Synthesis of 6-aryl-6,6a,7,9a-tetrahydro-5*H*-cyclopenta[*c*]-1,7- and -1,8-phenanthrolines

A. G. Tolstikov, R. G. Savchenko, E. S. Lukina, R. M. Limantseva, and V. N. Odinokov*

Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 prosp. Oktyabrya, 450075 Ufa, Russian Federation. Fax: +7 (347) 284 2750. E-mail: odinokov@anrb.ru

A three-component acid-catalyzed cyclocondensation of 5-aminoquinoline and 5-aminoisoquinoline with aromatic aldehydes and cyclopentadiene leads to $(6S^*, 6aR^*, 9aS^*)$ -6-aryl-6, 6a, 7, 9a-tetrahydro-5H-cyclopenta[c]-1,7- and $(6S^*, 6aR^*, 9aS^*)$ -6-aryl-6, 6a, 7, 9a-tetrahydro-5H-cyclopenta[c]-1,8-phenanthrolines.

Key words: three-component condensation, Povarov reaction, 5-aminoquinoline, 5-aminoisoquinoline, aromatic aldehydes, cyclopentadiene, tetrahydro-1,7-phenanthrolines, tetrahydro-1,8-phenanthrolines.

Phenanthroline tetrahydro derivatives, being analogues of alkaloids and diazasteroids, possess a high potential of biological activity.^{1,2} Commonly, they are synthesized by the reaction of aminoquinolines with carbonyl compounds.³ There is another very promising approach to the synthesis of diazasteroids, which is based on a three-component condensation of aminoquinolines with formaldehyde and cyclopentadiene.^{4,5}

We were the first to study an acid-catalyzed one-step cyclocondensation of aminoquinolines with aromatic aldehydes and cyclopentadiene.

The reaction of 5-aminoquinoline (1) and 5-aminoisoquinoline (2) with aromatic aldehydes (benzaldehyde (3),

2

m-chloro- (4), *o*-fluoro- (5), and *p*-trifluoromethylbenzaldehydes (6)) and cyclopentadiene gave earlier unknown tetrahydro-1,7- and tetrahydro-1,8-phenanthrolines annulated to cyclopentene, which belong to the class of 4,11-diazasteroids.⁵

The reaction went smoothly when 2,2,2-trifluoroethanol was used as a solvent (room temperature, 2–3 h, catalyst trifluoroacetic acid (TFA)) and led to the target 6-aryl-6,6a,7,9a-tetrahydro-5*H*-cyclopenta[*c*]-1,7- (**7**–**10**) and 6-aryl-6,6a,7,9a-tetrahydro-5*H*-cyclopenta[*c*]-1,8phenanthrolines (**11**–**14**) (Scheme 1). Running the reaction in acetonitrile^{6–8} commonly used for such processes led only to the corresponding Schiff bases. It should be

 $\mathsf{Ar} = \mathsf{Ph} \ (\textbf{3}, \textbf{7}, \textbf{11}), \ m\text{-}\mathsf{Cl}\text{-}\mathsf{C}_{6}\mathsf{H}_{4} \ (\textbf{4}, \textbf{8}, \textbf{12}), \ o\text{-}\mathsf{F}\text{-}\mathsf{C}_{6}\mathsf{H}_{4} \ (\textbf{5}, \textbf{9}, \textbf{13}), \ p\text{-}\mathsf{CF}_{3}\text{-}\mathsf{C}_{6}\mathsf{H}_{4} \ (\textbf{6}, \textbf{10}, \textbf{14})$

3-6

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 2077–2080, September, 2014.

1066-5285/14/6309-2077 © 2014 Springer Science+Business Media, Inc.

11 - 14

noted that in the cases when an amino group was located on the pyridine ring of quinolines (3- and 4-aminoquinolines), the corresponding tetrahydrophenanthrolines were not obtain even in trifluoroethanol.

