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A combined calculation method of weak exchange interactions in short biradicals was
developed. The combined method includes two stages. The quantum chemical calculations of
the high level of the biradical structure and molecular orbitals and binding energies of unpaired
electrons are performed at the first stage. Information obtained at the first stage is used further
to calculate the exchange interaction between unpaired electrons within the direct exchange
model using the asymptotic method. This allows one to estimate the exchange interaction and
to determine the dependence of this interaction on the distance between the paramagnetic
centers and on their relative orientation. The method developed was used to calculate the
exchange interaction in the short nitroxyl biradical containing no conjugate rings between the
paramagnetic NO groups. The geometry and electronic structure of the biradical were calculat
ed within the unrestricted DFT method (B3LYP/ccpvdz) using the ORCA program package.
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Biradicals widely used as spin labels and probes1—3 are
convenient objects for modeling diverse intramolecular
processes: intramolecular dynamics,4 spatial organization

of molecules,1,5 and regularities of unpaired electron delo
calization along the chain of bonds.6 Short (with an aver
age distance between groups containing an unpaired elec
tron of 6—12 Å) rigid and flexible biradicals are of special
interest.7—9 Indeed, in this systems one can quantitatively
characterize the thermodynamics of conformational tran
sitions, to establish the number of conformations of the

* According to the materials of the XXIV Conference "Current
Chemical Physics" (September 20—October 1, 2012, Tuapse,
Russia).
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biradical, and to evaluate the spatial organization of its
thermodynamically most favorable conformation from the
ESR spectra of its frozen solutions.10 The change in the
sign of the exchange integral was observed for the confor
mational transition in the biradical molecule.9

As for theoretical studies, the current quantum chemi
cal methods (such as DFT and nonempirical multirefer
ence MCSCF and MCQD) make it possible to calculate
with an appropriate accuracy the structural and thermo
dynamic properties of biradicals, the spin density distribu
tion, and some magnetic resonance parameters (see, e.g.,
Refs 11—17). However, the quantum chemical calcula
tions of the small (1 cm–1) energy splitting

EST = ES – ET (1)

between the singlet and triplet states of the biradical, which
determines the exchange integral, encounter substantial
difficulties. This is due to the fact that in quantum chem
istry EST is calculated as a difference of high (~10

2—103 eV)
total negative electronic energies ES and ET in the singlet
and triplet states. The situation is aggravated by the neces
sity to calculate the difference in total electronic energies
of the states with different symmetries. In this case, the
calculated value of EST depends very strongly on the used
quantum chemical method and basis set (see, i.e., Ref. 16).
We have previously18 proposed to use the asymptotic

method developed in the theory of atomic collisions for
the calculation of weak exchange interactions between ni
troxyl radicals.19 An advantage of the asymptotic method
is that the exchange integral in this method is calculated
directly rather than as a difference between very high val
ues, which takes place in standard quantum chemical
methods. The asymptotic method was successfully used20

for the calculation of the dependence of intermolecular
exchange integrals in crystalline oxygen on the mutual
orientation of molecules and the distance between them.
A similar approach, in which the exchange interaction

between paramagnetic centers is treated as a direct inter
action through the space, can be applied to short biradi
cals as well. These biradicals contain two isolated para
magnetic centers, and electrons localized on these centers
have substantially lower binding energies than other elec
trons of the biradical, which can be considered internal. It
can be assumed that these internal electrons screen all
Coulomb centers, except for those related to the paramag
netic centers. The corresponding effective field formed by
internal electrons and nuclei (pseudopotential) deter
mines the parameters of orbitals of electrons on the para
magnetic centers.
Quantitative calculations of exchange integrals require

reliable information about the unpaired electron density
distribution in the paramagnetic centers when the latter is
high and about the mutual orientation of these centers and
the distance between them. As mentioned above, this in
formation can be provided by the current quantum chem

ical methods. Therefore, in this work, we propose the com
bined calculation method of a weak direct exchange inter
action in short biradicals, which includes two stages. At
the first stage, the high level quantum chemical calcula
tions are performed for the electronic structure of the bi
radical in the equilibrium configuration. At the second
stage, this quantum chemical information is used for the
calculation of the exchange interaction between para
magnetic centers by the asymptotic method. If not spe
cially indicated, atomic units (au) are used everywhere:
e = me = h

– = 1.

