Reactions of 3-nitro-2-trihalomethyl-2*H*-chromenes with S- and N-nucleophiles. Synthesis and stereochemistry of 2,3,4-trisubstituted chromanes

V. Yu. Korotaev,^a V. Ya. Sosnovskikh,^{a*} I. B. Kutyashev,^a and M. I. Kodess^b

^aA. M. Gorky Ural State University, 51 prosp. Lenina, 620083 Ekaterinburg, Russian Federation. Fax: +7 (343) 261 5978. E-mail: Vyacheslav.Sosnovskikh@usu.ru ^bI. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 20 ul. S. Kovalevskoi, 620219 Ekaterinburg, Russian Federation. E-mail: nmr@ios.uran.ru

The reactions of 3-nitro-2-trifluoromethyl- and 3-nitro-2-trichloromethyl-2*H*-chromenes with thiols and aromatic amines proceed *via* the nucleophilic addition type to the activated double bond to form 2,3,4-trisubstituted chromanes in high yields. The stereoisomeric compositions and structures of the diastereomers were determined by ¹H, ¹⁹F NMR and 2D NOESY spectroscopies and X-ray diffraction analysis.

Key words: 2*H*-chromenes, chromanes, S- and N-nucleophiles, Michael reaction, diastereomers, conformers, NMR spectroscopy, X-ray diffraction analysis.

Many derivatives of chromane (3,4-dihydro-2H-1-benzopyran) and 2*H*-chromene (2*H*-1-benzopyran) are natural compounds that are widely abundant in plants.¹ Some of them, as well as a series of synthetic 2H-chromenes, recommended themselves as pesticides^{2,3} and promising drugs.⁴⁻⁹ Due to their relative availability, high reactivity, and stability, 2H-chromenes long ago have been used successfully as the starting materials for the preparation of natural compounds with complicated structures, for instance, pterocarpanes and pterocarpenes.^{10,11} The reactions of 2H-chromenes with electrophiles, reducing agents, and 1,3-dipoles were studied in rather detail, which allowed one to synthesize various chromane derivatives and new related heterocyclic systems.¹²⁻²¹ However, data on reactivity of the double bond in 2H-chromenes toward nucleophilic reagents are scarce. It is known²² that the reactions of 2-aryl-3-nitrochromenes with dialkyl phosphites in the presence of triethylamine affords 4-phosphorylchromenes, because the addition is accompanied by the elimination of a nitrous acid molecule. The syntheses of chromeno[4,3-c]pyrazolines from the corresponding 3-acyl-2H-chromene arylhydrazones²³ by intramolecular addition and of 3-nitro-2-(3.4-methylenedioxyphenyl)-4-[(1-cyclohexenyl)nitromethyl]chromane from 1-nitromethylcyclohexene and the corresponding 2H-chromene²⁴ were described.

We have recently²⁵ reported the reactions of activated trifluoro(trichloro)methylalkenes with salicylic aldehydes in the presence of triethylamine giving 3-benzoyl- and

3-nitro-2-trihalomethyl-2*H*-chromenes in high yields. Since chromane derivatives are important in the biological and synthetic aspects, in the present work we studied the reactions of a series of 3-nitro-2-trihalomethyl-2*H*-chromenes with several S- and N-nucleophiles and showed that they proceed *via* the Michael reaction mechanism as the conjugated nucleophilic addition to the C(4) atom to form 2,3,4-trisubstituted chromane derivatives and is not accompanied by elimination of nitrous acid elements. In the most cases, the reactions afforded mixtures of diastereomeric products, whose structures were determined by ¹H, ¹⁹F NMR and 2D NOESY spectroscopies and X-ray diffraction analysis (see preliminary report²⁶).

Results and Discussion

We found that the reactions of chromenes 1a-e with *p*-thiocresol, ethyl mercaptoacetate, and 2-mercaptoethanol in benzene for 5 h at 65 °C (method *A*) or in CH₂Cl₂ in the presence of K₂CO₃ for 2 days at ~20 °C (method *B*) proceed as the nucleophilic addition of thiols to the activated double bond of chromenes 1 and afford 2,3,4-trisubstituted chromanes 2a-o (Scheme 1).

One can judge about the reactivity of chromenes 1a-ein the reactions with S-nucleophiles from their conversion under the conditions of methods A and B. The conversion was calculated from the intensity of a doublet of the CF₃ group of unreacted chromenes 1a-c in the

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 309-321, February, 2006.