The formation of 6-aryltetrahydrophenanthrolines annulated with cyclopentene occurred with high diastereoselectivity. The ¹H NMR data (from the ratio of intensities of major and minor signals of vinyl protons H(8) or H(9) in the region δ 5.7–6.1) showed that the diastereomeric purity (*de*) of compounds 7–14 was no less than 90%. The spin-spin coupling constants for vicinal protons H(6) and H(6a) equal to 2.4 or 2.8 Hz, as well as that for protons H(6a) and H(9a) equal to 8.4 Hz (Tables 1 and 2) indicate a mutual *cis*-orientation of protons H(6), H(6a),

Table 1.¹H and ¹³C NMR spectra (δ , *J*/Hz) of compounds 7–10

Group	7		8		9		10	
or atom	δ_{C}	$\delta_{\rm H}$	δ_{C}	δ_{H}	δ_{C}	δ_{H}	δ_{C}	δ_{H}
C(2)H	149.30	8.83 d,	149.36	8.89 d,	149.28	8.83 d, $I = 2.2$	149.32	8.84 d,
C(3)H	119.63	J = 5.2 7.32 dd, I = 8.0, 2.2	119.72	J = 3.2 7.21 dd, I = 8.0, 2.2	119.66	J = 3.2 7.32 dd,	119.77	J = 3.2 7.35 dd, I = 8.0, 2.2
C(4)H	128.27	J = 8.0, 3.2 8.12 d, $J = 8.0$	128.26	J = 8.0, 3.2 8.07 d, $J = 8.0$	128.21	J = 8.0, 3.2 8.13 d, $J = 8.0$	128.28	J = 8.0, 3.2 8.16 d, $J = 8.0$
C(4a)	118.62 147.57	_	118.67 147.55	_	118.70 147.51	_	118.69 147.46	_
C(6)H	58.20	4.77 d,	57.71	4.70 d,	57.04	5.12 d,	57.91	4.84 d,
C(6a)H	46.07	J = 2.4 3.27 td, I = 8.4, 2.4	45.83	J = 2.4 3.08 td, I = 8.4, 2.4	43.46	J = 2.4 3.27 td, I = 8.4 + 2.4	45.79	J = 2.4 3.14 td, I = 8.4, 2.4
C(7)H ₂	31.38	1.92 dd, J = 15.6, 8.4 2.74 m	31.27	1.89 dd, J = 15.6, 8.4 2.66 m	31.56	J = 15.6, 8.4 2.68 m	31.23	J = 15.6, 8.4 2.69 m
C(8)H	130.90	5.70 m (5.77 m)*	131.47	5.68 m (5.76 m)*	130.71	5.68 m (5.75 m)*	130.73	5.70 m (5.75 m)*
C(9)H	133.72	5.98 m (6.08 br.s)*	133.66	5.95 m (6.06 br.s)*	133.80	5.96 m (6.09 br.s)*	133.64	5.99 m (6.07 br.s)*
C(9a)H	46.82	4.29 d, J = 8.4	46.64	4.25 d, J = 8.4	46.53	4.30 d, J = 8.4	46.67	4.31 d, J = 8.4
C(9b)	120.81	_	120.76	_	120.99	_	120.85	_
C(10)H	131.13	7.47 d, $J = 8.8$	131.01	7.36 d, J = 8.8	131.11	7.45 d, $J = 8.8$	131.06	7.46 d, J = 8.8
C(11)H	119.96	7.58 d, J = 8.8	120.28	7.53 d, J = 8.8	120.21	7.58 d, J = 8.8	120.34	7.59 d, J = 8.8
C(11a)	139.89		139.41	_	139.72	_	139.31	_
C(1′)	142.59	_	144.74	_	129.67 d, ${}^{2}J_{CE} = 12.0$	_	146.63	_
C(2´)	—	—	—		160.17 d, $1_{I_{CD}} = 245.0$	—	—	_
C(2´)H	128.72	7.56 d, I = 4.8	129.78	7.44 s		—	125.67	7.69 dd, J = 8.8, 2.8
C(3')	_	_	135.93	_	_	_	_	
C(3´)H	126.68	7.46 m	_	—	115.45 d,	7.78 dd,	127.01	7.69 dd,
					${}^{2}J_{\rm CF} = 21$	$J_{\rm CF} = 8.0,$ $J_{\rm H,H} = 8.0$		J = 8.8, 2.8
C(4′)	—	—	—	—	—	_	122.79	—
C(4′)H	127.59	7.38 m	127.71	7.30 m	127.34 d, ${}^{3}J_{CE} = 4$	7.12 dd, $J = 8.0$	_	—
C(5')H	126.68	7.46 m	124.87	7.30 m	124.38 d, $4_{L_{OE}} = 3$	7.26 m	127.01	7.69 dd, I = 8.8, 2.8
C(6´)H	128.72	7.56 d, I = 4.8	126.73	7.30 m	129.42 d, $3I_{\text{OF}} = 8$	7.36 m	125.64	7.69 dd, I = 8.8, 2.8
CF ₃	—	J — 4.0 —	_	_	$J_{\rm CF} = 0$	_	125.50 q	<i>J</i> = 0.0, 2.0
NH	_	4.49 br.s	_	4.45 br.s	_	4.35 br.s	$J_{\rm CF} = 2/6$	4.49 br.s