Main theses of the asymptotic method
for the exchange interaction calculation

Let us consider two isolated paramagnetic centers Pca
and Pcb with one relatively weakly bound external elec
tron in the sterically nondegenerate states a and b and
cores Ca and Сb (Fig. 1). At large distances between
the cores

(2)

(a and b are the binding energies of external electrons ea
and eb), the interaction energy between the centers can be
estimated in the first order of the perturbation theory
(Heitler—London approximation). It should be empha
sized that inequality (2) takes place for short biradicals,

since for them the value  does not exceed
2 Å. Instead of calculating the matrix elements of the
electronic Hamiltonian with antisymmetric products
of spinorbitals localized on paramagnetic centers Pca
and Pcb, one can use the vector Dirac model

21 in which
the identity of electrons is described by the addition to the
initial electronic Hamiltonian of the exchange interaction
operator

(3)

Fig. 1. Model of two paramagnetic centers with one fairly weakly
bound external electron used in the asymptotic method. For all
designations, see the text.
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Here s


ea
 and s



eb
 are the operators of electron spins ea and

eb, and P


eaeb
(x)  is the permutation operator of their spatial

coordinates

(4)

where Veff,Cb(rea) and Veff,Ca(reb) are the interaction poten
tials of electrons ea and eb with cores Сb and Сa and vec
tors rea and reb are defined in Fig. 1. At high rea and reb
these potentials are Coulomb. It should be mentioned
that the introduction of operator (3) assumes neglecting
the overlap integrals normalizing the twoelectron wave
function.
The singlet—triplet energy splitting EST is determined

as a difference in two eigenvalues of the spinHamiltonian

(5)

where the exchange integral assumes the form

(6)

As shown by numerous calculations, the Heitler—Lon
don approximation gives good estimates for the exchange
integral (see, e.g., Ref. 22). However, this method is in
convenient from the practical point of view, because the
direct calculation of the sixdimensional integral is diffi
cult and effective potentials Veff,Cb(rea) and Veff,Ca(reb) are
not always determined rather reliably.
It turned out that the Heitler—London approximation

has one more basic drawback. At R  , the exchange
integral JHL corresponding to the interaction of two same
atoms with one external selectron (hydrogen or alkaline
metal atoms) changes the sign. As a result, at very high R,
the triplet state corresponding to the spatial wave function
antisymmetrical under electron permutation becomes the
ground state. This contradicts the theorem about the non
nodal character of the spatial twoelectron wave function
of the ground state. The study23—25 of this problem resulted
in the formulation of the asymptotic calculation method.
The use of this method made it possible to correct the
asymptotic behavior of the exchange integral and to ob
tain further simple expressions for twoelectron exchange
integrals of different types in the case of interaction of two
atoms.26—28 It is substantial that, unlike the Heitler—Lon
don method, these expressions are determined by the Cou
lomb asymptotic shape of orbitals a and b at high rea and
reb (as mentioned above, at high rea and reb the Veff,Cb(rea) and
Veff,Ca(reb) potentials are Coulomb) and do not require to
known the explicit form of these potentials. The asymp
totic method for the calculation of the exchange interac
tion is based on the following conditions fulfilled at high R:
(1) the exchange integral is calculated as a half of the

difference between the exact electron energies correspond

ing to even and odd (relatively to the permutation of spa
tial variables of electrons) spatial wave functions rather
than using the perturbation theory;
(2) the exchange integral is determined by the area 

of the spatial coordinates of both electrons ea and eb at the
middle between the cores Ca and Cb near the z axis (see
Fig. 1), which is due to the exponential decrease of the
orbitals a and b with an increase in rea and reb;
(3) the motion of electrons near the z axis in the  area

is quasiclassical, which makes it possible to obtain ex
plicit expressions for the correlation factor (see further
formula (10)).
The general scheme of calculation of the exchange

integral by the asymptotic method has the following form.
The singlet and triplet states of the system with energies
ES and ET correspond to the symmetrical S(rea,reb) and
antisymmetrical T(rea,reb) functions, respectively, under
permutations of the spatial coordinates of two electrons
spatial eigenfunctions of the total Hamiltonian

(7)

