Fluoroarenes in the synthesis of benzoannulated nitrogen-containing heterocycles

A. A. Layeva,^{$a \star$} E. V. Nosova,^a G. N. Lipunova,^a and V. N. Charushin^b

aUrals State Technical University, 19 ul. Mira, 620002 Ekaterinburg, Russian Federation. Fax: +7 (343) 374 0458. Email: charushin@prm.uran.ru b I. Ya. Postovskii Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, 22 ul. S. Kovalevskoi, 620219 Ekaterinburg, Russian Federation. Fax: +7 (343) 374 1189. Email: charushin@ios.uran.ru

Methods for the synthesis of fluoro-containing benzazoles and benzazines from fluoroarenes (fluoroanilines, fluorobenzoic acids, fluoroacetophenones, fluorophenols, *etc.*) are described. The potentialities of the most important synthons are considered. Ways of constructing hetero cycles with fluorine atoms in the annulated benzene fragment are discussed.

Key words: fluoroanilines, 4,5-difluoro-1,2-phenylenediamine, fluoro-containing 2-halobenzoyl chlorides, fluoro-containing benzamides, acetophenones, phenols, quinolines, quinazolines, benzotriazines, benzofuroxans, phenoxazines, benzimidazoles, benzoxazines, benzothiazines.

Introduction

Interest in the creation of novel organofluorine com pounds is due to their unique physicochemical and bio logical properties. Introduction of F atoms into organic molecules, especially into those fragments that are respon sible for their biological activity, becomes an important aspect of pharmaceutical investigations, which in turn stimulates a search for new methodologies of the synthe sis of diverse fluoro-containing compounds. $1 - 8$

The volume of the fluorine atom is close to that of the hydrogen atom; when the latter is replaced by a F atom, the primary metabolism of organic substances usually remains unchanged since enzymes in biological systems often do not distinguish between these compounds (mimicry effect). However, because C—F bonds are stron ger than C—H bonds, their degradation is hindered and further metabolism proceeds anomalously.**2,9**

A well-known example of the inhibitors of nucleic exchange enzymes is 5-fluorouracil, which has become usual in oncological practice. This preparation is an anti metabolite of uracil, competes with it for thymidylate synthase, and breaks the formation of DNA. The recently obtained drug fludarabine inhibits DNA polymerase and is used to treat chronic lympholeucosis and lymphoma.**¹⁰** This compound is an analog of adenosine, in which the ribose residue is replaced by the arabinose residue and the purine ring bears the fluorine atom in position 2.

Fluoroquinolones (6-fluoro-4-oxoquinoline-3-carboxylic acid derivatives^{$11-16$}) constitute the most important class of antibacterial drugs. By inhibiting type II topoisomerase (DNA gyrase), they blockade the synthesis of RNA on the DNA matrix and, consequently, cause cells to perish.**¹⁷** The specific effect of fluoroquinolones on bacteria is that they inhibit DNA gyrase of bacteria but do not bind themselves to DNA topoisomerases of host cells. Leading pharmaceutical firms have already created and brought into medical practice a large group of drugs

Published in Russian in *Izvestiya Akademii Nauk. Seriya Khimicheskaya,* No. 5, pp. 931—966, May, 2008.

1066-5285/08/5705-0947 © 2008 Springer Science+Business Media, Inc.

of this class such as pefloxacin, ciprofloxacin, levofloxacin, grepafloxacin, moxifloxacin, *etc*. **18**

In this review, we attempted to systematize the meth ods for the synthesis of benzazines and benzazoles con taining fluorine atoms in the annulated benzene fragment with consideration for two fundamental approaches to the synthesis of fluoro-containing benzoannulated azaheterocycles. The first approach involves introduction of F atoms into a prepared heterocycle, while the second approach involves construction of cyclic systems from fluoro-containing synthons. The former approach has a number of limitations associated with the fact that selective intro duction of F atoms into organic molecules is difficult. For instance, quinoline was directly fluorinated at the α -position**19,20** (Scheme 1), while electrophilic fluorination of its benzene ring was not selective (Scheme 2).**21,22**

Scheme 1

Reagents and conditions: 10% in nitrogen, I_2 , $CF_2Cl_2-CFCl_2$.

 $R^{1} = R^{2} = R^{3} = R^{4} = H$ (**a**); $R^{1} = R^{4} = H$, $R^{2} = R^{3} = Cl$ (**b**); $R^1 = Br$, $R^2 = R^3 = R^4 = H$ (**c**); $R^2 = Cl$, $R^1 = R^3 = R^4 = H$ (**d**); $R^4 = Cl$, $R^1 = R^2 = R^3 = H$ (**e**); $R^1 = R^4 = H$, $R^2 = Cl$, $R^3 = CF_3$ (**f**)

Direct fluorination at position 5 of quinoline was de scribed in Ref. 8 (Scheme 3). However, the yield of the target product was low and sulfone imide was isolated as a by-product.

A reaction of 1-hydroxy-2-oxo-1,2,3,4-tetrahydroquinoline with diethylaminosulfur trifluoride provides an example of selective fluorination giving a 6-fluoro derivative only.**²³** However, the problem of selective fluorina tion still persists for a wide range of heterocycles.

In this context, we believe that the synthesis of fluoro containing benzazoles and benzazines from fluoroarenes **Conditions:** 130 °C, 3 h.

(fluoroanilines, fluorobenzoic acids, fluoroaceto phenones, fluorophenols, *etc.*) is more promising. Here we considered the potentialities of the most important synthons and discussed ways of constructing, on their basis, heterocycles containing fluorine atoms in the benzene fragment. These ways can be represented by Scheme 4.

1. Fluorinated anilines and their derivatives in the synthesis of benzoannulated azaheterocycles

1.1. 2-Fluoro-, 3-fluoro-, and 4-fluoroanilines

Monofluoroanilines are often used as synthons for the synthesis of benzazines containing a fluorine atom. For instance, reactions of 4-alkyl-2-fluoroanilines 1 with ethyl 2acetylpropionate followed by cyclization of the result ing enamine 2 give $2,3,6$ -trialkyl-8-fluoro-4hydroxyquinolines **3** (Scheme 5). Derivatives **3** are em ployed in agriculture.**²⁴**

Scheme 2

Reagents and conditions: N₂ (50 mL min⁻¹), 0 \degree C, H₂SO₄.

The Skraup synthesis from 3-fluoroaniline 4 gives 5fluoro-6-methoxy-8-nitroquinoline **5** (Scheme 6); compound 5 is used to prepare 5-fluoroprimaquine 6, an analog of the known antimalaria drug.**²⁵**

Diazotization of 3-fluoroanilines gives the corresponding 3-fluorobenzenediazonium chlorides 7, which in turn can be transformed into 1,3,5-triphenylformazans 8. In the $BF₃/ACOH$ system, the latter undergo cyclization following an electrophilic attack with cleavage of the N—N bond and release of aniline. The final products are 7-alkoxy-6-fluoro-3-phenyl-1,2,4-benzotriazines 9 (Scheme 7). Fluoro-containing 3 -phenyl-1,2,4-benzotriazines are of interest because of their antiviral effect (*e.g.*, on the smallpox virus**²⁶**).

i. H₃AsO₄, H₃PO₄.

A reaction of 4-fluoroaniline **10** with 1,1,1-trifluoropentane-2,4-dione yields isomeric 6-fluoroquinolines 11 and **12** in the ratio 1 : 1 (Scheme 8).**²⁷**

Amide 13a obtained from 4-fluoroaniline (10) is thionated with Lawessonrs reagent. Cyclization of the resulting thioamide **13b** under UV light in the presence of $(Me₃Si)₃SiH$ (4 equiv.) in degassed benzene gives 1,3-dihydrofuro $[3,4-b]$ quinoline **14** (Scheme 9).²⁸

7-Fluoro-1-methyl-1,4-dihydro-9H-pyrazolo[4,3-b]quinolin-9-one (15) , which is the protein kinase C inhibitor, is obtained by cyclization of $4-[(4-fluorophenyl)$ -

amino]-1-methyl-1H-pyrazole-5-carboxylic acid (16). The latter is prepared from 4-fluoroaniline (10) and 4iodo-1-methyl-1*H*-pyrazole-5-carboxylic acid (17) in water in the presence of a copper powder and sodium carbonate (Scheme 10).**²⁹**

3-(Benzoxazol-2-yl)-4-fluoroaniline $(18, X = 0)$ and 3-(benzothiazol-2-yl)-4-fluoroaniline $(18, X = S)$, which are obtained by condensation of 5-amino-2-fluorobenzoic acid (19) with 2-aminophenol or 2-aminobenzenethiol in polyphosphoric acid, are used to synthesize 7-benz-

oxazolyl- and 7-benzothiazolyl-6-fluoroquinolones 20 (Scheme 11).**³⁰**

Diazotization of 4-fluoroaniline (10) gives 4-fluorobenzenediazonium chloride (**21**), which undergoes coupling with ethyl acetoacetate to form hydrazone **22**. Intramolecular cyclization of the latter in chlorobenzene in the presence of AlCl₃ leads to 3-acetyl-6-fluoro-1*H*cinnolin4one (**23**). Bromination of methyl ketone **23** under UV light yields 3-bromoacetyl-6-fluorocinnolone 24, which reacts with thioamides to give 3-thiazolylcinnolones **25**, which exhibit antimicrobial activity (Scheme 12).**31,32**

Fluoro-containing cinnolin-4(1*H*)-ones, imidazo-[2,1*b*]thiazolylcinnolones, and pyrazolo[4,3*c*]cinnolines that exhibit antibacterial and fungicidal effects are described in Ref. 33.

Scheme 9

i. 1) Lawesson´s reagent. 2) (Me₃Si)₃SiH, UV irradiation.

13: X = O (**a**), S (**b**)

1.2. 3,4-Difluoro- and 3-chloro-4-fluoroanilines

One of the most important synthons for construction of fluoro-containing azaheterocycles is 3,4-difluoroaniline (26). Compound 26 can be prepared from *ortho*-difluorobenzene, a product of the difluorocarbene synthesis (Scheme 13).**³⁴**

Condensation of 3,4-difluoroaniline (26) with ethyl ethoxymethylidenemalonate gives enamine **27**; its intra molecular cyclization leads to ester **28**, which is a key intermediate in the synthesis of some fluorooxoquinoline carboxylic acids, including pefloxacin **29** (Scheme 14).**¹⁰**

A search for new drugs of the fluoroquinolone series is in progress; an important way of modifying fluoroquino lones involves introduction of various substituents into their benzene ring. For instance, prior to the synthesis of 8-substituted fluoroquinolones, a desired substituent (SMe, Me, or CH₂OAc) should be introduced into position 2 of 3,4-difluoro- N -benzoylaniline.³⁵ For the synthesis of fluoroquinolones, 3-chloro-4-fluoroaniline is often used instead of $3,4$ -difluoroaniline and the cyclization is carried out by heating enamines in poly phosphoric acid or its ester.**³⁶**

Reagents and conditions: *i*. 270 °C; *ii*. 400 °C; *iii*. 650 °C; *iv*. 650–700 °C; *v*. 1) HNO₃, H₂SO₄; 2) Sn, HCl.

Sceme 14

Reagents and conditions: *i*. EtBr, K_2CO_3 ; *ii*. HCl, AcOH, $110-120$ °C.

Scheme 15

Reagents: *i*. CCl₃CH(OH)₂, NH₂OH • HCl; *ii*. H₂SO₄; *iii*. H₂O₂; *iv*. HON=CHCH₂NO₂; *v*. (MeCO₂)₂O, MeCO₂Na.

3-Chloro-4-fluoroaniline (30) can be easily transformed into 3-chloro-4-fluoroanthranilic acid 31. A reaction of compound **30** with chloral hydrate and hydroxylamine

yields isonitrosoacetanilide **32**; its cyclization in H_2SO_4 leads to a mixture of indole-2,3-diones 33 and 34 (Scheme 15).³⁷ Oxidation of this mixture with H_2O_2 gives

Reagents and conditions: *i*. HSO₃Cl, SOCl₂; *ii*. Na₂SO₃; *iii*. BrCH₂COOMe, EtOH; *iv.* HC(OEt₃), 140 °C.

