *J* = 7.2 Hz); 1.38 (s, 3 H, CH₃); 1.39 (s, 3 H, CH₃); 1.41 (s, 3 H, CH₃); 1.42 (s, 3 H, CH₃); 1.55–1.78 (m, 4 H, CH₃CH₂C<u>H₂</u>, for both diastereomers); 1.63 (d, 1 H, C<u>H</u>H, *J* = 6.7 Hz); 1.65 (d, 1 H, C<u>H</u>H, *J* = 6.7 Hz); 1.67 (d, 1 H, C<u>H</u>H, *J* = 6.7 Hz); 1.69 (d, 1 H, C<u>H</u>H, J = 6.7 Hz); 2.03 (br.s, 1 H, OH, for both diastereomers); 4.70 (dd, 1 H, C<u>H</u>OH, J = 7.0 Hz, J = 4.1 Hz); 4.73 (dd, 1 H, C<u>H</u>OH, J = 7.0 Hz, J = 4.1 Hz); 7.13–7.50 (m, 5 H, Ph, for both diastereomers). ¹³C NMR, δ : 14.0, 14.1 (<u>C</u>H₃CH₂CH₂), 19.0, 19.1 (CH₃<u>C</u>H₂CH₂), 23.8, 24.1 (CH₂), 24.2, 24.4 (<u>C</u>(CH₃)₂), 24.5, 24.6, 24.65, 24.7 (2 CH₃), 38.7, 39.0 (CH₃CH₂<u>C</u>H₂), 69.9, 70.0 (CHOH), 93.1, 93.3 (PhC=C=<u>C</u>), 112.0 (PhC=C=C, for both diastereomers), 126.2, 126.3, 126.4, 128.5 (C(2), C(3), C(5), C(6), Ph), 136.6, 136.8 (C(1), Ph), 185.4, 185.5 (C=<u>C</u>=C).

1-Tetramethylcyclopropylidene-2-phenylhex-1-en-3-ol (7c) was synthesized in the 55% yield from cyclopropane **1b** and butyraldehyde. Product **7c** was isolated by silica gel column chromatography (elution with hexane—Et₂O, 20 : 1 → 10 : 1). MS (ESI), found: *m/z* 271.2051. Calculated for C₁₉H₂₆O, [M + H]: 271.2056. ¹H NMR, δ: 0.95 (t, 3 H, CH₃)CH₂CH₂, *J* = 7.2 Hz); 1.37 (s, 3 H, CH₃); 1.38 (s, 3 H, CH₃); 1.40 (s, 3 H, CH₃); 1.41 (m, 3 H, CH₃); 1.39—1.79 (m, 4 H, CH₃CH₂CH₂); 2.15 (br.s, 1 H, OH); 4.69 (t, 1 H, CHOH, *J* = 6.4 Hz); 7.13—7.50 (m, 5 H, Ph). ¹³C NMR, δ: 14.1 (CH₃CH₂CH₂), 19.2 (CH₃CH₂-CH₂), 21.5 (CH₃), 21.6 (CH₃), 21.7 (CH₃), 21.8 (CH₃), 31.4 (C(CH₃)₂), 31.5 (C(CH₃)₂), 38.9 (CH₃CH₂CH₂), 69.9 (CHOH), 101.63 (PhC=C=C), 111.5 (PhC=C=C), 125.9, 126.2, 128.5 (C(2), C(3), C(5), C(6), Ph), 137.1 (C(1), Ph), 183.4 (C=C=C).

This work was financially supported by the Presidium of the Russian Academy of Sciences (Program "Studies of the Basic Problems of Synthesis and Structure—Property Relationship for Designing of New Substances and Materials" (PRAN-38)).