The spatial distributions of electrons ea and eb are de
localized in the S(rea,reb) and T(rea,reb) states, and each
electron can be found with equal probabilities near the
cores Ca and Cb. Based on the S(rea,reb) and T(rea,reb)
functions, we can construct the wave functions

ab(rea,reb) = S(rea,reb) + T(rea,reb),

ba(rea,reb) = S(rea,reb) – T(rea,reb), (8)

that describe the state in which electrons ea and eb are
localized near one of the cores: Ca and Cb in the state
ab(rea,reb) and Cb and Ca in the state ba(rea,reb) (Fig. 2).
Then, using condition (2) and taking into account the fact
that at the considered large distances the functions a and
b are slightly overlapped, the exchange integral Jas can be
presented as a surface integral (see Fig. 2)

(9)

A detailed derivation of this equation was described
earlier.29,30

Then we have to determine the explicit form of the
ab(rea,reb) and ba(rea,reb) functions. For this purpose,
they are presented as follows:

ab(reb,rea) = a(rea)b(reb)ab(rea,reb),

ba(reb,rea) = a(reb)b(rea)ab(rea,reb). (10)



Umanskiy et al.1514 Russ.Chem.Bull., Int.Ed., Vol. 62, No. 7, July, 2013

Owing to condition (2), correction functions ab(rea,reb)
and ba(rea,reb) are determined by the firstorder equations
that assume an exact solution. The detailed derivation of
the explicit expressions for correction functions ab(rea,reb)
and ba(rea,reb) is given in Ref. 30.
The explicit expressions for the exchange integrals were

obtained for the interaction of two oneelectron atoms.
These are hydrogen atoms, alkaline metal atoms (one elec
tron above strongly compressed cores with an noble gas
configuration), and atoms with one electron on the excit
ed (with respect to the ground state) orbital (in this case,
the effect of the core can be taken into account using the
pseudopotential). These expressions can conveniently be
presented in terms of matrix elements of the twoelectron
exchange operator J



as between the products of atomic or
bitals

(11)

Here

(12)

i = a, b; ri, i, and i are the spherical coordinates of
electron ei in the coordinate system with the origin on the
core Сi, whose z axis is directed along the internuclear axis
from the core Сa to Сb; Ymi

li(i, i) is the spherical func
tion; li is the orbital quantum number; mi is the quantum
number of the projection of the orbital angular moment of
an electron ei on the z axis; ili(ri) is the radial atomic
orbital and

(13)

where i is the binding energy of the electron on the orbital
(i)ilimi

. Due to the axial symmetry of the diatomic system,

(14)

at ma + mb  má + mb́.
Matrix elements (11) depend on the internuclear dis

tance R, quantum numbers n, l, and m, and constants Aili
in the asymptotic expressions for radial orbitals at large ri

(15)

This asymptotic is determined by the fact that the in
teraction potential of an electron ei with the core is Cou
lomb at high ri. Note that the possibility of introducing the
formal operator of exchange interaction J



as depends sub
stantially on the fact that, owing to condition 1, the cor
rection functions ab(rea,reb) and ba(rea,reb) are indepen
dent of the quantum numbers lama and lbmb.
The expressions for exchange integrals (11) for the case

0  la, lb, lá, lb́  3 are presented in Ref. 28. It should be
emphasized that these expressions are very simple and in
clude only the onedimensional integral in the range from
0 to 1 of the smooth function. An important property of
the indicated expressions is that they give exchange inte
grals with both positive and negative signs for various com
binations of magnetic quantum numbers mi and mí. These
signs coincide with those obtained by the calculation of
similar integrals in the Heitler—London approximation
and correspond to the physical concepts based on an anal
ysis of contributions from the positive repulsion potential
between electrons and the negative attraction potential of
electrons to nuclei. The expression for the exchange inte
gral determining the splitting between the singlet and trip
let terms of the system of two same alkaline metal atoms
in the ground 2S states is presented below as an example:

(16)

where (1/(2)) is the gamma function.

Exchange integral for a biradical in the framework
of the combined method

The following assumptions are used for the generaliza
tion of the described above asymptotic calculation meth
od in the case of calculation of the exchange integral in
a biradical:
(1) A reliable information about the equilibrium geo

metric structure of the biradical and molecular orbitals on

Fig. 2. Illustration of the description of the asymptotic method
for the calculation of the exchange integral. All designations are
given in text, and indices 1 and 2 at functions ab(rea,reb) and
ba(rea,reb) correspond to small and nonsmall values.
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which unpaired electrons are localized is available. For
this purpose, the corresponding quantum chemical calcu
lation at a fairly high level should be performed.
(2) The binding energies of unpaired electrons are sub

