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Based on the method of random field distribution functions in Ising magnets, for the first
time a theoretical description of thermal transitions in Jahn—Teller exchange clusters is sug�
gested, which takes into account the interactions of polymeric chains in "breathing" crystal
compounds. It was shown that the inclusion of this interaction can lead to both an intensifica�
tion of spin�crossover type cooperative transitions in exchange clusters and their deceleration.
The approach in question is generalized to include non�Jahn—Teller metal impurities in "breath�
ing" crystals, which suppress cooperative effects in thermal transitions of Jahn—Teller exchange
clusters. The obtained results qualitatively reproduce the temperature dependencies of magnetic
properties of solid solutions Cu1—xNix(hfac)2LR (hfac is hexafluoroacetylacetonate anion, ligand
LR is nitronyl nitroxide radical with pyrazole substituent at the second position of the imidazo�
line ring) when R = Et.
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Intensive studies of "breathing" crystal compounds have
been going on for over 10 years.1—4 An enduring interest
towards these compounds is caused by a large variety of
magneto�structural properties which they demonstrate un�
der changing temperature, application of external pres�
sure, or irradiation with light. "Breathing" crystals are poly�
meric chain complexes based on copper(II) hexafluoro�
acetylacetonate with stable nitroxide radicals, which are
characterized by a strongly pronounced Jahn—Teller in�
stability of coordination units. The polymeric chains of

"breathing" crystals are a sequence of alternating three�
spin exchange clusters >N—O—Cu2+—O—N< and coor�
dination centers with isolated copper >N—Cu2+—N<.
"Breathing" crystals consisting of polymeric chains of two�
spin exchange clusters >N—O—Cu2+—N< also exist. Ear�
lier, the possibility of sharp thermal rearrangement of
exchange clusters of "breathing" crystals was studied theo�
retically using one�dimensional models.5,6 If the depen�
dence of the exchange interaction on the Cu2+—O axial
bond length is taken into account, then such models can
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describe both the cases of gradual temperature change of
the mean distance Cu2+—O and the sharp jumps, which
have a phase transition�like character.7 Apart from that,
they qualitatively correctly describe the transformation of
magneto�structural anomalies in "breathing" crystals when
applying external hydrostatic pressure8 and the specific
features of self�decelerating kinetics of the relaxation of
photoexcited states of "breathing" crystals at low tempera�
ture.9 It was shown9 that to describe the temperature prop�
erties of a chain of three�spin exchange clusters, one can
be restricted to the states of unit cells 2 and 3 (Fig. 1). The
two other states, corresponding to flattened or elongated
states of both coordination centers of the chain unit cell,
are higher in energy by several thousands of reciprocal
centimeters than the state shown in Fig. 1. Later we will
assign an effective Ising spin value s = 1 to the state 2, and
s = –1 to the state 3. The state 2 is characterized by
a three�spin exchange cluster octahedron flattened along
the polymeric chain, which is most often the ground state
of the unit cell (see Fig. 1). The neighboring copper coor�
dination center within the cell (octahedron CuO4N2) is
characterized by an elongated Cu2+—N axial bond. The
higher state 3, on the other hand, has an elongated Cu2+—O
axial bond in the octahedron CuO6 of the three�spin ex�
change cluster and a shortened Cu2+—N axial bond in the
neighboring coordination center CuO4N2. In this work we
will discuss the properties of "breathing" crystals which
have a head�to�head motif of polymeric chains, i.e., con�
tain chains of three�spin exchange clusters.

The limitation of exactly solvable one�dimensional
model equations7,10 is the impossibility of their use to
describe hysteresis magneto�structural transitions in a chain
of exchange clusters, unless the equations are based on
mean (deformation) field theory. Apart from that, in the
one�dimensional case it is impossible to take into account
the interaction of polymeric chains and different kinds of
influence of solvent molecules, which can be quite easily
integrated into the "breathing" crystal interchain space11

and considerably alter the magneto�structural properties
of the latter. In order to cover these phenomena, in the
present work we will develop a new model by considering
the influence of the surrounded crystal on a particular unit
cell of a polymeric chain as a fluctuating field with some
distribution function, which needs to be determined

self�consistently. Such an approach to the Ising spin lat�
tice was first suggested by H. Mamada and F. Takano.12

In this case, the traditional mean�field theory approxima�
tion is the limit of the theory12 under conditions of the
fluctuating field distribution function being effectively
replaced by one delta�function, i.e., instead of a fluctuat�
ing field, its mean value is introduced.