References

- V. D. Gvozdev, K. N. Shavrin, A. A. Ageshina, O. M. Nefedov, *Russ. Chem. Bull.*, 2017, 67, 862.
- G.-Q. Chen, W. Fang, Y. Wei, X.-Y. Tang, M. Shi, *Chem. Commun.*, 2016, **52**, 10799.
- 3. H.-H. Liao, R.-S. Liu, Chem. Commun., 2011, 47, 1339.
- 4. G.-Q. Chen, W. Fang, Y. Wei, X.-Y. Tang, M. Shi, *Chem. Sci.*, 2016, 7, 4318.
- 5 F. Yi, B. Huang, Q. Nie, M. Cai, *Tetrahedron Lett.*, 2016, 57, 4405.
- C. Zhang, M. Xu, J. Ren, Z. Wang, *Eur. J. Org. Chem*, 2016, 2467.
- 7. Y. Bai, W. Tao, J. Ren, Z. Wang, *Angew. Chem.*, *Int. Ed.*, 2012, **51**, 4112.
- 8. S. Ye, Z.-X. Yu, Chem. Commun., 2011, 47, 794.
- K. N. Shavrin, V. D. Gvozdev, O. M. Nefedov, *Russ. Chem. Bull.*, 2010, **59**, 396.
- K. N. Shavrin, V. D. Gvozdev, O. M. Nefedov, *Russ. Chem. Bull.*, 2010, **59**, 1451.
- 11. A. Chen, R. Lin, Q. Liub, N. Jiao, Chem. Commun., 2009, 45, 6842.
- K. N. Shavrin, V. D. Gvozdev, O. M. Nefedov, *Mendeleev Commun.*, 2008, 18, 300.
- B. M. Trost, J. Xie, N. Maulide, J. Am. Chem. Soc., 2008, 130, 17258.
- J. Barluenga, E. Tudela, R. Vicente, A. Ballesteros, M. Tomas, Angew. Chem., Int. Ed., 2011, 50, 2107.
- J. P. Markham, S. T. Staben, F. D. Toste, J. Am. Chem. Soc., 2005, 127, 9708.

- A. Zampella, M. V. Drauria, L. Minale, C. Debitus, C. Roussakis, J. Am. Chem. Soc., 1996, 118, 11085.
- C. E. Tedford, J. G. Philips, R. Gregory, G. P. Pawlowski, L. Fadnis, M. A. Khan, S. M. Ali, M. K. Handley, S. L. Yates, *J. Pharmacol. Exp. Ther.*, 1999, **289**, 1160.
- J. W. Corbett, S. S. Ko, J. D. Rodgers, L. A. Gearhart, N. A. Magnus, L. T. Bacheler, S. Diamond, S. Jeffrey, R. M. Klabe, B. C. Cordova, S. Garber, K. Logue, G. L. Trainor, P. S. Anderson, S. K. Erickson-Viitanen, *J. Med. Chem.*, 2000, 43, 2019.
- 19. S. Yang, M. Shi, Acc. Chem. Res., 2018, 51, 1667.
- 20. K. N. Shavrin, I. V. Krylova, I. B. Shvedova, G. P. Okonnishnikova, I. E. Dolgy, O. M. Nefedov, *J. Chem. Soc.*, *Perkin Trans.* 2, 1991, 1875; DOI: 10.1039/P29910001875.
- K. N. Shavrin, V. D. Gvozdev, O. M. Nefedov, *Russ. Chem. Bull.*, 2002, 51, 1237.
- S. Braese, S. Schoemenauer, G. McGaffin, A. Stolle, A. de Meijere, *Chem. Eur. J.*, 1996, 2, 545.
- P. Menningen, C. Harcken, B. Stecker, S. Koerbe, A. de Meijere, M. R. Lopes, J. Ollivier, J. Salauen, *Synlett*, 1999, 1534.
- K. N. Shavrin, V. D. Gvozdev, D. V. Budanov, S. V. Yurov, O. M. Nefedov, *Mendeleev Commun.*, 2006, 16, 73.

- G. Bengtson, S. Keyaniyan, A. de Meijere, *Chem. Ber.*, 1986, 119, 3607.
- 26. A. Stolle, J. Ollivier, P. P. Piras, J. Salauen, A. de Meijere, *J. Am. Chem. Soc.*, 1992, **114**, 4051.
- 27. K. N. Shavrin, V. D. Gvozdev, O. M. Nefedov, *Russ. Chem.* Bull., 2008, 57, 2117.
- K. N. Shavrin, V. D. Gvozdev, O. M. Nefedov, *Russ. Chem.* Bull., 2009, 58, 2432.
- 29. K. N. Shavrin, V. D. Gvozdev, O. M. Nefedov, *Mendeleev* Commun., 2008, 18, 300.
- 30. T. Liese, A. de Meijere, Chem. Ber., 1986, 119, 2995.
- 31. A. de Meijere, S. I. Kozhushkov, *Chem. Eur. J.*, 2002, **8**, 3195.
- 32. H. J. Reich, J. E. Holladay, T. G. Walker, J. L. Thompson, J. Am. Chem. Soc., 1999, 121, 9769.
- 33. M. Miao, J. Cao, J. Zhang, X. Huang, L. Wu, Org. Lett., 2012, 14, 2718.

Received December 11, 2018; in revised form March 19, 2019; accepted April 29, 2019