stantially lower than those of the core electrons. This sug
gests that the interaction of unpaired electrons with the
core is rather weak.
(3) The radial asymptotic behavior of orbitals of un

paired electrons of paramagnetic centers is Coulomb (type
(15)) and is determined by their binding energies.
(4) The effective potential energy of two unpaired elec

trons in the  area determining the exchange interaction
(see Fig. 1) can be approximated by the Coulomb interac
tion with positively charged cores of paramagnetic centers
and the mutual Coulomb repulsion. Therefore, in the cal
culation of the exchange integral, the Hamiltonian of two
unpaired electrons can be considered as having an axial
symmetry relatively to the axis passing through the cores
of the paramagnetic centers.
(5) One can choose the coordinate systems related to

the paramagnetic centers in which the molecular orbitals
of unpaired electrons are satisfactorily approximated by
a small number of terms in onecenter decompositions
over spherical functions.
The calculations of the exchange interaction between

the molecules have previously been performed20,31—33 suc
cessfully on the basis of assumptions (3)—(5).
Using assumptions (1)—(5), the explicit expressions

for exchange integral Jab
(as) in the biradical are obtained as

follows through the known exchange integrals (11).
At the first stage, according to assumption (5), the

coordinate systems xayaza and xbybzb with origins on the Ca
and Cb cores are introduced (Fig. 3). In these coordinate
systems, orbitals i(rei

(i)) are presented as a sum of the
finite number of decomposition terms over the spherical
functions (i = a, b)

(17)

where rei
(i), ei

(i), and ei
(i) are the spherical coordinates of

electron ei in the xiyizi coordinate system. In this case, the
dependence of the asymptotic (at rei

(i)  ) expression for
all i,limi(rei

(i)) on rei
(i) is the same and takes the form

(18)

It should be mentioned that the summation over i for
the most part of practically interesting cases is required

only to provide the real character of functions i(rei
(i))

corresponding to the nondegenerate spatial states of un
paired electrons.
At the second stage, the single coordinate system xyz is

introduced, whose axis z is directed along vector R from
core Сa to core Сb and axes x and y are chosen in such a
way that the coordinate system would be right (see Fig. 3).
The coordinate systems xiyizi are obtained from the coor
dinate system xyz by rotations with sets i,i,i of Eyler
angles and functions i(rei

(i)) can be presented as follows:

(19)

where Dlimi,i(i,i,i) are the Wigner rotation matrices (see,
e.g., Ref. 34), and rei

(i), ei, and ei are the spherical coor
dinates of electron ei in the coordinate system xyz with the
origin on the Сi
 core. At the third stage, using Eq. (19) for the orbitals of
unpaired electrons and the known expressions for exchange
integrals (11), exchange integral Jab

(as) is calculated by
formula (20).
Several remarks can be made concerning formula (20).
— Since, unlike the interaction of two atoms (see

Eq. (15)), the constants in the asymptotic expres
sions for the radial functions in decompositions i(rei

(i))
over the spherical functions depend not only on
ili but also on i (see Eq. (18)), these values are ex
plicitly  indicated  in  the  matrix  elements

alaama;blbbmb|as|aláámá;blb́b́mb́, which do

 

(20)

Fig. 3. Coordinate systems of weakly bond electrons ea and eb on
the paramagnetic centers with the Сa and Сb cores.
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not differ from standard diatomic exchange integrals (11)
at specified asymptotic constants Ailii.
— In spite of seemingly cumbersome formula (20) for

Jab
(as), real calculations by this formula are fairly simple

for two reasons. First, a small number (two—three) differ
ent values of li usually contributes to decomposition (17)
over spherical functions, and the contributions with dif
ferent i, as mentioned above, provide reality of i(rei

(i)).
Second, the expressions for exchange integrals (11) them
selves are fairly simple (see, i.e., Eq. (16)).
— The mutual orientation of the electron density dis

tributions corresponding to orbitals a and b and, hence,
the degree of overlapping are determined by sets of Eyler
angles a, a, a and b, b, b. Expression (20) for Jab

(as)

is a linear combination of exchange integrals (11) with
various combinations of magnetic quantum numbers
mi and mí, which can be either positive, or negative
with coefficients depending on a, a, a and b, b, b.
Therefore, depending on the mutual orientation of elec
tron density distributions corresponding to the a and
b orbitals, the value of Jab

(as) can be both positive (fer
romagnetic coupling) and negative (antiferromagnet
ic coupling).