Model of interacting chains

Using the ground state (2) and the deformation state
(3) of the polymeric chain unit cell closest to it in energy
(see Fig. 1), the effective spin�structural Hamiltonian of
a single crystal of the "breathing" crystal compound is
written in the Ising form:

 (1)

where  is the internal "field" measured in
energy units. In this approach it determines the energy gap
between possible deformation states of the unit cell, which
have the energy (for brevity, below assuming the Boltz�
mann constant kB = 1)

.  (2)

The difference between the energies  and  in the
Hamiltonian  in the expression (1) and the energies of
the unit cell E2 and E3, which can, for example, be calcu�
lated by quantum chemistry methods, is related to the
contributions of the vibrational�rotational degrees of free�
dom ν2 and ν3, and the spin partition functions Zs

(2) and
Zs

(3). Spin partition functions are determined by the spin�
Hamiltonian of the unit cell in states 2 (effective Ising
spin s = 1) and 3 (s = –1) and in the case of three�spin
exchange clusters have the following form:

 
(3)

where , , and  are the electron spin operators of
the copper ion and radicals 1 and 2 of the exchange clus�
ter, while J(2) and J(3) are the exchange integrals in the
states 2 and 3, respectively. The factors ν2 and ν3 charac�
terize the vibrational�rotational statistical sums of the
states 2 and 3 of the unit cell and, in general, can be
dependent on temperature and isotopic composition. To
simplify calculations, we will not take this dependence
into account and will consider ν2 and ν3 as being constant.

Fig. 1. Significant deformation states, the states 2 (s = 1, a) and 3
(s = –1, b), of the polymeric chain unit cell of Jahn—Teller
exchange clusters: 1, the coordination center CuO6; 2, the coor�
dination center CuO4N2.
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The constants c|| and c⊥ in expression (1) characterize the
elastic interaction of neighboring unit cells. This is under�
lined by the summation index, which is in parentheses.
The summation in the expression (1) is carried out over
only adjacent cells: in the second term, over two adjacent
cells along the polymeric chain, in the third term, over
adjacent cells from the side chains. Let us consider that
these interactions can be characterized by only two para�
meters c|| and c⊥. Thus, the elastic interaction energy for
each pair of adjacent unit cells is equal to c||sisj and c⊥sisj
along and across the chain, respectively. The factor 1/2
before the summation signs in the expression (1) is in
place because each pair of effective spins (unit cells) is
taken into account twice. Up to this point, the theory of
magneto�structural transitions in exchange cluster chains
used only a part of the Hamiltonian (1), including the first
and the second terms. The interchain interaction described
by the third term in the expression (1) was ignored. The
reason for this was that the strongest elastic interac�
tions corresponded to interactions along the polymeric
chain, while interchain interactions, which have most
likely a van der Waals nature, are considerably weaker.
Therefore, we expect that |c||| >> |c⊥|. At the same time, the
study of single�chain problems allowed us to formulate a
two�point approximation, which ignored the higher�lying
states with strong deformation of the unit cell, which are
negligibly thermally populated, though they play an im�
portant role in the processes of relaxation of the photo�
excited states.9,13 If the energy of elastic interaction of
adjacent unit cells along the polymeric chain in states 2
and 2 (2 and 3) is written as E||(22) (E||(23)), then it can be
shown that

c|| = –(E||(22) – E||(23)).  (4a)

Similarly, for adjacent cells across the polymeric chain
we have

c⊥ = –(E⊥(22) – E⊥(23)).  (4b)