* Chemical shifts $\delta_{\rm H}$ C(8)H and C(9)H for minor $6R^*$ -diastereomers are given in parentheses.

Group or atom	11		12		13		14	
	δ _C	δ_{H}	δ_{C}	δ_{H}	δ _C	δ_{H}	δ _C	δ_{H}
C(1)H	152.72	9.11 s	152.67	9.22 s	152.74	9.12 s	152.76	9.12 s
C(3)H	142.35	8.45 d, J = 6.0	142.39	8.42 d, J = 6.0	142.38	$8.46 \mathrm{d}, J = 6.0$	142.51	8.47 d, J = 6.0
C(4)H	113.17	$7.53 \mathrm{d}, J = 6.0$	113.24	7.54 d, J = 6.0	113.08	7.54 d, J = 6.0	113.05	$7.55 \mathrm{d}, J = 6.0$
C(4a)	126.30	_	126.35	_	126.38	_	126.37	_
C(4b)	139.11	_	138.68	_	138.95	_	138.53	_
C(6)H	58.04	4.77 d, J = 2.8	57.51	4.50 s	50.91	5.11 d, J = 2.8	57.74	4.83 d, J = 2.8
C(6a)H	46.12	3.15, td,	45.88	3.06 td,	43.48	3.28 td,	45.84	3.15 td,
		J = 8.4, 2.8		J = 8.4, 2.8		J = 8.4, 2.8		J = 8.4, 2.8
C(7)H ₂	31.39	1.92 dd.	31.29	1.86 dd	31.57	1.91 td.	31.24	1.87 dd.
		J = 15.6, 8.4		J = 15.6, 8.4		J = 15.6, 8.4		J = 15.6.8.4
		2.73 m		2.63 m		2.68 m		2.68 m
C(8)H	131.22	5.71 m	131.07	5.67 br.s	131.02	5.69 m	131.03	5.70 m
		(5.79 br.s)*		(5.75 br.s)*		(5.79 br.s)*		(5.78 m)*
C(9)H	133.34	5.96 m	133.30	5.93 br.s	133.42	5.94 m	133.28	5.96 m
		(6.06 br.s)*		(6.08 br.s)*		(6.05 br.s)*		(6.06 m)*
C(9a)H	47.09	4.30 d, J = 8.4	46.89	4.23 d, J = 8.4	46.81	4.30 d, J = 8.4	47.61	4.31 d, J = 8.4
C(9b)	124.36		124.29	_	124.50	_	124.37	_
C(10)H	128.74	7.46 d. $J = 8.0$	128.67	7.29 d. $J = 8.0$	128.77	7.39 d. $J = 8.0$	128.64	7.32 d. J = 8.0
C(11)H	117.83	7.43 d, $J = 8.0$	118.10	7.39 d, J = 8.0	118.11	7.41 d. $J = 8.0$	118.29	7.41 d. $J = 8.0$
C(11a)	127.72	_	127.63	_	128.04	_	127.69	_
C(1')	142.35	_	134.62	_	129.61	_	143.23	_
C(2')	_	_	_	_	160.15 g.	_	_	_
-(-)					${}^{1}J_{CE} = 245.0$			
C(2')H	126.65	7.42 m	130.01	7.35 m		_	127.00	7.70 dd,
. ,								J = 8.8, 2.8
C(3′)H	127.62	7.42 m	_	_	115.44 d,	7.12 dd,	125.69	7.70 dd,
					${}^{2}J_{CE} = 21$	$J_{\rm CF} = 8.0$,		J = 8.8, 2.8
					01	$J_{\rm H \ H} = 8.0$		
C(3′)	_	_	144.64	_	_		_	_
C(4′)H	128.74	7.42 m	126.75	7.35 m	127.33 d,	7.28	_	_
、 /					${}^{3}J_{\rm CF} = 4.0$			
C(4′)	_	_	_	_	_	_	146.52	_
C(5′)H	128.74	7.42 m	127.74	7.35 m	124.42 d,	7.37	125.69	7.70 dd,
` '					${}^{4}J_{CF} = 3.0$			J = 8.8, 2.8
C(6´)H	126.65	7.42 m	124.84	7.35 m	128.98 d,	7.79 t,	127.00	7.70 dd,
					${}^{3}J_{\rm CF} = 27.0$	J = 8.0		J = 8.8, 2.8
CF ₃	_	_	_	_	_	_	125.50 q	_
2							${}^{1}J_{\rm CF} = 270$	
NH	_	4.51 br.s	_	4.66 br.s	_	4.37 br.s	_	4.50 br.s