2amino4chloro5fluorobenzoic acid (**31**), from which fluoroquinolone **35** was obtained. This way of constructing fluoroquinolones allows additional modifications of posi tion 3 of the pyridone ring.

3,4Difluoroaniline (**26**) is employed for the synthesis of 6,7-difluoro-2-polyfluoroalkylquinolones **36**. For this purpose, compound **26** is acylated with polyfluoroalkenoic anhydride and the resulting anilide is transformed into the corresponding imino chloride **37**. Cyclization of the latter with ethyl malonate or ethyl cyanoacetate yields quinolones **36** (Scheme 16).**³⁸**

Using 3,4-difluoroaniline as a starting material, one can obtain sulfur analogs of fluoroquinolones: fluoro-containing 1,4-benzothiazines and 1,2,4-benzothiadiazines. Chlorosulfonation of 3,4-difluoroaniline (26) gives 2amino4,5difluorobenzenesulfonyl chloride (**38**), which is reduced in a basic medium to the corresponding sodium sulfinate **39**. Alkylation of the latter with methyl bromoacetate in ethanol followed by condensation of intermediate **40** with triethyl orthoformate yields 6,7-difluoro-2-methoxycarbonyl-4H-1,4-benzothiazine 1,1dioxide (**41**) (Scheme 17).**³⁹**

Ammonolysis of sulfonyl chloride **38** gives sulfon amide **42**; its cyclization with triethyl orthoformate or ethyl oxalate affords 1,2,4benzothiadiazines **43** and **44** (Scheme 18).**⁴⁰**

 SO_2NH_2 $NH₂$ 42 43 $Q_{\rm s}$ 0, $NH₃$

COOEt

 H

44

Reagents: *i*. HC(OEt)₃; *ii.* EtOOC—COOEt.

41

1.3. Polyfluorinated anilines and nitrobenzenes

The presence of a F atom in the *ortho*-position relative to the reactive group makes polyfluoroanilines and polyfluoronitrobenzenes convenient synthons for the syn thesis of azaheterocycles *via* nucleophilic substitution of fluorine. For instance, pentafluoroaniline (**45**) serves as

a starting reagent for the preparation of polyfluorinated indole **46** according to Scheme 19 (see Ref. 41): amino fumarate **47** obtained from compound **45** and diethyl acetylenedicarboxylate undergoes intramolecular cycliza tion into indole **46**.

Scheme 19

Reagents: *i*. NaH, THF, EtOOC—≡—COOEt; *ii*. NaH, DMF.

In Ref. 42, the synthesis of 4-chloro-3,5,6,7,8-pentafluoro-1-pentafluorophenylquinolin-2-one (48) is described. Pentafluoroaniline (45) reacts with *cis*-tetrachloro-2-fluoro-1-pentafluorophenylpropene in the presence of AlCl₂ to give a mixture of *cis*- and *trans*-aza dienes 49. Hydrolysis of the mixture in a water—dioxane solution of K₂CO₂ yields the corresponding amides **50**. The amide obtained from the *cis*-isomer readily undergoes intramolecular cyclization into compound **48** (Scheme 20).

Electrochemical oxidation of pentafluoroaniline (**45**) gives a mixture of octafluorophenazine (**51**) and deca fluoroazobenzene (**52**) (Scheme 21).**⁴³**

Diazotization of polyfluoroanilines followed by reduc tion of the corresponding diazonium salts affords poly fluorophenylhydrazines **53**. After their acylation, the resulting hydrazides 54 are thionated with P_2S_5 to give polyfluorophenyl thiohydrazides **55**. Finally, cycliza tion of the latter yields 2-substituted $5,6,8$ -trifluoro-

45

Reagents: *i. cis*- C_6F_5CC l=CFCCl₃, AlCl₃; *ii*. K₂CO₃.

and $5,6,7,8$ -tetrafluoro-4*H*-1,3,4-benzothiadiazines **56** (Scheme 22).**⁴⁴**

2,3,4Trifluoronitrobenzene (**57**) is a starting material for the preparation of (S) - $(-)$ -7,8-difluoro-3-methyl-3,4dihydro- $2H$ -[1,4]benzoxazine (58), the most important intermediate in the synthesis of the antibacterial drug levofloxacin. Several routes to fluoro-containing stereoisomers of 3-methyl- and 2-methyl- $2H$ -[1,4]benzoxazines were proposed.**⁴⁵** For instance, compound **57** reacts with (R) -propane-1,2-diol in THF in the presence of NaH to give a mixture of (R) -3,4-difluoro-2- $(2$ -hydroxypropoxy)nitrobenzene and (R) -3,4-difluoro-2- $(1-hydrowpropan-$ 2-yloxy)nitrobenzene in the ratio $3:2$. The mixture is transformed into mesylates **59** and **60**; this is followed by reduction of the nitro group, cyclization in the presence of potassium *tert*-butoxide, and separation of benzoxazines **58** and **61** by column chromatography (Scheme 23).

51

Scheme 22

 $X = H$, F; R = Me, Et, Ph

Reagents and conditions: *i*. $(RCO)_2O$ or PhCOCl, NEt₃; *ii*. P_2S_5 ; *iii*. DMF, 80–120 °C.

of the tetrahydropyranyloxy group; *iv.* 1) $MeSO_2Cl$; 2) H_2 , Pd/C; 3) Bu^tOK; *v.* 1) H_2 , Pd/C; 2) Bu^tOK.

Another route to [1,4]benzoxazine **58** involves conden sation of 2,3-difluoro-6-nitrophenol (prepared by hydrolysis of 2,3,4-trifluoronitrobenzene (57)) with (S)- or (R)-2-(tetrahydropyran-2-yloxy)propanol **62** (see Ref. 45). This is followed by elimination of the tetrahydropyranyloxy group on ion-exchange resin, transformation of the resulting compounds **63** into mesylates, reduction of the nitro group, and cyclization in the presence of potassium *tert*-butoxide. For construction of fluoro-containing benzoxazines, a reaction of 2,3,4-trifluoronitrobenzene (57) with (R) -2-(ethoxyethoxy)propan-1-ol or (R) -1-benzyloxypropan-2-ol is also used.**⁴⁵**

1.4. 4,5-Difluoro-2-nitroaniline

Nitration of 3,4-difluoroacetanilide 64 under usual conditions gives 4,5-difluoro-2-nitroaniline 65 (Scheme 24).

Diazotization of 4,5-difluoro-2-nitroaniline 65 followed by treatment of the diazonium salt with $NaN₃$ affords nitro azide **66**, which can be easily transformed into 5,6-difluorobenzofuroxan (67), an important intermediate in the synthesis of fused azaheterocycles (Scheme 25).**⁴⁶**

The Beirut reaction with $5,6$ -difluorobenzofuroxan (67) gives the corresponding $6,7$ -difluoroquinoxaline 1,4-dioxides 68. For instance, 2-cyano-6,7-difluoro-

Reagents: *i*. Ac₂O; *ii*. $HNO₃/H₂SO₄$.

Reagents: *i*. NaNO_2 , NaN_3 ; *ii*. AcOH.

3-phenylquinoxaline 1,4-dioxide (68a) is obtained by treating furoxan **67** with benzoylacetonitrile in the pres ence of triethylamine and $6,7$ -difluoro-2,3-dimethylquinoxaline 1,4dioxide (**68b**) results from a reaction of furoxan **67** with ethyl methyl ketone in DMF in the presence of ammonia (Scheme 26).**⁴⁷** The reaction of compound 67 with cyanoacetamide leads to 2-carbamoyl5,6difluoro1hydroxybenzimidazole 3oxide (**69**)

(Scheme 26).**⁴⁸** The Boulton—Katritzky rearrangement gives nitrobenzofurazans **70** and nitrobenzotriazoles **71**. **49,50**

4Fluoro2nitroaniline **72** serves as a convenient synthon for the preparation of 2 -aryl-7-fluoro-6- $(4-methylpiperazin-1-yl)-4(3H)$ -quinazolin-4-ones 73 (Scheme 27).**⁵¹** The diazonium salt obtained from 2-nitroaniline 72 can be transformed into 2-nitrobenzonitrile **74** using the Sandmeyer reaction. Hydrolysis of the latter in H_2SO_4 gives benzamide 75. Reduction of the nitro group in compound 75 with SnCl₂ followed by reactions of 2-aminobenzamide 76 with substituted

Reagents: KNO₂/H₂SO₄, CuCN; *ii*. H₂SO₄; *iii*. SnCl₂/HCl; *iv*. ArCHO/EtOH; *v*. CuCl₂.

benzaldehydes yields 2-arylideneamino-4-fluoro-5-(4-methyl-piperazin-1-yl)benzamides 77. They undergo cyclization when heated in the presence of CuCl₂. It should be noted that 7-fluoroquinazolinones 73 exhibit antitumor activity.**⁵¹**

1.5. 4,5-Difluoro-1,2-phenylenediamine

Catalytic reduction of 4,5-difluoro-2-nitroaniline (65) gives 4,5-difluoro-1,2-phenylenediamine (78), an important intermediate in the synthesis of fluoro-containing benzazines and benzazoles (Scheme 28).**⁵²**

For instance, 1-amino-5,6-difluorobenzotriazole **79** is obtained from difluorophenylenediamine **78** by nitrosation in aqueous acetic acid and amination of prod uct 80 with hydroxylamine-O-sulfonic acid at $65-80$ °C (Scheme 29).**⁵³**

4,5-Difluoro-1,2-dehydrobenzene 81 is generated in room-temperature oxidation of amine 79 with lead tetraacetate in dry CH₂Cl₂ (Scheme 30). Under these conditions, 4,5-difluoro-1,2-dehydrobenzene **81** dimerizes into tetrafluorobiphenylene **82**. Using anthracene, tetraphenylcyclopentadienone, and furan as "traps" for *in situ* released **81**, one can obtain adducts **83**—**85**. **53**

A reaction of 4,5-difluoro-1,2-phenylenediamine (**78**) with ethyl cyanoacetate gives $5,6$ -difluoro-1*H*-benzimid-

azol-2-ylacetonitrile (86). Its condensation with β-oxo esters yields pyrido[1,2*a*]benzimidazoles **87** (Scheme 31). Some of compounds **87** have the effect on pathogenic *Orthopoxviruses*. **⁵⁴** Condensation of diamine **78** with carbon disulfide in boiling ethanol in the presence of triethyl amine gives 5,6-difluoro-2-mercaptobenzimidazole 88. This compound smoothly reacts with aliphatic and aro matic ketones at room temperature in the presence of catalytic amounts of H_2SO_4 to give 2-R-6,7-difluoro-3methylbenzimidazo[2,1*b*]thiazoles **89** (see Scheme 31).**⁵⁵**

6,7Difluoroquinoxaline (**90**) prepared by cyclization of diamine (**78**) with glyoxal**⁵²** easily undergoes quaterniza tion under the action of $Et_3O^{+}BF_4^-$ (Meerweinrs reagent) in $CH₂Cl₂$. Using 1-ethyl-6,7-difluoroquinoxalinium tetrafluoroborate (**91**), one can obtain a series of fused quinoxalines (Scheme 32).**⁵²** For instance, reactions of quinoxalinium salt 91 with N-aryldithiocarbamic acids and β-oxo acids as enolates (bornyl acetoacetate and ethyl acetoacetate) give tetrahydrothiazolo [4,5*b*] and tetrahydrofuro[2,3*b*]quinoxalines **92** and **93** (see Scheme 32).**56,57**

 $R = H$, Me, COMe, COPh, COOEt; $R^1 = OH$, Me, CH₂Br; $R^2 = H$, COOAIk; $R^3 = H$, OH, OAIk, CI, NR´R"

Scheme 32

 $R = Et$, bornyl

i. H(O)C—C(O)H; *ii*. Meerweinґs reagent.