It was shown13 that the difference (4a) can be written
as c|| = kΔ0

2, where k is the rigidity of intercluster inter�
action (in an elastic spring model), while Δ0 is the de�
formation of the exchange cluster (the change of the
Cu2+—O axial bond length in a coordination center CuO6).
Let us consider ρ1(s) as the unit cell state distribution
function. Then

〈s〉 = ∑sρ1(s) = ρ1(1) — ρ1(–1) = ρ(2) – ρ(3)  (5)

is the difference in the populations of states 2 and 3, while
ρ(2) + ρ(3) = 1 according to the normalization condition.
Knowing the values ρ1(1) and ρ1(–1), the magnetic prop�
erties of the crystal can be determined and the specific
effective magnetic moment μeff for one coordination cen�
ter can be calculated. The simplest approximation, which

is the mean�field approximation allowing one to find ρ1(s),
consists of exchanging the variable sj in the expression (1)
with a mean 〈s〉. This leads to an approximate Hamilto�
nian 

 (6)

where ξ = (z||c|| + z⊥c⊥)/2 and z|| + z⊥ = z. Here z||, z⊥ are the
number of cells adjacent to the given cell, along and across the
polymeric chain, respectively. Usually z|| = 2, and below, for
simplicity, we will consider z⊥ = 2 (two side chains). The
roughness of the mean�field theory approximation is that
the contributions of interactions along and across the chain
are additive and cannot be taken out of the ξ value sepa�
rately. This inaccuracy is compensated by the simplicity
of determining  from the expression (6). In fact, the
effective field h, acting upon each "spin" (unit cell), is the
same and equal to h0 + hMF. This means that ρ1(s) in this
case is determined by the usual Boltzmann distribution:

 
(7)

where β = 1/T is traditionally used for reciprocal tem�
perature.

The main idea of this approach consists12 of the intro�
duction of a distribution across possible fields h, which
act upon the "spin" (a particular cell) from the closest
surrounding. In our case this means the introduction of
a distribution function P(h) for effective elastic fields,
which act on a particular unit cell of the exchange cluster
chain. This function will be determined by the following
expression:

 (8)

where ρ(s1,..., sz) is the probability of a configuration of
effective spins s1,..., sz in the nearest surroundings around
the given "spin" (unit cell), while the value h∑, which can
be written as

 (9)

determines the effective field, acting on a particular "spin"
from the given configuration. The sum in the expression
(8) is over all the possible configurations of effective spins
(unit cells) in the nearest surroundings of a certain unit
cell. The total number of such configurations is equal to 2z.
In this case, it is possible to reduce to the mean�field
theory by using the following approximation:
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Then

where

hMF = (z||c|| + z⊥c⊥)〈s〉/2 = ξ〈s〉.

The Mamada—Takano approximation is to use a more
accurate distribution over the probability distributions of
effective spins than the δ�function, which only fixes the
mean value 〈s〉, while at the same time preserving the fac�
torization

(10)

Factorization (10) means a full correlation break in the
multiparticle configurations in the nearest surroundings
of a particular unit cell, significantly simplifying the prob�
lem, since P(h) is now determined through a single�parti�
cle distribution function, which needs to be equated with
ρ1(s) after averaging with P(h). For the Ising problem, the
approximation (10) and the subsequent self�consistency
procedure are equivalent to the Hartree approximation in
quantum chemistry. Thus,

 (11)

We remind that the value X is equivalent to 〈s〉, while
the populations of the unit cell states 2 and 3 are expressed
through it in a simple manner: ρ(2) = (1 + X)/2 and
ρ(3) = (1 – X)/2. According to the Mamada—Takano
approximation

(12)

The function  is linear in X, while the distribution
P(h) according to expression (12) is dependent on the
product of the functions . Therefore, the Eq. (11)
becomes closed for X and, by solving it, one can first find
X, then  and the populations ρ(2) and ρ(3) of unit cell
states. We note that in the mean�field theory approxima�
tion, when P(h) ≈ δ(h – hMF – h0), the Eq. (11) provides
a simple expression for X:

(13)