Table 2. ¹H and ¹³C NMR spectra (δ , *J*/Hz) of compounds 11–14

* Chemical shifts $\delta_{\rm H}$ C(8)H and C(9)H for minor 6*R**-diastereomers are given in parentheses.

and H(9a) and the S^* , R^* , and S^* relative configuration of asymmetric atoms C(6), C(6a), and C(9a), respectively. According to the data of the work,⁹ the minor diastereomers differ from the major ones in the configuration of carbon atom C(6) bearing the aryl substituent, *i.e.*, the minor diastereomers have the $6R^*$, $6aR^*$, and $9aS^*$ relative configuration of the chiral centers.

The signals in the ¹H and ¹³C NMR spectra of synthesized compounds (see Tables 1 and 2) were assigned using 1D and 2D ¹H and ¹³C NMR procedures (JMOD, HSQC, HMBC, COSY, NOESY). The mass spectra MALDI TOF of compounds **7–14** showed the presence of the corresponding molecular ions. In conclusion, a three-component condensation in CF_3CH_2OH of aminoquinolines, aromatic aldehydes, and cyclopentadiene in the presence of TFA as a catalyst gives rise to $(6S^*, 6aR^*, 9aS^*)$ -6-aryl-6, 6a, 7, 9a-tetrahydro-5*H*-cyclopenta[*c*]-1, 7- and -1, 8-phenanthrolines, which are structural analogues of alkaloids and diazasteroids.

Experimental

 1 H and 13 C NMR spectra were recorded on a Bruker Avance-400 spectrometer (400.13 MHz (1 H) and 100.62 (13 C) MHz) in CDCl₃, using SiMe₄ as an internal standard. Homo- and heteronuclear procedures COSY, HSQC, and HMBC were carried out according to the Bruker standard procedures. Mass spectra were obtained on a Bruker-Autoflex III instrument in the MALDI TOF regime with registration of positive ions and using α -cy-ano-4-hydroxycinnamic acid as a matrix. Melting points were measured on a Boetius heating microstage. Elemental analysis was performed on a Carlo Erba EA-1108 CHNS-O-analyzer. Column chromatography was carried out on KSKG silica gel, 100/200. Silufol plates covered with SiO₂ was used for TLC monitoring, visualizing with a solution of vanillin in ethanol acidified with sulfuric acid.

The starting compounds 1-6 were purchased from Acros Organics. ¹H and ¹³C NMR spectra of compounds 7-10 and 11-14 are given in Tables 1 and 2, respectively.