1.6. 4-Fluoro-1,2-phenylenediamine

6Fluoroquinoxalinones **94** containing a trifluoro methyl group in position 3 are known to inhibit the reverse transcriptase of HIV-1. To obtain them, 4-fluoro-1,2-phenylenediamine (95) is treated with hexafluoropropylene oxide (HFPO) under basic conditions, the NH fragment is protected, and quinoxalinone **96** is made to react with lithium cyclopropylacetylenide. Then the NH group in compound **97** is alkylated (or acylated) and the protective groups are removed (Scheme 33).**⁵⁸**

The synthesis of 3-anilinoquinoxalinone 98 from *N*-substituted 4-fluoro-1,2-phenylenediamine 99 involves cyclization of the latter with ethyl oxalate followed by treatment of the intermediate with POCl₃. The resulting quinoxaline **100** is used to obtain compound **98**, which is an efficient glycogen phosphorylase inhibitor (Scheme 34).**⁵⁹**

The synthesis of 6-fluoro-3-methyl-1*H*-quinoxalin-2-one (101) from N-substituted 4-fluoro-1,2-phenylenediamine 102 was proposed in Ref. 60. 4-Fluoroaniline (10) is acylated with α -chloropropionyl chloride, compound 103 is nitrated at the *ortho*-position relative to the amide group, and the nitro group in compound **104** is reduced. Cyclization of compound **102** in the presence of NaHCO₃ followed by oxidation of compound 105 with H₂O₂ yields product 101 (Scheme 35).

2. Fluoro-containing benzoic acid derivatives **in the synthesis of benzoannulated azaheterocycles**

2.1. Fluoro-containing benzoyl chlorides

Reactions of accessible fluoro-containing benzoyl chlorides with bifunctional nucleophiles provide a conve nient route to a number of fluoro-containing heterocycles: fluoroquinolones, $[a]$ - and $[b]$ -annulated quinazolinones, and benzothiazinones.

For instance, acylation of α -azaheterylacetonitriles **106** with acid chlorides **107a,b** in the presence of triethylamine gives cyano ketones **108**. Depending on the het erocyclic residue, compounds **108** can be transformed into thiazoloquinolones **109**, benzothiazoloquinolones

Scheme 33

R is allyl, cyclopropylmethyl, COORr, benzyl, propargyl, etc.

i. 1) EtOOC—COOEt; 2) POCl₃, DMF.

110, or benzimidazoquinolones **111** (heating in DMF), as well as into quinolinoquinolones **112** (reflux in aceto nitrile in the presence of diazabicycloundec-7-ene (DBU)) (Scheme 36).**61,62**

Quinolones **113** can be obtained by reactions of 2,4,5trifluorobenzoyl chloride (**114**) with enamines **115** as C,N-dinucleophiles; intermediate acylated enamines resist isolation (Scheme 37).**⁶³**

Reactions of fluoro-containing benzoyl chlorides **116a,b** with *S*-ethylthiourea as an N,Nr-dinucleophile under mild conditions yield open-chain derivatives **117a,b**; when heated in DMF, they undergo cyclization into $1H$ -quinazolin-4-ones **118** (Scheme 38).⁶⁴

A distinctive feature of the reactions of tetrafluoro benzoyl chloride 107a with 2-aminopyridines 119 is that acylation occurs at both endocyclic and exocyclic N atoms and that heating of diaroyl derivatives **120** in boiling toluene in the presence of triethylamine gives

Me Me CI Η \overline{H} $NH₂$ $C₁$.
Ме C1 ii Ö $NO₂$ 10 103 104 Me Н H н iii O NN_2 Me Me H 102 105 101

Scheme 35

Reagents: *i*. HNO₃/AcO or KNO₃/H₂SO₄; *ii*. Fe/AcOH, H₂O/DMF; *iii*. NaI/NaHCO₃; *iv*. H₂O₂/NaOH.

106—112: Y = H (**а**), F (**b**)

: pyridin-2-yl, quinolin-2-yl, 1H-benzimidazol-2-yl, 1-methylbenzimidazol-2-yl, benzothiazol-2-yl, 4-methylthiazol-2-yl.

Scheme 37

 R^1 = Me, Ph; R^2 = Prⁿ, Ph

Scheme 38

116—118: $X = Y = F(a)$; $X = CI$, $Y = H(b)$

pyridoquinazolinones **121** (Scheme 39).**⁶⁵** Angular struc ture **121** ($Y = H$) is confirmed by the coupling constants $J(F^{10}, H^1)$ and $J(F^{10}, H^2)$ in the ¹⁹F NMR spectrum and by 2D heteronuclear experiments (HetCOR and HMBC). With pentafluorobenzoyl chloride (**107b**), this reaction yields a mixture of products **121** ($Y = F$) and **122** ($Y = F$). The use of ethyl(diisopropyl)amine as a base in reac tions of polyfluorobenzoyl chlorides **107a,b** with 2-aminopyridine affords individual quinazolin-4-ones 122 $(Y = H, F).$ ⁶⁶

Scheme 39

 $R = H$, Me; $Y = H$, F

 $[a]$ -Annulated quinazolin-4-ones $123-127$ are obtained from polyfluorobenzoyl chlorides **107a,b** and N, N´-dinucleophiles (aminoimidazoles, aminopyrazoles, aminotriazoles, or aminothiazoles). Heating of acid chlo rides **107** with aminoimidazole, aminopyrazoles, or

aminotriazoles yields benzamides, the exocyclic N atom being acylated. Cyclization of benzamides into tricyclic derivatives **123**, **124**, and **127** occurs in boiling toluene in the presence of NEt_3 or in boiling acetonitrile in the presence of DBU (Scheme 40).**⁶⁷** The angular structure of

 $Y = H (a)$, F (**b**); X = S, NH; R¹ = H, Ph; R² = H, F; R³ = H, F, OMe; R⁴ = H, CF₃

derivatives **125** and **126** obtained by cyclization of acylated heterylamines in diphenyl ether was confirmed by the spin-spin coupling of the F atom in position 8 of the quinazoline ring with the proton of the thiazole or benzazole fragment $(J = 4.5 - 6.8 \text{ Hz})$.

The synthesis of $[b]$ -annulated $4(3H)$ -quinazolinones is described in Ref. 66. Compounds **128**—**130** are obtained by room-temperature cyclocondensation of 2aminoazaheterocycles with polyfluorobenzoyl chlorides **107** in CH₂Cl₂ in the presence of ethyl(diisopropyl)amine (Scheme 41). The linear structure of compound **129** was proved by X-ray diffraction analysis; structure 128 is confirmed by the coupling constant ${}^{3}J_{\text{C,H}}$ for the carbonyl C atom and the proton of the pyrimidine ring.

Scheme 41

Heating of polyfluorobenzoyl chlorides **107a,b** with thioamides gives compounds 131 (Scheme 42); *N*-acylated intermediates cannot be isolated under these conditions.**⁶⁸** It should be noted that this synthesis of various 2-substituted benzothiazinones is limited since many thioamides are not easily accessible.

Y = H (**a**), F (**b**), R = 4-Cl-C₆H₄, 4-Me-C₆H₄, 2-pyridyl

Reactions of acid chlorides **107a,b** with imidazolidine 2thione in pyridine at 80 °C afford benzothiazinone **132**. Analogously, benzimidazole-2-thiones react with compounds **107a,b** under heating in toluene to give tetracyclic derivatives **137** (Scheme 43).**⁶⁹**

Scheme 43

 $Y = H$, F; R = H, F, Cl, Me

Tetrafluorobenzoyl chloride **134** containing a phenyl substituent is employed for the synthesis of phenanthridin 6-one 135 (Scheme 44).⁷⁰ For this purpose, 3,4,5,6tetrafluoro-2-phenylbenzoyl azide 136 (prepared from acid chloride **134**) is subjected to the Curtius rearrange ment into isocyanate **137** and the latter undergoes cy clization into phenanthridin-6-one 135 on heating in the presence of AlCl₃ (see Scheme 44).

2.2. Polyfluorobenzoyl isothiocyanates

Polyfluorobenzoyl isothiocyanates **138** (prepared from appropriate benzoyl chlorides and ammonium thiocyan ate) readily react with $N-$ and C-nucleophiles at the C atom of the N=C bond, giving derivatives of thiocarbamic acid. Adducts of nucleophiles with isothiocyanates un dergo intramolecular cyclization with replacement of the F atom to give 2-substituted $[1,3]$ benzothiazin-4-ones **139**—**144** (Scheme 45).**⁷¹** This method allows wide varia tion of the substituent in position 2 of benzothiazinones.

2.3. Fluoro-containing benzamides and benzonitriles

The synthesis of quinazolinones **145** from poly fluorobenzamides **146** involves heating of the latter with oxalyl chloride in the presence of amines and intra molecular cyclization of the resulting ureas **147** in the presence of potassium bis(trimethylsilyl)amide and catalytic amounts of 18-crown-6. Amination of quinazolinedione 145 with $O-(2,4$ -dinitrophenyl)hydroxylamine in the presence of NaH yields compound **148** (Scheme 46).**⁷²**

Scheme 45

 R^1 = COPh, CN; R² = 4-NO₂Ph, 2,4-dimethylpyridin-2-yl; R³ = OH, H

: morpholino, 4-ethoxycarbonylpiperazin-1-yl, hexamethyleneimino;

Het is pyridin-2-yl, 6-methylpyridin-2-yl, pyrimidin-2-yl, 4,6-dimethylpyrimidin-2-yl, 5-methylpyrazol-3-yl, 5-phenylpyrazol-3-yl.

Схема 46

Ŕ

145

Ŕ

R´ = CHMe₂, *cyclo*-C₃H₅, Ph; R = H, Me, OMe

Reactions of *o*-fluorobenzonitriles with N,N[']-dinucleophiles seem to be one of the most rational syn thetic approaches to fluoro-containing 4-aminoquinazolines. Indeed, reactions of 2,3-difluoro-, 2,4-difluoro-, 2,5-difluoro-, or 2,6-difluorobenzonitrile **149** and pentafluorobenzonitrile with guanidine carbonate in dimethyl acetamide at $140 °C$ give fluoro-containing 2,4-diaminoquinazolines **150a**—**e** in good yields (Scheme 47).**⁷³**

Scheme 47

150: 5-F (**a**), 6-F (**b**), 7-F (**c**), 8-F (**d**), 5,6,7,8-tetrafluoro (**e**).

Analogously, a reaction of 2,6-difluorobenzonitrile with formamidine acetate or acetamidine acetate in N , N -dimethylacetamide under nitrogen at 150 \degree C leads to 4-amino-5-fluoroquinazolines **151** (Scheme 48).⁷⁴

Reagents and conditions: $H_2N-\left(\begin{array}{cc} 150 \end{array} \right)$, 150 °C.

Treatment of 2-amino-3-fluorobenzonitrile (152) with formic acid in the presence of H_2SO_4 gives 8-fluoro-1*H*quinazolin4one (**153**) in 88% yield (Scheme 49).**⁷⁵** Apparently, the formation of the quinazolinone involves condensation of intermediate 2-aminobenzamide with formic acid.

A reaction of 2-amino-6-fluorobenzonitrile (154) with ethyl 5-(4-methylpiperazin-1-yl)-1*H*-benzimidazol-2ylacetate (**155**) in the presence of potassium bis(trimethyl silyl)amide produces 4-amino-5-fluoro-3-[5-(4-methylpiperazin-1-yl)-1*H*-benzimidazol-2-yl]-1*H*-quinolin-2-one (**156**) (Scheme 50).**⁷⁶** Compound **156** is a dihydrofolate

Reagents and conditions: HCOOH, H_2SO_4 , 110 °C.