In the general case of the approximation (12) the ex�
pression for X is much more complex. In the right side, it
contains a z degree polynomial with variable X. Thus, un�
der the simplest conditions, when z|| = 2 and z⊥ = 2 (two
side chains), z = z|| +z⊥ = 4. Below is the explicit form of
equation for this case:

(14)

where we used the values w+ = (1 + X)/2 and w– =
= (1 – X)/2. From the expression (14) it can be seen that
despite c|| and c⊥ being included in the equation symmetri�
cally, the solution for X is determined by the values c|| and
c⊥ separately and not by their sum, as is the case in mean�
field theory (see Eq. (13)), when ξ = c|| + c⊥ for z|| = z⊥ = 2.
Therefore it can be expected that the Eq. (14) will describe
the temperature of the system more accurately than mean�
field theory (Eq. (13)).

Another interesting feature of the Mamada—Takano
method is that it allows one to take into account random
impurities in the crystal, their influence on critical behav�
ior of Jahn—Teller clusters. In fact, if a unit cell next to
the one in question is not a Jahn—Teller cell, then most
likely it has a thermal stiffness. Its geometry is weakly
dependent on temperature, magneto�structural transitions
are absent, and it can be suggested that such a cell is
characterized by the same interaction energy with a spe�
cific Jahn—Teller cell both in the state 2 (s = 1) and in the
state 3 (s = –1). In the Hamiltonian (1), the presence of
such an "inert" impurity cell provides some general shift in
energy proportional to the concentration of random
impurities, which is insignificant when calculating parti�
tion functions. An important factor is the appearance of
effective field h configurations, where some positions of
adjacent cells are substituted with "inert" (Jahn—Teller
inactive) impurity cells, which do not contribute to P(h).
A change of the P(h) calculation procedure is needed when
such "inert" unit cells are present in the polymeric chain.
Now, when calculating the P(h) distribution function it is
necessary to also average over all the possible configura�
tions of random impurities around a certain cell. We label
this distribution function over random impurity configu�
rations as Fmix. In the simplest case of isotropic and un�
correlated distribution of impurities, this function depends
only on the number of impurity cells n around the one in
question (0 ≤ n ≤ z) and has the following form:

Fmix(n) = Qn = Cz
npn(1 – p)z–n, (15)

where Cz
n is the number of combinations of z over n. Thus,

in the simplest case Fmix(n) is the usual binomial distribu�
tion. If P(n)(h) is the random field distribution when there
are n impurity cells in the vicinity, then for averaging over
all the impurity configurations of the distribution function
〈P(h)〉Q = PQ(h) we obtain the ratio
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 (16)

The function PQ(h) replaces P(h) in the Eq. (11), which
in the presence of uncorrelated random impurities can be
written as

 (17)

In the case of two side chains, this equation takes the
following explicit form:

(18)

In this expression, P||
(1)(h) and P⊥

(1)(h) are the distri�
butions over effective fields for configurations with one
random impurity in the vicinity of a particular cell (the
impurity can be incorporated into the polymeric chain,
represented by the subscript ||, or be located in the side
chain, represented by the subscript ⊥). The functions
P||,||

(2)(h), P||,⊥
(2)(h), and P⊥,⊥

(2)(h) describe similar distri�
butions for situations with two impurities and their possi�
ble configurations around a certain cell, the functions
P/||

(3)(h) and P/⊥
(3)(h) correspond to the case of three im�

purity cells. In these circumstances, two cases are distin�
guished: when one remaining Jahn—Teller neighbor is
placed along the polymeric chain (indicated as /||) or is
located in the side chain (indicated as /⊥). If c|| = c⊥, then
the difference between these distributions for finding im�
purities located along the polymeric chain or in the side
chain disappears. Finally, P(4)(h) is related to the configu�
ration when all the surrounding unit cells are impurity
cells. The first integral in the expression (18) containing
the function P(0)(h), is applied to the case when there are
no impurities in the vicinity of a specific cell. It is the same
as the right side of the Eq. (14), while for the remaining
integrals similar expressions can be obtained, which we
ignore due to their cumbersomeness. The Eq. (18), same
as (14), is difficult to study in the analytical form, there�
fore, we will limit ourselves to qualitative results of their
numerical analysis.