Example of calculation and discussion

The combined calculation method described above for
the exchange interaction in the biradical was used for ni
troxyl biradical NBR, whose structure is shown in Fig. 4.
This compound is the simplest analog of biradicals: pre
cursors of organic ferromagnets and ferromagnetic poly
mers.35 According to the ESR spectroscopic data, the ab

solute value of the exchange integral for this system ex
ceeds36 0.1 cm–1.
The electronic structure and geometry of NBR were

calculated within the unrestricted DFT method using the
B3LYP hybrid functional37—39 and the ccpvdz basis set.
All calculations were performed using the ORCA pro
gram.40 The geometry was optimized without symmetry
restrains checking stationary points of the potential sur
face by the calculation of normal vibration frequencies.
The main geometric and electronic characteristics that

determine the exchange interaction between the NO
groups are the following:
— the axes of the NOa (N(16)—O(17)) and NOb

(N(42)—O(43)) groups are nearly collinear and lie in the z
axis; the N(16)—N(42) distance is 7.219 Å; the N—O
distances (N(16)—O(17), N(42)—O(43)) are 1.279 Å; the
distance between the centers of the NOa and NOb groups
(R) is 8.498 Å;
— the a and b orbitals in both NO groups on which

unpaired electrons are localized have the symmetry x;
— the binding energies of unpaired electrons (i.e., ion

ization potentials) on both NO groups are x = 0.188 au =
= 5.11 eV and, therefore, a = b = 0.613; the ionization
potentials were estimated by Koopmańs theorem using
canonical orbital energies for the open shell.41

According to the above described geometric structure
of NBR and directions of the a and b orbitals, it is
natural to choose the coordinate systems xyz, xayaza, and
xbybzb introduced in the previous section in such a way as
it is shown in Fig. 5. The following sets of Eyler angles in
Eqs (19) and (20) correspond to this choice of coordinate
systems: a = a = a = 0; b = –/2, b = , and b = /2.
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Fig. 4. Structure of nitroxyl radical NBR.
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Coefficients Ailii in the asymptotic approximations of
i
(as) at large rei

(i) in decompositions of type (17) for the i
orbitals obtained by the quantum chemical calculation
were determined by crosslinking i

(as) and i in the re
gion 2 < rei

(i) < 3 au using the leastsquares method. It
turned out that it is enough to take into account only the
terms with li = 1, 2 and i = ±1. In this case,

(21)

A comparison of this constructed asymptotic approxi
mation of i

(as) for the a orbital with this orbital itself is
shown in Fig. 6. A satisfactory agreement is observed.
The calculation by formula (20) using the above pre

sented parameters gives the following expression for
Jab
(as)(R):

Jab
(as)(R) = –6.7•105R2.71exp(–1.226R) cm–1,

Jab
(as)(R = 16.059) = –3.5 cm–1. (22)

The plot of function Jab
(as)(R) is shown in Fig. 7.

The obtained result (22) has a reasonable order of mag
nitude and a "correct" negative sign, since the electron
density distributions corresponding to orbitals a and b
are "parallel" and well overlapped. Therefore, the main
contribution to the exchange integral is made by the Cou
lomb attraction of electrons to the positively charged cores
Ca and Сb.
Thus, the described combined calculation method

makes it possible to rather easily estimate the exchange
interaction and, in particular, to determine its dependence
on the electronic structure of paramagnetic centers. In the
described simplest variant of the combined method. it is
enough to know the biradical geometry and the binding
energy of unpaired electrons and orbitals of unpaired elec
trons in the area of the configurational space of electrons
where these orbitals are high. This is possible when as
sumptions (2)—(4) are fulfilled, which seem to be quite

reasonable for short biradicals. However, if the biradical is
long and the paramagnetic centers are strongly remote
from each other, then the possibility of influence of the
core on the character of the asymptotic behavior of orbit

Fig. 5. Coordinate systems of weakly bound electrons ea and eb on the paramagnetic centers NOa and NOb in which the exchange
interaction in NBR was calculated.
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als of unpaired electrons localized on these centers should
be considered for the calculation of the exchange interac
tion. These studies need a detailed information on the
electronic structure of the biradical for modeling the pseu
dopotential describing the interaction of unpaired elec
trons with the core. We are planning to perform further
studies in this direction.

The authors are grateful to A. I. Kokorin for useful
discussions.
This work was financially supported by the Russian

Foundation for Basic Research (Project Nos 120300623a
and 120300018a).
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