Scheme 50

Reagents and conditions: $KN(SiMe_3)$, 40–62 °C, 1 h.

reductase inhibitor and has an effect on multiple myeloma.**77,78**

Acid hydrolysis of nitrile **154** leads to 2-amino-6fluorobenzamide (**157**), which allows widely varying the substituent in position 2 of quinazolinones. Two ap proaches to the synthesis of 5-fluoroquinazolin-4-ones were proposed. These involve reactions of amide **157** with acid chlorides (anhydrides) or aromatic (heterocyclic) al dehydes followed by cyclization of intermediates **158** and **159** into quinazolin-4-ones **160** (Scheme 51).⁷⁹

2.4. Polyfluorobenzoylacetic and acrylic acid esters

Fluoro-containing ethyl benzoylacetates 161 are important synthons for the preparation of $[a]$ -annulated fluoroquinolones **162** and **163** (Scheme 51). Esters **161** are synthesized by base-catalyzed reactions of fluorobenzoyl halides **164** with ethyl malonate followed by hydrolysis of the resulting malonate **165** and decarboxyla

Scheme 51

R = Me, Ph, 2-, 3-, 4-pyridyl, 2-furyl, 2-hydroxyphenyl, 2-hydroxy-5-nitrophenyl, 4-methoxyphenyl, 2,4-dihydroxyphenyl, 4-fluorophenyl, 4-trifluoromethylphenyl.

Reagents and conditions: *i*. H₂SO₄, 55 °C; *ii*. RC(O)Cl or (RCO)₂O; *iii*. KOH; *iv*. RCHO; *vi*. CuCl₂.

tion.**⁸⁰** Compound **161** can also be obtained directly by reactions of fluorobenzoyl halides **164** with potassium ethyl malonate in the presence of $Et₂N$ and MgCl₂ (Scheme 52).**²⁵**

Condensation of compounds **161** with imino ethers gives tricyclic fluoroquinolones **162** (see Ref. 80). A reac tion of compound 161 with 2-chlorobenzothiazole or 2chlorobenzoxazole in diphenyl ether in the presence of NaH at 160 °C leads to benzothiazolo[3,2*a*]quinolones and benzoxazolo[3,2*a*]quinolones **163** (see Scheme 52).**⁸⁰**

The synthesis of fluoroquinolone derivatives from 3,4-difluoroaniline is discussed in Section 1. The second method of constructing the quinolone system, which employs fluoro-containing ethyl acetates 161 as the starting reagents, has a greater synthetic scope. Condensation of fluoro-containing ethyl acetates with diazonium salts and hydroxylamine affords aza and oxo analogs of quinolonecarboxylic acids (Schemes 53, 54). For instance, ethyl pentafluorobenzoylacetate (**166**) reacts with benzenediazonium chloride in the presence of KOH at 0 °C to give hydrazone **167**; treatment of this compound with a weak solution of KOH yields 3-ethoxycarbonyl-5,6,7,8-tetrafluoro-1-phenylcinnolin-4-one (168) (see Scheme 53).⁸¹ 3-Ethoxycarbonyl-6,7-difluoro-1-methylcinnolin-4-one is obtained analogously from ethyl 4,5-difluorobenzoylacetate; in this case, the cyclization of intermediate hydrazone is promoted by heating with NaH.**⁸²**

A reaction of ester **166** with hydroxylamine leads to oxime **169**, which undergoes cyclization into 5,6,7,8 tetrafluoro-1,2-benzoxazin-4-one **170** (see Scheme 54).⁸³

Ethyl 3-ethoxy-2-polyfluorobenzoylacrylate 171 is the most important synthon for the synthesis of fluoro quinolones and their annulated analogs. This ester is

Scheme 52

 $X = S$, O; R = H, Me; R = H, F, Cl, NR¹R², AlkS, AlkO, *etc*.; R^4 = COOH, CN, AlkO, AlkS, NH₂, AlkNH

Reagents and conditions: *i*. $CH_2(COOEt)_{2}$; *ii*. KOOC—CH₂—COOEt/NEt₃/MgCl₂.

i. 1) KOH, 2) PhN₂Cl; *ii*. KOH.

prepared by condensation of ethyl aroylacetate **161** with ethyl orthoformate in acetic anhydride (Scheme 55).**²⁵** Replacement of the ethoxy group in compounds **171** under the action of primary amines or hydrazines followed by base-catalyzed intramolecular cyclization of intermediates 172 yields the corresponding ethyl 6-fluoro-4oxoquinoline3carboxylates **173** (see Scheme 55).**²⁵**

Room-temperature reactions of ethyl 3-ethoxy-2-[tetra(penta)fluorobenzoyl]acrylates **174** with hydrazides $(175, X = 0)$, thiohydrazides $(175, X = S)$, or amidrazones $(175, X = NH)$ in ethanol lead to acrylates 176. Their intramolecular cyclization gives $1,3,4$ -thiadiazino-[6,5,4*i*,*j*], 1,3,4oxadiazino[6,5,4*i*,*j*], and 1,2,4tri azino[5,6,1*i*,*j*]annulated quinolones **177**. For instance, reflux of acrylate **176a** $(X = S)$ in toluene for 2 h yields thiadiazinoquinolones $177a$ ($X = S$); bicyclic intermediates cannot be isolated under these conditions (Scheme 56).**84,85** Cyclization of acrylates 176 ($X = 0$, NH) in toluene for

 i . HC(OEt) $_3$, Ac $_2$ O; ii . R 3 NH $_2$

2—3 h gives bicyclic derivatives **178**. Heating of the latter in acetic anhydride produces triazinoquinolones **177** $(X = NH)$, while heating in boiling toluene in the presence of K_2CO_3 or in acetonitrile in the presence of KF gives oxadiazinoquinolones 177 (X = O) (Scheme 56).^{86–88}

Room-temperature reactions of ethyl 3-ethoxy-2-[tetra-(penta)fluorobenzoyl]acrylates **174a,b** with heterylhydr azines in toluene yield compounds **179a**—**g** (Scheme 57).**⁸⁹** The tendency of the latter toward amino-imine tautomerism allows cyclization with $[i,j]$ -annulation of quinolines to the triazine ring. Pentacyclic derivatives **180a**—**g** are obtained by cyclization of acrylates **179a**—**g** in boiling acetonitrile in the presence of DBU, triethylbenzyl ammonium chloride (TEBAC), or KF, or by heating in dioxane in the presence of NaH. When acrylate **179a** was heated with TEBAC in acetonitrile, bicyclic derivative **181a** was isolated (Scheme 57).**⁸⁹**

Alternative transformations of 3-benzazolylhydrazino-2-polyfluorobenzoylacrylates 179 involve the carbonyl group. For instance, reflux of acrylates **179** with KF in acetonitrile gives benzimidazo[1,2*a*]pyrazolo[1,5*c*] quinazolines **182a**—**d**. Pyrazolyl intermediates **183a**—**d** can be isolated after short-time heating of acrylates **179a—d** in acetonitrile; heating of compounds **183** with KF for 4 h yields products **182a**—**d** (Scheme 57).**90,91**

Analogously, room-temperature reactions of acrylates **174** with aminoazoles **184** in ethanol give ethyl 3-azolylamino-2-polyfluorobenzoylacrylates 185, which undergo cyclization in boiling acetonitrile in the presence of KF. For instance, 1-substituted quinolone **186** is obtained from ethyl 2-pentafluoro-3-(pyrazol-3-yl)aminobenzoylacrylate **185b**. Cyclization of tetrafluorobenzoyl deriva tives **185a,c** follows a different pathway leading to pyrazolo[1,5*a*]pyrimidines **187a,b** (Scheme 58).**⁹²**

The synthesis of difluoro-1,2,4-oxadiazino[i , j]quinolone **188** involves cyclization of acrylate **189** in DMF in the presence of K_2CO_3 (Scheme 59). Compound 189 is prepared by heating of ethyl 3-ethoxyacrylate 174a with acetamide oxime **190** in acetic anhydride (see Scheme 59).**⁹³**

Methyl 3-methoxy-2-pentafluorobenzoylacrylate (191) reacts with 4 -amino-5-phenyl- $4H-1,2,4$ -triazole-3-thiol (AMT) to give compound **192**. Heating of the latter in DMF at 120 °C in the presence of K_2CO_3 yields quinolone **193** (Scheme 60).**⁹⁴**

Scheme 57

179—181: X = NH, R = F, Y = F (a), X = NH, R = F, Y = H (b), X = NH, R = Y = H (c), X = NH, Y = F, R = NO₂ (d), X = NH, Y = F, R = Br (e); $X = S$, R = H, Y = F (**f**), R = H, Y = H (**g**)

182, 183: Y = H, R = H (**а**), R = Br (**b**), R = F (**c**), Y = F, R = F (**d**)

2.5. Fluoro-containing derivatives of anthranilic and 2-nitrobenzoic acids

Derivatives of benzoic acids bearing an amino or nitro group in the *ortho*-position are widely used as synthons for the preparation of fluoro-containing benzazines.

One of the key synthons is $4,5$ -difluoroanthranilic acid **194**. A reaction of compound **194** with carbon disulfide in the presence of triethylamine followed by methylation with methyl iodide gives dithiocarbamate **195**; treatment of the latter with acetic anhydride affords $4H-[3,1]$ benzothiazin-4-one 196 in high yield. Treatment of compound 196 with a lithium salt of ethyl acetate gives β-oxo ester 197, which undergoes cyclization into 2-mercaptoquinoline **198** under the action of sodium ethoxide in ethanol (Scheme 61).**⁹⁵**

Anthranilic acid is known to be a convenient synthon for construction of the quinazoline system.**⁹⁶** Using fluoroanthranilic acids, one can also synthesize fluoro containing quinazolines according to well-developed

procedures. This approach allows a greater variation of the substituents in the heterocycle compared to the synthesis of quinazolines from benzoyl chlorides (Section 2.1). This can be illustrated with the synthesis of 6-fluoro-7-guanidinoquinazolinones **199** (Scheme 62). 2Cyclization of aminobenzamide **200** (prepared from acid 194) with trimethyl orthoformate gives 3-substituted quinazo-linone 201 transformed further into azide 202. The latter is treated with $(1S, 2S, 3S, 5R)$ -2,6,6-trimethylbicyclo- $[3.1.1]$ heptan-3-yl isocyanate in THF in the presence of PPh₃ and then with $(6S, 2R)$ -2,6-dimethylpiperazine. The resulting quinazoline **199** is biologically active and can be used to treat obesity and type II diabetes.**⁹⁷**

A reaction of *o*-phenylenediamine with 5-fluoroanthranilic acid (**203**) in the presence of polyphosphoric acid yields 2(2aminophenyl)benzimidazole **204**. The latter can react with a second molecule of acid **203** to give 6(2aminophenyl)benzimidazo[1,2*c*]quinazoline **205** (Scheme 63).**⁹⁸**

Heating of monofluoroanthranilic acids **206** with ace tic anhydride or carboxylic acid chlorides leads to 2-substituted [3,1]benzoxazin-4-ones 207. Reactions of 5-fluoro-2-methyl-3,1-benzoxazin-4-one with 2-amino-1,3,4-thiadiazoles and (DL) -α-amino-ε-caprolactam give 3-substituted quinazolin-4(3*H*)-ones 208 and 209, respectively (Scheme 64).**⁹⁹** Fusion of arenesulfonylhydrazides with 6-fluoro-3,1-benzoxazines 207 at 130 °C for 30 min or keeping of the reagents in DMF at room tempera ture for 22 h affords a number of sulfonamides **210** (see Ref. 100). The reaction proceeds through open chain intermediates **211**, which can be isolated under mild reaction conditions.