Interchain interaction in temperature transitions
of Jahn—Teller exchange clusters

Assuming c|| = 0 in the expression (14), a distribution
function for the one�dimensional case of a chain of ex�
change clusters can be obtained within the framework of
the used method. Such a one�dimensional model in the
two�point approach, which accounts for two structural

states of the exchange cluster, the low�temperature (LT)
and the high�temperature (HT) states, has an exact solu�
tion.13 Figure 2 shows the result of the comparison of the
temperature dependence of the effective magnetic mo�
ment for the two�point model and the calculations by the
formula (14) with the same set of optimal parameters,
which were used in the two�point model for the fitting in
the Cu(hfac)2LEt experiment (hfac is hexafluoroacetyl�
acetonate anion, ligand LEt is nitronyl nitroxide radical
with pyrazol substituent in the second position of the imid�
azoline ring). This compound stands somewhat apart in
the "breathing" crystal family, since for it the schemes in
Fig. 1 exchange places, and the ground state corresponds
to a three�spin cluster elongated along the polymeric chain.
From Fig. 2, it can be seen that the difference between the
results of the two models is very small. Below, to simplify
analysis, we will deal with the temperature dependence of
state nHT = ρ(3) population corresponding to the high�
temperature conformation of the exchange cluster. Know�
ing this value and the magnetic interactions (the exchange
integrals) in the states 2 and 3, all the magnetic properties
of exchange clusters can be calculated.

Now let us describe the role of the interaction of poly�
meric chains. In the model in question this means taking
into account the parameter c⊥. Figure 3, a shows the tem�
perature dependence nHT(T) for three sets of parameters c||
and c⊥, corresponding to one value cΣ = c|| + c⊥, calculated
using the expression (14). We remind that in the two�
dimensional case the results obtained within the frame�
work of the mean�field theory (13) are dependent only on
the value cΣ. Our calculations showed that this is not the
case. At a constant cΣ, the transition slope increases with

Fig. 2. A comparison of the results of the two�point exactly solv�
able model (solid curve) and the distribution function method
(dashed curve) for the fitting of the experimental data (circles)
on the effective magnetic moments μeff for the compound
Cu(hfac)2LEt. The value μeff is given in Bohr magnetons (μB).
Here and in Fig. 3 the exchange integrals for the ground and
the high�temperature states are: J(2) = 12 K, J(3) = –55 K,
E(2) = 1750 K, E(3) = 2000 K, ν(3)/ν(2) = 2.9.
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c⊥ and reaches the maximum for isotropic interactions
(c⊥ = c|| = cΣ/2).

With an increase of c|| (with c⊥ = 0) the slope of the
transition to the high�temperature state (cooperativity) in
the exchange cluster chain increases (see Fig. 3, b, curves
1—3). However, at high values of c|| the addition of c⊥ > 0
(interchain interactions) leads to a new phenomenon,
namely, the appearance of a first�order phase transition
with a hysteresis loop (see Fig. 3, b, curve 4). The pheno�
menon in question was absent in the one�dimension chain
of exchange clusters and is caused entirely by the interac�
tion of polymeric chains.

The size of the hysteresis temperature interval is deter�
mined by the distance along the T axis between the verti�
cal tangents to the curve 4 (see Fig. 3, b). As it was indicat�
ed above, c|| = kΔ0

2 ≥ 0. At the same time c⊥, determined by

the formula (4b), can be either more or less than 0, due to
this value characterizing the van der Waals interactions of
adjacent side unit cells of polymeric chains. If c⊥ < 0, then
the dependence nHT(T) becomes more gradual then in the
case of c⊥ = 0 (see Fig. 3, b, curve 5). In this case, the
influence of polymeric chains on each other consists
of the deceleration of thermal transition processes in
Jahn—Teller exchange clusters as compared to the case of
a particular chain. Such an unusual result remotely re�
sembles the effect of "anticooperativity" recently discov�
ered14 experimentally for spin�crossover of the cobalt(II)
clathrochelate complex on transition from the liquid to
the solid phase.