Synthesis of 6-aryl-6,6a,7,9a-tetrahydro-5H-cyclopenta[c]-1,7- (7-10) and 6-aryl-6,6a,7,9a-tetrahydro-5*H*-cyclopenta[*c*]-**1,8-phenanthrolines (11–14) (general procedure).** The compound CF₃COOH (0.08 mL, 1 mmol), a freshly distilled cyclopentadiene (0.33 mL, 4 mmol), and the corresponding aldehyde 3-6 (1 mmol) were sequentially added to a solution of aminoquinoline 1 or 2 (144 mg, 1 mmol) in anhydrous CF₃CH₂OH (15 mL) (Ar, ~25 °C). The reaction mixture was stirred at room temperature until the amine disappeared (2-3 h, TLC monitoring, eluent ethyl acetate). The solvent was evaporated, a saturated solution of NaHSO₃-NaHCO₃ was added to the residue until neutrality (~5 mL), followed by extraction with ethyl acetate (3×10 mL). The organic layer was concentrated, the residue was subjected to chromatography (SiO₂, *n*-hexane/ethyl acetate, 4:1) to isolate the corresponding 1,7-(7-10) or 1,8-phenanthrolines (11-14).

(6*S**,6*aR**,9*aS**)-6-Phenyl-6,6*a*,7,9*a*-tetrahydro-5*H*-cyclopenta[*c*][1,7]phenanthroline (7). The yield was 51%, *de* 92% (from the ratio of signal intensities at δ 5.98 and 6.08), *R*_f 0.49 (ethyl acetate), m.p. 102–104 °C (*n*-hexane). MS (MALDI TOF), *m/z*: 299 [M + H]⁺. Found (%): C, 84.60; H, 6.12; N, 9.28. C₂₁H₁₈N₂. Calculated (%): C, 84.56; H, 6.04; N, 9.40.

(65*,6a*R**,9a*S**)-6-(*m*-Chlorophenyl)-6,6a,7,9a-tetrahydro-5*H*-cyclopenta[*c*][1,7]phenanthroline (8). The yield was 68%, *de* 90% (from the ratio of signal intensities at δ 5.95 and 6.06), *R*_f0.40 (ethyl acetate), m.p. 97–99 °C (*n*-hexane). MS (MALDI TOF), *m*/*z*: 333 [M + H]⁺. Found (%): C, 75.93; H, 5.18; Cl, 10.61; N, 8.50. C₂₁H₁₇ClN₂. Calculated (%): C, 75.90; H, 5.12; Cl, 10.69; N, 8.43.

(6*S**,6*aR**,9*aS**)-6-(*o*-Fluorophenyl)-6,6*a*,7,9*a*-tetrahydro-5*H*-cyclopenta[*c*][1,7]phenanthroline (9). The yield was 70%, *de* 94% (from the ratio of signal intensities at δ 5.96 and 6.09), *R*_f 0.43 (ethyl acetate), m.p. 90–92 °C (*n*-hexane). MS (MALDI TOF), *m*/*z*: 317 [M + H]⁺. Found (%): C, 79.64; H, 5.28; N, 8.69. C₂₁H₁₇FN₂. Calculated (%): C, 79.75; H, 5.40; N, 8.86.

(6*S**,6*aR**,9*aS**)-6-[*p*-(Trifluoromethyl)phenyl]-6,6a,7,9atetrahydro-5*H*-cyclopenta[*c*][1,7]phenanthroline (10). The yield was 51%, *de* 97% (from the ratio of signal intensities at δ 5.99 and 6.07), *R*_f 0.48 (ethyl acetate), m.p. 120–122 °C (*n*-hexane). MS (MALDI TOF), *m/z*: 367 [M + H]⁺. Found (%): C, 72.01; H, 4.58; N, 7.51. C₂₂H₁₇F₃N₂. Calculated (%): C, 72.13; H, 4.64; N, 7.65.

(6*S**,6*aR**,9*aS**)-6-Phenyl-6,6*a*,7,9*a*-tetrahydro-5*H*-cyclopenta[*c*][1,8]phenanthroline (11). The yield was 56%, *de* 90% (from the ratio of signal intensities at δ 5.96 and 6.06), *R*_f 0.47 (ethyl acetate), m.p. 60–62 °C (*n*-hexane). MS (MALDI TOF), m/z: 299 [M + H]⁺. Found (%): C, 84.67; H, 6.15; N, 9.32. C₂₁H₁₈N₂. Calculated (%): C, 84.56; H, 6.04; N, 9.40.