In some cases, construction of fluoroquinazolinones involves the formation of intermediates containing an isothiocyanate group. For instance, cyclization of methyl anthranilates **212** with isothiocyanates and that of substi tuted 2(methoxycarbonyl)phenyl isothiocyanates **213**

 R = Me, PhCH $_2$, PhCH $_2$ CH $_2$, thiophen-2-yImethyl

213

 $R = H$, Cl, COOMe; $R_I = Et_2NCH_2CH_2$, cyclohexyl, CH₂Ph, 2 -H₂NC₆H₄

216

with primary amines lead to 4 -oxo-1,2,3,4-tetrahydroquinazoline-2-thiones 214 (Scheme 65).¹⁰¹

It is reported that 6 -fluoro-2-phenylamino-4*H*-3,1-benzoxazin-4-one 215 obtained by cyclization of compound **216** or by condensation of benzoxazinedione **217** with aniline (Scheme 66) is used to treat obesity.**¹⁰²**

Reactions of 2-anilinopolyfluorobenzoic acids 218 with $POCl₃$ give 9-chloro-1,2,4-trifluoro- and 9-chloro-1,2,3,4tetrafluoroacridines **219a,b**, in which the Cl atom is replaced by a nucleophile. Compound **219b** can be easily transformed into compound **220** in the presence of aniline (Scheme 67).**¹⁰³**

218, 219: X = H (**a**), X = F (**b**) Nu = MeNH, Me $_2$ N, PhNH, NH $_2$ NH, PhNHNH, C $_6$ F $_5$ NHNH.

i. N-Methylmorpholine.

The solid-state synthesis of fluoro-containing 2-hydroxyquinoxalines 221 from 2,3,4,5-tetrafluoro-6nitrobenzoic acid (**222**) was considered in Ref. 104 (Scheme 68); another product is 4,6-difluorobenzimidazole **223**.

The synthesis of $6,7$ -difluoro-4-hydroxy-3-nitroquinolin-2-one (224) and $2,3,4$ -trichloro-6,7-difluoroquinoline (225) from 4,5-difluoro-2-nitrobenzoic acid (226) is shown in Scheme 69. Malonate **227** is smoothly trans formed into 4-hydroxyquinolone 228 in the presence of

NaBH₄ in a basic medium. Treatment of compound 228 with p -toluenesulfonic acid gives ethyl $3,4$ -difluoro-6-nitrobenzoylacetate (229). Catalytic reduction of the nitro group in the latter on Pd/C in ethanol results in cyclization into $6,7$ -difluoro-4-hydroxy-quinolin-2(1*H*)one (**230**) in high yield. Hydrolysis and decarboxylation of compound 228 also gives 4-hydroxy-quinolin-2(1*H*)one 230. Nitration of compound 230 yields 3-nitroquinolone 224, which is transformed into 2,3,4-trichloroquinoline 225 under the action of POCl₃ (Scheme 69).¹⁰⁵

Reagents and conditions: *i*. SOCl₂, CH₂(COOEt)₂, Mg; *ii*. NaBH₄, Pd/C, NaOH; *iii. p*-TsOH, H₂O; *iv*. 3 *N* HCl, EtOH; *v*. POCl, NEt₃, 100 °C; H₂, *vi*. EtOH, Pd/C; *vii*. HNO₃, AcOH, 100 °C.

3. Fluoro-containing acetophenones in the synthesis of benzoannulated azaheterocycles

Fluoro-containing acetophenones are convenient synthons for construction of various benzoannulated azaheterocycles. For instance, 6-fluorobenzo[*d*]isothiazole 231 is obtained from 2,4-difluoroacetophenone (**232**).**¹⁰⁶** A reaction of compound **232** with benzyl mer captide gives sulfide **233** through selective replacement of the F atom in position 2. When treated with thionyl chlo ride, sulfide **233** is transformed into sulfenyl chloride, which reacts with ammonia to give sulfenamide undergo ing spontaneous cyclization into benzoisothiazole **231** (Scheme 70).

 i . PhCH $_{2}$ SH, KOBu^t, THF; ii . 1) SOCI $_{2}$; 2) NH $_{3}$, THF.

Reactions of pentafluoroacetophenone (**234**) with aro matic amines in the presence of K_2CO_3 gives, through replacement of the F atom at the $C(2)$ atom by the aniline residue, derivatives **235**—**237**. With highly basic amines $(pK_a > 4)$, the yields of these products are sufficiently high. Heating of 2-arylamino-3,4,5,6-tetrafluoroacetophenones **235**—**237** in a mixture of sulfuric and acetic acids produces the corresponding $1,2,3,4$ -tetrafluoro-9methylacridines **238**—**241** in high yields (Scheme 71).**¹⁰⁷** The formation of 9-methyl-3-phenylamino- or 3-phenylamino-9-trifluoromethylacridine on heating of pentafluoroacetophenone **234** or perfluoroacetophenone with aniline was reported in Ref. 108.

The synthesis of fluoroquinolones and their analogs from ethyl 3-pentafluorobenzoylpyruvate (242) is well covered in the literature. Compound **242** is prepared by the Claisen condensation of pentafluoroacetophenone **234** and ethyl oxalate in the presence of LiH (Scheme 72).**¹⁰⁹** Reactions of pyruvate 242 with 2-aminophenol and o -phenylenediamine in methanol at 20 \degree C afford 3-pentafluorobenzoylmethylidene-1,2,3,4-tetrahydrobenzoxazin-2-one (243a) and 3-pentafluorobenzoylmethylidene-1,2,3,4-tetrahydroquinoxalin-2-one (243b), respectively. Intramolecular cyclization of compound **243a** in DMSO at 200 \degree C without any base or at 80 \degree C in the presence of triethylamine yields $4,5,6$ -trifluoro-3*H*-pyrido[3,2,1- k,l]phenoxazin-3-one (244) (Scheme 72).¹¹⁰ Product 243b is transformed into quinolone **245** on heating with triethyl amine in DMSO (see Scheme 72).**¹¹¹**

Hydrolysis of ester **242** leads to acid **246**, which reacts with primary amines to give 2-alkylamino(anilino)-3-pentafluorobenzoylacrylic acids 247a,b. In the

Схема 69

Scheme 71

i. R = Me, OMe, Br, NMe₂; *ii*. R = Me, OMe.

Scheme 72

244

243a,b

245

presence of KOH, compounds **247a,b** are transformed into 1-substituted 5,6,8-trifluoro-7-hydroxy-4-oxoquinoline-2-carboxylic acids 248a,b (Scheme 73).¹⁰⁹

Scheme 73

247, 248: R = C₆H₁₁ (**a**), Prⁱ (**b**)

Reagents and conditions: *i*. HCl, 35—40 °C; *ii*. H₂NR, Δ ; *iii*. KOH, 90—95 °C.

A reaction of pyruvate **242** with arenediazonium chlo ride gives ethyl 3-(arylhydrazino)pentafluorobenzoylpyruvate **249**. When heated in DMSO or refluxed in chloroform with a double excess of triethylamine, com pound **249** undergoes cyclization into cinnolones **251** (Scheme 74).**¹¹²** The latter react with a double excess of *o*-phenylenediamine and *o*-aminophenol in boiling alcohols to give complex heterocyclic ensembles of hydrazones $(252, X = NH, O)$. In a reaction of ester 249 $(Ar = p$ -methoxyphenyl) with diethylenetriamine in ethanol at 20 °C, intramolecular nucleophilic substitution of the F atom is accompanied by an attack on the α-dicarbonyl fragment leading to polycyclic derivative **250** (Scheme 74).**¹¹³**

4. Fluoro-containing benzaldehydes and benzophenones in the synthesis of benzoannulated azaheterocycles

A number of fluoro-containing benzazoles and benzazines are obtained from appropriate benzaldehydes and benzophenones. For instance, a microwave-promoted reaction of 2-bromo-5-fluorobenzaldehyde (253) with phenylhydrazine gives hydrazone **254**, which undergoes cyclization into 1-phenyl-1 H -indazole 255 on heating in the presence of CuI and K_2CO_3 (Scheme 75).¹¹⁴

Condensation of fluoro-containing ortho-halobenzaldehydes with C,N-dinucleophiles affords various quinolines. For instance, room-temperature reactions of pentafluorobenzaldehyde (**256b**) with substituted anilines give 1,2,3,4tetrafluoroacridines **257** in quantitative yields and condensation of 2-chloro-3,4,5,6-tetrafluorobenzaldehyde (256a) with 5-amino-1,2-azoles yields azolo[b]quinolines **258** (Scheme 76).**¹¹⁵**

Analogously, pentafluorobenzaldehyde (**256b**) reacts with 6-amino-1,3-dimethyluracil in glacial acetic acid to give $5,6,7,8$ -tetrafluoro-1,3-dimethylpyrimidino $[6,5-b]$ quinoline2,4dione (**259**) (Scheme 77).**¹¹⁶**

COOEt **CODEt** 242 NΗ .
Ar Àr 249 251 H_2N $NH₂$ òн∥ N. Ö .N Ω Är 252 OMe

Scheme 74

250

B is a base; Ar = p -MeOC₆H₄, X = NH, O

Reagents and conditions: *i*. MW, 160 $^{\circ}$ C; *ii*. K₂CO₃, CuI, MW, 160 °C.

Scheme 76

272: X = Cl (**a**), F (**b**);

 $Y = NMe$, NPh, O, S; R = Me, CMe, Ph; Rr = OMe, Me, H, F, Br.

Reactions of pentafluorobenzaldehyde (**256b**) with quinazolinylacetonitriles **260** yield compounds **261**, which undergo cyclization into polycyclic systems **262** on heat ing with NEt₂ in DMF (Scheme 78).¹¹⁷

Base-catalyzed condensation of 2-amino-5-fluorobenzaldehyde (263) with 2-acetyl-1-methyl-5-nitroimidazole leads to $2-(1-methyl-5-nitroimidazol-2-yl)quino$ line (264). This compound reacts with H_2O_2 in acetic acid to give derivative **265** transformed further into compound **266** under the action of POCl₃ (Scheme 79).¹¹⁸ Condensation of aldehyde 263 with 2-acetyl-1-methyl-5-nitrobenzimidazole gives quinoline **267**. **119**

The patented^{120,121} synthesis of 2-chloro-6-fluoroquinolines **268** and benzo[*b*]naphthyridines **269** from ben zaldehydes **270** is shown in Scheme 80. Nitration of com

Scheme 77

pound **270** with a mixture of nitric and sulfuric (or acetic) acids gives 2nitrobenzaldehyde **271**. Condensation of this compound with ethyl malonate in the presence of a base (alkoxides, Na₂CO₃, or NaH) leads to ester **272**. Cyclization of malonates **272** followed by treatment of interme diates 273 with POCl₂ yields 2-chloro-6-fluoroquinolines **268**, from which benzo[*b*]naphthyridines **269** are obtained.

R = Me, Et, cyc*l*o-C3H5; **270:** X = F, Cl

Replacement of the halogen atom X by the heterocyclic residues gives benzo[1,8]naphthyridines **269**, which exhibit antimicrobial activity.**¹²²**—**¹²⁵**

Condensation of 2-amino-5-fluorobenzaldehyde, acetophenone, or benzophenone **274** with 3(2*H*)benzo furanones or 3,4-dihydrothiopyrano[2,3-b]pyridin-4(2H)one leads to benzofuro[3,2*b*]quinolines **275** and 6*H*pyrido[3ґ,2ґ:5,6]thiopyrano[4,3*b*]quinolines **276** (Scheme 81).**¹²⁶**

Fluoro-containing benzophenone 277 reacts with aniline in the presence of K_2CO_3 to give compound **278**, which can undergo cyclization into acridine **279** (Scheme 82).