Let us consider the magnetic properties of different
metal solid solutions of "breathing" crystals such as
Cu1–xMx(hfac)2LR. For the case of M = Ni, it is known1,15

that Ni2+ ions are mainly incorporated into the MO4N2
coordination units (see Fig. 1). The Ni(hfac)2LR com�
pounds themselves do not demonstrate magneto�structur�
al transitions, because the Ni2+ ions with the configura�
tion d8 are not Jahn—Teller in octahedral surround�
ings. Therefore, we will consider the unit cell contain�
ing a nickel ion of the polymeric chain in the compound
Cu1–xNix(hfac)2LR as being structurally rigid and not pos�
sessing Jahn—Teller activity. In order to calculate magne�
to�structural transitions (the function nHT(T)) in typical
unit cells with two Cu2+ ions, we will use the formula (18).
Figure 4 shows the results of the final (non�linear) super�
position of magnetic contributions into the effective mag�
netic moment for copper and nickel subsystems of the
solid solution of compound Cu1–xMx(hfac)2LEt.

We note that due to the structural selectivity of substi�
tution of copper ions by nickel ions, as indicated above, in

Fig. 3. (a) The influence of the interaction of polymeric chains
on the slope of the thermal magneto�structural transition: curve
1 : c|| = 300 K, c⊥ = 0 K; 2: c|| = 200 K, c⊥ = 100 K; 3: c|| = 150 K,
c⊥ = 150 K. (b) The influence of the intensity and the unit cell
interaction sign on the character of the thermal magneto�struc�
tural transition: curve 1: c|| = 400 K, c⊥ = 10 K; 2: c|| = 600 K,
c⊥ = 0 K; 3: c|| = 1000 K, c⊥ = 0 K; 4: c|| = 400 K, c⊥ = 40 K;
5: c|| = 400 K, c⊥ = –40 K.
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Fig. 4. The calculated transformation of the temperature depen�
dence of the effective magnetic moment μeff (in Bohr magnetons,
μB) with an increase of the impurity fraction х for compound
Cu1–xNix(hfac)2LEt: curve 1: x = 0, 2: x = 0.04, 3: x = 0.08, 4:
a simple statistical mixture of contributions of Cu0.5Ni0.5 (hfac)2LEt
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the calculations we assumed that the random portion
p = 2x. The presence of random impurities of unit cells
which are not Jahn—Teller decreases the cooperative prop�
erties of exchange clusters in "breathing" crystals. The ef�
fect in question cannot be obtained by a simple static
superposition of the contributions of two sub�ensembles
Cu0.5Ni0.5(hfac)2LEt and Cu(hfac)2LEt with weighted
values p and (1 – p), as it can be seen from Fig. 4. The
dependencies obtained from calculations qualitatively
correctly reproduce the transformation of magnetic prop�
erties of solid solutions Cu1–xMx(hfac)2LEt, available from
the experiment.1,15

In conclusion, the interaction of polymeric chains is
one of the important physical factors, affecting magneto�
structural transitions in the family of "breathing" crystal
compounds. In the present work, it was shown that taking
into account this interaction can lead to both an increase
of cooperative transitions of the spin�crossover type in
exchange clusters and the appearance of hysteresis pheno�
mena and to an unexpected deceleration of these transi�
tions. The developed approach to modeling the distribution
function was generalized for the presence of non�Jahn—
Teller random metal impurities in "breathing" crystals.
The impurities in question suppress cooperative effects in
thermal transitions of Jahn—Teller exchange clusters.
The obtained results qualitatively reproduce the tempera�
ture dependencies of magnetic properties of solid solu�
tions Cu1–xNix(hfac)2LR for the case of R = Et. A quan�
titative comparison of theory with experiment re�
quires a more precise calculation of the energies of unit
cell interaction and a generalization of the calculation
scheme for a realistic case of four and more nearest neigh�
bors in the surrounding of the polymeric chain in the
"breathing" crystal.
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