(65*,6a*R**,9a*S**)-6-(*m*-Chlorophenyl)-6,6a,7,9a-tetrahydro-5*H*-cyclopenta[*c*][1,8]phenanthroline (12). The yield was 70%, *de* 90% (from the ratio of signal intensities at δ 5.93 and 6.08), *R*_f0.40 (ethyl acetate), m.p. 89–91 °C (*n*-hexane). MS (MALDI TOF), *m/z*: 333 [M + H]⁺. Found (%): C, 75.76; H, 5.23; Cl, 10.42; N, 8.29. C₂₁H₁₇ClN₂. Calculated (%): C, 75.90; H, 5.12; Cl, 10.69; N, 8.43.

(6*S**,6*aR**,9*aS**)-6-(*o*-Fluorophenyl)-6,6*a*,7,9*a*-tetrahydro-5*H*-cyclopenta[*c*][1,8]phenanthroline (13). The yield was 70%, *de* 94% (from the ratio of signal intensities at δ 5.94 and 6.05), *R*_f0.42 (ethyl acetate), m.p. 58–60 °C (*n*-hexane). MS (MALDI TOF), *m*/*z*: 317 [M + H]⁺. Found (%): C, 79.87; H, 5.64; N, 8.73. C₂₁H₁₇FN₂. Calculated (%): C, 79.75; H, 5.40; N, 8.86.

(6*S**,6*aR**,9*aS**)-6-[*p*-(Trifluoromethyl)phenyl]-6,6*a*,7,9*a*-tetrahydro-5*H*-cyclopenta[c][1,8]phenanthroline (14). The yield was 62%, *de* 94% (from the ratio of signal intensities at δ 5.96 and 6.06), *R*_f 0.50 (ethyl acetate), m.p. 52–54 °C (*n*-hexane). MS (MALDI TOF), *m*/*z*: 367 [M + H]⁺. Found (%): C, 72.23; H, 4.60; N, 7.58. C₂₂H₁₇F₃N₂. Calculated (%): C, 72.13; H, 4.64; N, 7.65.

The authors are grateful to Prof. L. M. Khalilov for discussion of ¹H and ¹³C NMR spectra.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 14-03-00286) and the Presidium of the Russian Academy of Sciences (Program "Fundamental Science to Medicine").

References

- K. Saeki, T. Matsuda, T. Kato, S. Matsui, K. Fukuhara, N. Miyata, *Biolog. Pharm. Bull.*, 2003, 26, 448.
- M. Duszyk, L. Mac Vinish, A. W. Guthbert, *Brit. J. Pharm.*, 2001, **134**, 853.
- N. G. Kozlov, A. B. Tereshko, Russ. J. Org. Chem. (Engl. Transl.), 2010, 46, 1223 [Zh. Org. Khim., 2010, 46, 1221].
- 4. P. J. Gregoire, J. M. Mellor, G. D. Merriman, *Tetrahedron Lett.*, 1991, **32**, 7099.
- 5. J. M. Mellor, G. D. Merriman, Steroids, 1995, 60, 693.
- A. G. Tolstikov, L. M. Khalilov, R. G. Savchenko, D. V. Nedopekin, V. A. Glushkov, G. F. Krainova, I. V. Glukhov, M. Yu. Antipin, V. N. Odinokov, *Russ. Chem. Bull. (Int. Ed.)*, 2009, 58, 1991 [*Izv. Akad. Nauk, Ser. Khim.*, 2009, 1929].
- A. G. Tolstikov, R. G. Savchenko, D. V. Nedopekin, S. R. Afon'kina, E. S. Lukina, V. N. Odinokov, *Russ. Chem. Bull.* (*Int. Ed.*), 2011, 60, 160 [*Izv. Akad. Nauk, Ser. Khim.*, 2011, 153].
- A. G. Tolstikov, R. G. Savchenko, E. S. Lukina, D. V. Nedopekin, V. N. Odinokov, *Russ. Chem. Bull.* (*Int. Ed.*), 2013, 62, 203 [*Izv. Akad. Nauk, Ser. Khim.*, 2013, 203].
- 9. V. A. Glushkov, A. G. Tolstikov, *Russ. Chem. Rev.* (*Engl. Transl.*), 2008, 77, 137.

Received December 12, 2013; in revised form March 25, 2014