Hydrolysis of the ether bond in the latter followed by intramolecular replacement of the F atom in DMF in the presence of KF completes the formation of the polycyclic system 6,7,8-trifluoro[1]benzopyrano[2,3,4-k,*l*]acridine (**280**) (see Scheme 82).**¹²⁷**

5. Fluoro-containing phenols and benzenethiols in the synthesis of benzoannulated azaheterocycles

Fluoro-containing phenols and benzenethiols find use in the synthesis of phenoxazines and [1,4]benzothiazines. Polyfluorodiphenyl ethers can serve as the starting mate rials for the preparation of polyfluorophenoxazines. For instance, 10-acetyl-1,2,3,4-tetrafluorophenoxazine (281) is obtained from pentafluoro-2-nitrodiphenyl ether 282. Acid-catalyzed reduction of the latter with $SnCl₂$ gives 2-amino derivative 283. *N*-Acyl derivative 284 undergoes cyclization into 10 -acetyl-1,2,3,4-tetrafluorophenoxazine (281) on heating with anhydrous K_2CO_3 (Scheme 83). Ether **283** can be prepared either from potassium penta fluorophenolate (285) and 2-fluoronitrobenzene (286) or

Scheme 82

Scheme 83

285

282

 $K₂CO₃$, DMF

283

286

from polyfluorobenzene and 2-aminophenol in pyridine in the presence of a base.**¹²⁹**

Another example of the synthesis from polyfluorinated diphenyl ether **287** is provided by the formation of polyfluoro-10-methylphenoxazine 288 on heating of compound 287 in DMF for 3 h; the content of by-product 289 is 5% (Scheme 84).**¹³⁰**

Scheme 84 HŃ **Me** 287 C Ω Me Ė Me 288 289

2,3,4,5Tetrafluorobenzenethiol (**290**) is used to ob tain sulfur analogs of fluoroquinolones (**291** and **292**). Benzenethiol **290** is chlorinated and the resulting sulfenyl chloride reacts with ethyl 3-cyclopropylaminoacrylate in pyridine at 60 °C to give enamine **293**. Oxidation of the

latter with chloroperoxybenzoic acid yields sulfoxide **294**; with a threefold excess of the oxidant, the oxidation product is sulfone 295. Room-temperature cyclization of intermediates **294** and **295** in THF in the presence of NaH affords compounds **291** and **292**, respectively (Scheme 85).**¹³¹**

The single-step synthesis of fluoro-containing 4H-[1,4]benzothiazines 296 is effected by cyclization of 2-aminofluorobenzenethiols 297 with β-diketones in DMSO (Scheme 86).**132,133**

 $R = Me$, $Rr = Me$, Ph , p - FC_6H_4 , p -ClC $_6H_4$, EtO, MeO, p -MeOC $_6H_4$, p -MeC $_{6}$ H₄; R = Rr = Ph

Fluoro-containing 2- and 3-methylbenzothiazines are used to obtain sulfur analogs of levofloxacin. An approach to optically active benzothiazines is shown in Scheme 87. (S) -7,8-Difluoro-3-methyl-3,4-dihydro-2H-[1,4]benzothiazine (298) is synthesized from 3,4-difluoro-2-mercaptonitrobenzene 299 and (R)-propylene oxide *via* intermediate (*R*)**300** (see Scheme 87).**⁴⁵**

n = 1 (**291**, **294**), 2 (**292**, **295**)

6. Fluoro-containing arenes with other substituents

Apart from the synthons described above, other fluoro arenes containing substituents that can be involved in construction of azaheterocycles are of interest.

For instance, 4,5,6,7-tetrafluoro-2-methyl-1-phenylindole (**301**) is obtained by reaction of ketone **302** with an excess of aniline in the presence of anhydrous $ZnCl₂$ followed by intramolecular cyclization of the Schiff base **303** (Scheme 88).**¹³⁴**

4,5,6,7Tetrafluoroindole (**304**) is obtained as shown in Scheme 89. The synthesis involves reduction of penta fluorophenylacetonitrile (**305**) to amine **306**, intra molecular cyclization with replacement of the F atom, and smooth oxidation of dihydro derivative **307** with MnO₂ in benzene (Scheme 89).¹³⁵

5,6,7,8-Tetrafluoro-1,4-dihydrocinnoline (308) is generated by heating of 1-amino-4,5,6,7-tetrafluoro-3hydroxyindoline (**309**) (ring extension probably involves nitrene). In turn, compound **309** is prepared through intramolecular cyclization of hydrazine **310**. Dihydro derivative 308 is oxidized into 5,6,7,8-tetrafluorocinnoline (**311**) (Scheme 90; see Ref. 136).

Reactions of pentafluorophenylglyoxal (**312**) with ali cyclic 2hydroxyamino oximes **313** in methanol give a mixture of annulated 2-(pentafluorophenyl)pyrazine

1,4-dioxides 314 and tetrafluoro-10*H*-imidazo $[1,2-b]$ -[1,2]benzoxazin-10-ones **315** (Scheme 91).¹³⁷

Pentafluorobenzyl bromide (**316**) reacts with benz imidazole-2-thione in the presence of NaH to give fused tetrafluoro derivative **317** (Scheme 92).**¹³⁸** It should be noted that the cyclization pathway in this reaction differs from that in Scheme 43 and no analog of compound **133a** is formed. Apparently, benzimidazole-2-thione is initially alkylated at the S atom, while in the cyclocondensation with polyfluorobenzoyl chloride **107**, benzimidazole 2-thione is acylated at the N atom.

Scheme 91

Fluorinated quinazolin-4-ones can be conveniently obtained using a photochemical method.**¹³⁹** Irradiation $(\lambda = 313 \text{ nm})$ of 5-polyfluoroaryl-3-phenyl- or polyfluoroaryl-3-methyl-1,2,4-oxadiazoles 318 in dry methanol or acetonitrile in the presence of triethylamine gives the corresponding quinazolinones **319** (Scheme 93).

R = Ph, X = H (**a**), F (**b**); R = Me, X = H (**c**), F (**d**)

The synthesis of 8-fluorocinnoline 320 involves cyclization of methyl $4\text{-amino-}2-(2,4\text{-dichlorophenyl-}$ amino)-3-fluoro-5-propen-2-ylbenzoate (321) under the action of NaNO₂ and H_2SO_4 , hydrolysis of the ester bond, and a reaction with $O-(2$ -vinyloxyethyl)hydroxylamine (Scheme 94).**¹⁴⁰** Hydrolysis of the ether group is carried out in a solution of HCl.

Scheme 94

i. 1) NaNO₂, H₂SO₄; 2) 1 M LiOH; 3) \mathcal{S} 0 MH₂; 4) 1 M HCl.

4-Ethoxy-5,6,7,8-tetrafluoro-3-(4-nitrophenyl)-4oxo1phenyl1,4dihydrobenzo[*e*]1,2,4diazaphos phorine (**322a**) can be obtained by a reaction of diethyl pentafluorophenylphosphinate (323a) with *C*-(4-nitrophenyl)-N-phenylnitrile imine (324) under mild conditions (20 °C) (Scheme 95).**¹⁴¹** A reaction of polyfluoro phenylphosphine **323b** with *C*-ethoxycarbonyl-N-phenylnitrile imine (**325**) under the same conditions gives poly fluorophosphorane **326** further hydrolyzed to 5,6,7,8-tetrafluoro1,4dihydrobenzo[*e*]1,2,4diazaphosphorine **322b** (see Scheme 95).**¹⁴¹**

Scheme 95

322: $R^2 = OEt$, $R^3 = p \cdot NO_2C_6H_4$ (**a**), $R^2 = C_6F_5$, $R^3 = COOEt$ (**b**); **323:** $R^1 = R^2 = OEt$ (**a**), $R^{\uparrow} = Ph$, $R^2 = C_6F_5$ (**b**)

Conclusion

To sum up, the reviewed methods of constructing fluoro-containing azaheterocycles from fluoroarenes demonstrate that heterocyclization of fluoroarenes opens a route to a wide range of heterosystems. The great syn thetic potential of fluoro-containing compounds makes them convenient synthons for the preparation of fluori nated heterocycles which are of interest for medicinal chemistry.

This work was financially supported by the Civilian Research and Development Foundation of the United States (CRDF) for the Independent States of the Former Soviet Union (BRHE Program, CRDF Grant BP2M05 "Advanced Organic Materials for Medical and Biological Application"), the Russian Foundation for Basic Research (Project No. $06-03-32791$), and the Council on Grants of the President of the Russian Federation (Program for State Support of Leading Scientific Schools, Grant NSh-9178.2006.3).

References

- 1. *The Fluoro Compounds. The Synthesis and Application*, Ed. N. Ishikawa, Mir, Moscow, 1990.
- 2. G. G. Furin, *Ftorsoderzhashchie geterotsiklicheskie soedineniya: sintez i primenenie* [*FluorineContaining Heterocyclic Com pounds: Synthesis and Applications*], Nauka, Novosibirsk, 2001, 340 pp. (in Russian).
- 3. V. I. Saloutin, Ya. V. Burgart, O. N. Chupakhin, *Ftorsoder zhashchie trikarbonilґnye soedineniya* [*FluorineContaining Tricarbonyl Compounds*], UrO RAN, Ekaterinburg, 2002, 142 pp. (in Russian).
- 4. E. V. Nosova, N. N. Mochulґskaya, S. K. Kotovskaya, G. N. Lipunova, V. N. Charushin, *Heteroatom Chem.*, 2006, **17**(6), 579.
- 5. G. M. Brooke, *J. Fluorine Chem.*, 1997, **86**, 1.
- 6. A. Pace, S. Buscemi, N. Vivona, *Org. Prep. Proc. Int.*, 2005, **37**, 447.
- 7. A. Pace, S. Buscemi, N. Vivona, *Org. Prep. Proc. Int.*, 2007, **39**, 1.
- 8. S. D. Taylor, C. C. Kotoris, G. Hum, *Tetrahedron*, 1999, **55**, 12431.
- 9. V. G. Granik, *Osnovy meditsinskoi khimii* [*Fundamentals of Medicinal Chemistry*], Vuzovskaya Kniga, Moscow, 2001, 230 pp. (in Russian).
- 10. V. S. Mokrushin, G. A. Vavilov, *Osnovy khimii i tekhnologii bioorganicheskikh i sinteticheskikh lekarstvennykh veshchestv* [*Fundamentals of the Chemistry and Technology of Bioorganic* and Synthetic Drugs], GOU VPO UGTU-UPI, Ekaterinburg, 2004, 481 pp. (in Russian).
- 11. L. L. Shen, *Quinolone Antibacterial Agents*, American Society for Microbiology, Washington, 1993.
- 12. *The Quinolones*, Ed. T. V. Andriole, Academic Press, New York, 1988.
- 13. D. Bouzard, *Recent Progress in the Chemical Synthesis of* Antibiotics, Springer-Verlag, Berlin, 1990, 249 pp.
- 14. *Quinolone Antibacterial Agents*, Eds J. S. Wolfson, D. C. Hooper, American Society for Microbiology, Washington, 1989.
- 15. *Quinolone Antibacterial Agents*, Eds D. C. Hooper, J. S. Wolfson, 2nd ed., American Society for Microbiology, Wash ington, 1993.
- 16. E. N. Padeiskaya, V. P. Yakovlev, *Ftorkhinolony* [*Fluoro quinolones*], Bioinform, Moscow, 1995, 395 pp. (in Russian).
- 17. N. I. Fadeeva, M. V. Shulґgina, G. G. Glushkov, *Khim. Farm. Zh.*, 1993, **27**, 4 [*Pharm. Chem. J.*, 1993, **27** (Engl. Transl.)].
- 18. E. N. Padeiskaya, *Antibiotiki i khimioterapiya* [*Antibiotics and Chemotherapy*], 1998, **43**, 38 (in Russian).
- 19. PCT Int Appl WO 19 456 (1996), *Chem. Abstr*., 1996, **125**, 114513z.
- 20. R. D. Chambers, M. Parsons, G. Sandford, C. J. Skinner, M. J. Atherton, J. S. Moilliet, *J. Chem. Soc., Perkin Trans. 1*, 1999, 803.
- 21. R. D. Chambers, D. Holling, G. Sandford, A. S. Batsanov, S. A. Howard, *J. Fluorine Chem.*, 2004, **125**, 661.
- 22. R. D. Chambers, D. Holling, G. Sandford, H. Puschmann, J. A. K. Howard, *J. Fluorine Chem.*, 2002, **117**, 99.
- 23. JP Patent 06 135 856 (1994), *Chem. Abstr*., 1995, **122**, 881142k.
- 24. PCT Int Appl WO 7460 (2004), *Chem. Abstr*., 2004, **140**, 128288b.
- 25. P. M. Neill, R. C. Storr, B. K. Park, *Tetrahedron*, 1998, **54**, 4615.
- 26. S. K. Kotovskaya, G. A. Zhumabaeva, N. M. Perova, Z. M. Baskakova, E. F. Belanov, N. I. Bormotov, S. M. Balakhnin, O. A. Serova, V. N. Charushin, O. N. Chupakhin, *Khim. Farm. Zh.*, 2007, **41**, No. 12, 5 [*Pharm. Chem. J.*, 2007, **41** (Engl. Transl.)].
- 27. J. S. Sloop, C. L. Beemgardner, W. D. Loehle, *J. Fluorine Chem.*, 2002, **118**, 135.
- 28. W. Du, D. P. Curran, *Org. Lett.*, 2003, **5**, 1765.
- 29. JP Patent 55 376 (2003); *Chem. Abstr*., 2003, **138**, 205051g.
- 30. T. O. Richardson, V. P. Shanbhag, S. Adairk, S. J. Smith, *J. Heterocycl. Chem.*, 1998, **35**, 1301.
- 31. S. L. Vingkar, A. S. Bohade, B. G. Khadse, *Indian Drugs*, 2001, **38**, 347.
- 32. S. L. Vingkar, A. S. Bohade, B. G. Khadse, *Indian Drugs*, 2001, **38**, 573.
- 33. S. R. Pattan, M. S. Ali, Y. S. Pattan, V. V. K. Reddy, *Indian J. Heterocycl. Chem.*, 2004, **14**, 157.
- 34. O. M. Nefedov, A. I. Ioffe, L. G. Menchikov, *Khimiya karbenov* [*The Chemistry of Carbenes*], Khimiya, Moscow, 1990, 256 pp. (in Russian).
- 35. G. Jones, in *Comprehensive Heterocyclic Chemistry II*, Eds A. R. Katritsky, C. W. Rees, E. V. Scriven, vol. **5**, Pergamon, Oxford, 1996, 167—243.
- 36. G. A. Mokrushina, S. G. Alekseev, V. N. Charushin, O. N. Chupakhin, *Zh. Vses. Khim. O-va im. D.I. Mendeleeva*, 1991, **36**, 447 [*Mendeleev. Chem. J.*, 1991, **36** (Engl. Transl.)].
- 37. R. Krishnan, S. A. Lang, M. M. Siegel, *J. Heterocycl. Chem.*, 1986, **23**, 1801.
- 38. A. Ya. Aizikovich, V. N. Charushin, O. N. Chupakhin, *Khim.Farm. Zh.*, 1996, **30**, No. 8, 43 [*Pharm. Chem. J.*, 1996, **30** (Engl. Transl.)].
- 39. V. I. Vysokov, V. N. Charushin, G. A. Afanasyeva, O. N. Chupakhin, *Mendeleev. Commun.*, 1993, 159.
- 40. V. I. Vysokov, V. N. Charushin, O. N. Chupakhin, T. K. Pashkevich, *Zh. Org. Khim.*, 1998, **34**, 455 [*Russ. J. Org. Chem.*, 1998, **34** (Engl. Transl.)].
- 41. G. M. Brooke, R. J. D. Rutherford, *J. Chem. Soc. (C)*, 1967, 1189.
- 42. I. V. Kolesnikov, A. G. Ryabichev, T. D. Petrova, V. E. Platonov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1988, 1651 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1988, **37** (Engl. Transl.)].
- 43. A. G. Hudson, A. E. Pedler, J. C. Tatlou, *Tetrahedron Lett.*, 1968, **17**, 2143.
- 44. A. J. Elliott, V. S. Gibson, *Can. J. Chem.*, 1975, **53**, 1484.
- 45. EP Patent 0 368 419 (1990); *Chem. Abstr*., 1990, **112**, 95565d.
- 46. O. N. Chupakhin, S. K. Kotovskaya, N. M. Perova, Z. M. Baskakova, V. N. Charushin, *Khim. Geterotsikl. Soedin.*, 1999, 520 [*Chem. Heterocycl. Compd.*, 1999, **35** (Engl. Transl.)].
- 47. S. K. Kotovskaya, V. N. Charushin, O. N. Chupakhin, E. O. Kozhevnikova, *Zh. Org. Khim.*, 1998, **34**, 399 [*Russ. J. Org. Chem.*, 1998, **34** (Engl. Transl.)].
- 48. S. K. Kotovskaya, N. M. Perova, V. N. Charushin, O. N. Chupakhin, *Mendeleev Commun.*, 1999, 76.
- 49. S. K. Kotovskaya, S. A. Romanova, V. N. Charushin, O. N. Chupakhin, Abstracts of Papers, *XVII Mendeleevskii sґґezd po obshchei i prikladnoi khimii* [*XVII Mendeleev Conf. on General and Applied Chemistry*], Kazan, 2003, 454 (in Russian).
- 50. S. K. Kotovskaya, S. A. Romanova, V. N. Charushin, M. I. Kodess, *Zh. Org. Khim.*, 2004, **40**, 1214 [*Russ. J. Org. Chem.*, 2004, **40** (Engl. Transl.)].
- 51. R. J. Abdel-Jalil, H. M. Aldocum, M. T. Ayoub, *Heterocycles*, 2005, **65**, 2061.
- 52. V. N. Charushin, G. A. Mokrushina, A. M. Shevelin, O. M. Chasovskikh, A. A. Shcherbakov, G. G. Alexandrov, O. N. Chupakhin, *Zh. Org. Khim.*, 1998, **34**, 123 [*Russ. J. Org. Chem.*, 1998, **34** (Engl. Transl.)].
- 53. V. N. Charushin, S. A. Romanova, S. K. Kotovskaya, O. N. Chupakhin, *Proc. Symposium "Advances in Synthetic, Com binatorial and Medicinal Chemistry (ASCMC)"*, Moscow, 2004, 41.
- 54. S. K. Kotovskaya, Z. M. Baskakova, N. M. Perova, S. A. Romanova, V. N. Charushin, O. N. Chupakhin, *Azotistye geterotsikly i alkaloidy* [*Nitrogen Heterocycles and Alkaloids*], 2001, **2**, IRIDIUM Press, Moscow, 162 (in Russian).
- 55. S. K. Kotovskaya, N. M. Perova, Z. M. Baskakova, S. A. Romanova, O. N. Chupakhin, V. N. Charushin, *Zh. Org. Khim.*, 2001, **37**, 598 [*Russ. J. Org. Chem.*, 2001, **71** (Engl. Transl.)].
- 56. V. N. Charushin, G. A. Mokrushina, G. M. Petrova, G. G. Alexandrov, O. N. Chupakhin, *Mendeleev Commun.*, 1998, 133.
- 57. G. A. Mokrushina, G. M. Petrova, O. M. Chasovskikh, V. N. Charushin, O. N. Chupakhin, *Proc. Int. Memorial I. Postovsky Conf.*, 1998, Ekaterinburg, 97.
- 58. M. Patel, R. J. McHugh, B. C. Cordova, R. M. Klabe, S. Erichson-Viilanen, G. L. Trainor, J. D. Rodgers, *Bioorg. Med. Chem. Lett.*, 2000, **10**, 1729.
- 59. J. Dudash, Y. Zhang, J. B. Moore, R. Look, Y. Liang, M. P. Beavers, B. R. Conway, P. J. Rybczynski, K. T. Demarest, *Bioorg. Med. Chem. Lett.*, 2005, **15**, 4790.
- 60. X. Li, D. Wang, J. Wu, W. Xu, *Synth. Commun.*, 2005, **35**, 2553.
- 61. G. N. Lipunova, E. V. Nosova, P. V. Vasilґeva, V. N. Charushin, *Izv. Akad. Nauk, Ser. Khim.*, 2003, 436 [*Russ. Chem. Bull., Int. Ed.*, 2003, **52**, 457].
- 62. Yu. M. Volovenko, A. G. Nemazanyi, I. G. Ryabokon´, F. S. Babichev, *Ukr. Khim. Zh.*, 1988, **54**, 295 (in Russian).
- 63. M. Vales, V. Lokshin, G. Pepe, A. Samat, R. Guglielmetti, *Synthesis*, 2001, **16**, 2419.
- 64. A. A. Layeva, E. V. Nosova, G. N. Lipunova, T. V. Trashakhova, V. N. Charushin, *J. Fluorine Chem.*, 2007, **128**, 748.
- 65. E. V. Nosova, G. N. Lipunova, M. I. Kodess, P. V. Vasil´eva, V. N. Charushin, *Izv. Akad. Nauk, Ser. Khim.*, 2004, 2216 [*Russ. Chem. Bull., Int. Ed.*, 2004, **53**, 2314].
- 66. M. J. Deetz, J. P. Malerich, A. M. Beatty, B. D. Smith, *Tetrahedron Lett.*, 2001, **42**, 1851.
- 67. G. N. Lipunova, E. V. Nosova, A. A. Layeva, M. I. Kodess, V. N. Charushin, *Zh. Org. Khim.*, 2005, **41**, 1092 [*Russ. J. Org. Chem.*, 2005, **41** (Engl. Transl.)].
- 68. E. V. Nosova, G. N. Lipunova, A. A. Layeva, N. N. Mochulґskaya, V. N. Charushin, in *Karbonilґnye soedineniya v sinteze geterotsiklov* [*Carbonyl Compounds in Heterocyclic Synthesis*], Saratov, 2004, 209 (in Russian).
- 69. G. N. Lipunova, E. V. Nosova, G. A. Mokrushina, E. G. Ogloblina, G. G. Alexandrov, V. N. Charushin, *Zh. Org. Khim.*, 2003, **39**, 270 [*Russ. J. Org. Chem.*, 2003, **39** (Engl. Transl.)].
- 70. T. V. Fomenko, T. N. Gerasimova, E. P. Fokin, *Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk*, 1977, **1**, No. 2, 99 (in Russian).
- 71. E. V. Nosova, G. N. Lipunova, A. A. Layeva, L. P. Sidorova, V. N. Charushin, *Zh. Org. Khim.*, 2006, **42**, 1555 [*Russ. J. Org. Chem.*, 2006, **42** (Engl. Transl.)].
- 72. T. P. Tran, E. L. Ellsworth, B. M. Watson, J. P. Sanchez, S. H. D. Hollis, J. R. Rubin, M. A. Stier, Y. Yip, D. Q. Nguyen, P. Bird, R. Singh, *J. Heterocycl. Chem.*, 2005, **42**, 669.
- 73. A. Pathak, C. H. Panos, C. C. Okeke, *J. Heterocycl. Chem.*, 1988, **25**, 1173.
- 74. J. B. Hynes, A. Tomazie, C. A. Parrish, O. S. Fetzer, *J. Heterocycl. Chem.*, 1991, **28**, 1357.
- 75. G. A. Roth, J. J. Tai, *J. Heterocycl. Chem.*, 1996, **33**, 2051.
- 76. PCT Int. Appl. WO 46 590 (2005); *Chem. Abstr.*, 2005, **143**, 7732b.
- 77. PCT Int. Appl. WO 47 244 (2005); *Chem. Abstr*., 2005, **143**, 7710k.
- 78. US Patent 261 307 (2005); *Chem. Abstr*., 2005, **143**, 477969l.
- 79. A. A. Layeva, E. V. Nosova, G. N. Lipunova, T. V. Trashakhova, V. N. Charushin, *Izv. Akad. Nauk, Ser. Khim.*, 2007, 1758 [*Russ. Chem. Bull., Int. Ed.*, 2007, **56**, 1821].
- 80. G. A. Mokrushina, E. V. Nosova, G. N. Lipunova, V. N. Charushin, *Zh. Org. Khim.*, 1999, **35**, 1447 [*Russ. J. Org. Chem.*, 1999, **35** (Engl. Transl.)].
- 81. A. T. Prudchenko, G. S. Shchegoleva, V. A. Barkhash, N. N. Vorozhtsov, *Zh. Obshch. Khim.*, 1967, **37**, 2487 [*J. Gen. Chem. USSR*, 1967, **37** (Engl. Transl.)].
- 82. W. J. Coates, in *Comprehensive Heterocyclic Chemistry II*, Eds A. R. Katritsky, C. W. Rees, E. V. Scriven, Pergamon, Oxford, 1996, vol. **6**, 1.
- 83. G. S. Shchegoleva, A. K. Petrov, V. A. Barkhash, N. N. Vorozhtsov, *Khim. Geterotsikl. Soedin.*, 1970, 278 [*Chem. Heterocycl. Compd. USSR*, 1970, **16** (Engl. Transl.)].
- 84. G. N. Lipunova, E. V. Nosova, V. N. Charushin, L. P. Sidorova, O. M. Chasovskikh, *Mendeleev Commun.*, 1998, 131.
- 85. G. N. Lipunova, L. P. Sidorova, E. V. Nosova, N. M. Perova, V. N. Charushin, G. G. Alexandrov, *Zh. Org. Khim.*, 1999, **35**, 1729 [*Russ. J. Org. Chem.*, 1999, **35** (Engl. Transl.)].
- 86. G. N. Lipunova, E. V. Nosova, N. N. Mochulґskaya, A. A. Andreiko, O. M. Chasovskikh, V. N. Charushin, *Izv. Akad. Nauk, Ser. Khim.*, 2002, 613 [*Russ. Chem. Bull., Int. Ed.*, 2002, **51**, 663].
- 87. G. N. Lipunova, E. V. Nosova, V. N. Charushin, O. M. Chasovskikh, *Khim. Geterotsikl. Soedin.*, 2001, 1396 [*Chem. Heterocycl. Compd.*, 2001, **37** (Engl. Transl.)].
- 88. E. V. Nosova, L. P. Sidorova, G. N. Lipunova, N. N. Mochulґskaya, O. M. Chasovskikh, V. N. Charushin, *Khim. Geterotsikl. Soedin.*, 2002, 1060 [*Chem. Heterocycl. Compd.*, 2002, **38** (Engl. Transl.)].
- 89. G. N. Lipunova, G. A. Mokrushina, E. V. Granovskaya, O. M. Chasovskikh, V. N. Charushin, *Mendeleev Commun.*, 1996, 15.
- 90. G. N. Lipunova, G. A. Mokrushina, E. V. Nosova, L. I. Rusinova, V. N. Charushin, *Mendeleev Commun.*, 1997, 109.
- 91. E. V. Nosova, G. N. Lipunova, G. A. Mokrushina, O. M. Chasovskikh, L. I. Rusinova, V. N. Charushin, G. G. Alexandrov, *Zh. Org. Khim.*, 1998, **34**, 436 [*Russ. J. Org. Chem.*, 1998, **34** (Engl. Transl.)].
- 92. G. N. Lipunova, E. V. Nosova, M. I. Kodess, V. N. Charushin, Yu. A. Rozin, O. M. Chasovskikh, *Zh. Org. Khim.*, 2001, **37**, 604 [*Russ. J. Org. Chem.*, 2001, **37** (Engl. Transl.)].
- 93. H. Miao, V. Ceccetti, O. Tabarrini, A. Fravolini, *J. Heterocycl. Chem.*, 2000, **37**, 297.
- 94. G. Q. Hu, Z. Q. Zhang, W. L. Huang, H. B. Zhang, S. T. Huang, *Chinese Chem. Lett.*, 2004, **15** (1), 23.
- 95. M. Matsuoka, J. Segawa, Y. Makita, S. Ohmachi, T. Kashima, K. Nakamura, M. Hattori, M. Kitano, M. Kise, *J. Heterocycl. Chem.*, 1997, **34**, 1773.
- 96. T. Undheim, T. Benneche, in *Comprehensive Heterocyclic Chemistry II*, Eds A. R. Katritsky, C. W. Rees, E. V. Scriven, Pergamon, Oxford, 1996, vol. **6**, 93—231.
- 97. PCT Int. Appl. WO 99 818 (2003), *Chem. Abstr*., 2004, **140**, 16739f.
- 98. L. L. Zaika, M. M. Joullie, *J. Heterocycl. Chem.*, 1966, **3**, 289.
- 99. C. Parkanyi, H. L. Yuan, B. H. E. Stromberg, A. Evenzahav, *J. Heterocycl. Chem.*, 1992, **29**, 749.
- 100. Y. Zhou, D. E. Murphy, Z. Sun, V. E. Gregor, *Tetrahedron Lett.*, 2004, **45**, 8049.
- 101. A. V. Ivachenko, S. M. Kovalenko, O. G. Drush-Lyak, *J. Comb. Chem.*, 2003, **5**, 775.
- 102. Zayavka RF [RF Application] 1 121 983/04 (2001); *Byull. Izobret.*, 2003, **32**, 159 (in Russian).
- 103. N. A. Orlova, L. L. Dmitrieva, T. N. Gerasimova, E. P. Fokin, *Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk*, 1976, **3** (7), 109 (in Russian).
- 104. Y. F. Ji, X. D. Pan, X. Y. Wei, *Synlett.*, 2004, 1607.
- 105. J. C. Jung, S. Oh, W. K. Kim, W. K. Park, J. Y. Kong, O. S. Park, *J. Heterocycl. Chem.*, 2003, **40**, 617.
- 106. D. M. Fink, P. M. Strupczewski, *Tetrahedron Lett.*, 1993, **34**, 6525.
- 107. T. N. Gerasimova, L. L. Golumbovskaya, I. I. Baturina, E. P. Fokin, *Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk*, 1973, **2** (4), 88 (in Russian).
- 108. T. N. Vasilevskaya, I. I. Baturina, M. I. Kollegova, T. N. Gerasimova, V. A. Barkhash, *Zh. Org. Khim.*, 1971, **7**, 1230 [*J. Org. Chem. USSR*, 1971, **7** (Engl. Transl.)].
- 109. V. I. Saloutin, Y. V. Burgart, C. O. Kappe, O. N. Chupakhin, *Heterocycles*, 2000, **52**, 1411.
- 110. S. G. Perevalov, Z. E. Skryabina, V. I. Saloutin, *Zh. Org. Khim.*, 1997, **33**, 1418 [*J. Org. Chem. USSR*, 1997, **33** (Engl. Transl.)].
- 111. V. I. Saloutin, I. T. Bazilґ, Z. E. Skryabina, S. N. Shurov, S. G. Perevalov, *Zh. Org. Khim.*, 1995, **31**, 718 [*J. Org. Chem. USSR*, 1995, **31** (Engl. Transl.)].
- 112. Y. V. Burgart, A. S. Fokin, O. G. Kuzueva, O. N. Chupakhin, V. I. Saloutin, *J. Fluorine Chem.*, 1998, **92**, 101.
- 113. A. S. Fokin, Ya. V. Burgart, V. I. Saloutin, *V Molodezhnaya nauchnaya shkolakonferentsiya po organicheskoi khimii* [*V Youth Scientific School-Conf. on Organic Chemistry*], Ekaterinburg, 2002, 461 (in Russian).
- 114. C. Pabba, H.-J. Wang, S. R. Mulligan, Z.-J. Chen, T. M. Stark, *Tetrahedron Lett.*, 2005, **46**, 7553.
- 115. M. A. Abramov, E. Ceulemans, C. Jackers, M. van der Auweraer, W. Dehaen, *Tetrahedron Lett.*, 2001, **57**, 9123.
- 116. J. B. Jiang, J. Roberts, *J. Heterocycl. Chem.*, 1985, **22**, 159.
- 117. O. V. Khilya, T. A. Volovenko, A. V. Turov, Yu. M. Volovenko, *Khim. Geterotsikl. Soedin.*, 2004, **8**, 1226 [*Chem. Heterocycl. Compd.*, 2004 (Engl. Transl.)].
- 118. A. Shafiee, K. Parang, M. Khazan, F. Ghasemian, *J. Heterocycl. Chem.*, 1992, **29**, 1859.
- 119. F. Alimohammadi, S. Abedifard, A. Shafiee, *J. Heterocycl. Chem.*, 1994, **31**, 1037.
- 120. FR Patent 2 703 681 (1992); *Chem. Abstr*., 1995, **122**, 56035v.
- 121. US Patent 5 442 070 (1995); *Chem. Abstr*., 1993, **119**, 117234w.
- 122. US Patent 4 970 213 (1990); *Chem. Abstr*., 1991, **114**, 62083k.
- 123. US Patent 5 004 745 (1991); *Chem. Abstr*., 1991, **114**, 62083k.
- 124. EP Patent 431 991 (1991), *Chem. Abstr*., 1992, **116**, 6538s.
- 125. PCT Int. Appl. WO 07 121 (1993); *Chem. Abstr*., 1993, **119**, 280414g.
- 126. S. Yamaguchi, K. Tsuzuki, Y. Sannomiya, Y. Ohhira, Y. Kawase, *J. Heterocycl. Chem.*, 1989, **26**, 285.
- 127. T. N. Gerasimova, L. L. Dmitrieva, E. P. Fokin, *Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk*, 1976, **3** (7), 106 (in Russian).
- 128. T. V. Mikhalina, E. F. Kolchina, T. N. Gerasimova, E. P. Fokin, *Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk*, 1984, **2** (No. 1), 113 (in Russian).
- 129. E. F. Kolchina, I. Yu. Kargapolova, T. N. Gerasimova, *Izv. Akad. Nauk, Ser. Khim.*, 1986, 1855 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1986, **35**, 1685 (Engl. Transl.)].
- 130. E. F. Kolchina, T. N. Gerasimova, *Izv. Akad. Nauk, Ser. Khim.*, 1993, 1101 [*Russ. Chem. Bull.*, 1993, **42**, 1055 (Engl. Transl.)].
- 131. T. P. Culbertson, *J. Heterocycl. Chem.*, 1991, **28**, 1701.
- 132. R. R. Gupta, R. Kumar, R. K. Gautam, *J. Fluorine Chem.*, 1985, **28**, 381.
- 133. P. R. Gupta, A. Thomas, R. K. Gautam, V. Gupta, *J. Fluorine Chem.*, 1989, **44**, 1.
- 134. G. M. Brooke, *Tetrahedron Lett.*, 1968, **37**, 4049.
- 135. R. Filler, S. M. Woods, A. F. Freudenthal, *J. Org. Chem.*, 1973, **38**, 811.
- 136. V. P. Petrov, V. A. Barkhash, *Khim. Geterotsikl. Soedin.*, 1970, 381 [*Chem. Heterocycl. Compd*, 1970 (Engl. Transl.)].
- 137. S. A. Amitina, I. V. Elґtsov, T. V. Rybalova, Yu. V. Gatilov, I. A. Grigorґev, *Izv. Akad. Nauk, Ser. Khim.*, 2004, 636 [*Russ. Chem. Bull., Int. Ed.*, 2004, **53**, 1700].
- 138. W. R. Dolbier, G. Burkholder, K. A. Abboud, *J. Org. Chem.*, 1994, **59**, 7688.
- 139. S. Buscemi, A. Pace, A. P. Piccionello, I. Pibiri, N. Vivona, *Heterocycles*, 2004, **6**, 1619.
- 140. PCT Int. Appl. WO 51 302 (2005); *Chem. Abstr*., 2005, **143**, 43893b.
- 141. V. I. Namestnikov, Yu. G. Trishin, S. K. Belґskii, *Zh. Org. Khim.*, 1998, **68**, 1398 [*Russ. J. Org. Chem.*, 1998, **68** (Engl. Transl.)].

Received February 26, 2008; in revised form April 30, 2008