^{1066-5285/06/5502-0317 © 2006} Springer Science+Business Media, Inc.

Scheme 1

¹⁹F NMR spectra and singlets of the H(2) and/or H(4) protons of chromenes **1d**,**e** in the ¹H NMR spectra (Table 1). It is seen that 2-CF₃-substituted chromenes are more reactive than 2-CCl₃-substituted chromenes, and the introduction of electron-withdrawing substituents (NO₂, Br) into position 6 of the chromene system enhances the reactivity of the both (see Table 1). In the case of 6-NO₂-2-CF₃-substituted chromene **1c**, the conversion achieves almost 100% regardless of the method used and thiol structure, whereas the reaction with 2-CCl₃-containing chromene **1d** under the same conditions occurs, on the average, by 35 (method *A*) and 45% (method *B*).

The addition of thiols to the double bond of chromenes 1 is not diastereoselective, because four

Table 1. Conversion of chromenes 1a-e in the reactions with S-nucleophiles

Chro-	Reactant	Conversion (%)		
mene		Method A	Method B	
1a	HSC ₆ H ₄ -4-Me	81	67	
	HSCH ₂ CO ₂ Et	95	91	
	HS(CH ₂) ₂ OH	47	95	
1b	HSC ₆ H ₄ -4-Me	94	96	
	HSCH ₂ CO ₂ Et	83	65	
	HS(CH ₂) ₂ OH	75	93	
1c	HSC ₆ H ₄ -4-Me	100	100	
	HSCH ₂ CO ₂ Et	96	95	
	HS(CH ₂) ₂ OH	100	98	
1d	HSC ₆ H ₄ -4-Me	41	30	
	HSCH ₂ CO ₂ Et	48	72	
	HS(CH ₂) ₂ OH	12	34	
1e	$HSC_6H_4^{-4}-Me$	98	86	
	HSCH ₂ CO ₂ Et	78	81	
	$HS(CH_2)_2OH$	76	79	

stereomers with *trans*—*trans*- (*tt*), *trans*—*cis*- (*tc*), *cis*—*trans*- (*ct*), and *cis*—*cis*-configurations (*cc*) at the C(2)—C(3) and C(3)—C(4) bonds, respectively, were formed in all cases. Stereochemistry of the products was determined by comparison of the spin-spin coupling (SSC) constants $J_{2,3}$ and $J_{3,4}$ with published data on the related molecules^{27–29} and by the 2D NOESY spectra of adducts **2d,l** and X-ray diffraction study of crystals of *tc*-**2d** and *ct*-**2f**.

The ratio of diastereometric chromanes 2a-o, which depends on the reaction conditions and the nature of the substrate and S-nucleophile, was determined by analysis of the ¹H and ¹⁹F NMR spectra of the reaction mixtures (Table 2). The obtained results show that the ct-isomer is the main for method B (in 11 cases of 15, its content is 35-69%), and the *cc*-isomer is minor (2-13%). Under the conditions of method A, the tt- or tc-isomer predominates (each in seven reactions), and the content of the cc-isomer varies from 5 to 40%. Recrystallization of the reaction mixtures from hexane or its mixture with dichloromethane gave the following stereoisomers in the individual state: cc-2a, tt-2b, tc-2d, tc-2e, ct-2f, ct-2g, ct-2h, ct-2i, cc-2j, tt-2k, tt-2l, ct-2l, and ct-2o, the latter was prepared by refluxing reactants in benzene in the presence of K_2CO_3 . In the present study, we did not aim at isolating of all diastereomers.

The thorough analysis of the SSC values in the ¹H NMR spectra of the synthesized products gave four groups of $J_{2,3}$ and $J_{3,4}$ constants, each of which characterizes a certain diastereomeric form. The maximum (for the compounds studied) SSC values ($J_{2,3} = 7.4 - 9.5$ Hz and $J_{3,4} = 7.9 - 9.9$ Hz) indicate the axial arrangement of the H(2) and H(3) atoms, the pseudo-axial arrangement of the H(4) atom, and, hence, the *tt*-configuration of equatorial substituents in a conformation close to half-chair (the published values for the *tt*-isomers of 2,3,4-trisubstituted chromanes with equatorial substituents are $J_{2,3}$ = 8–11 Hz and $J_{3,4} = 10-12$ Hz).^{29,30} The medium constants $(J_{2,3} = 6.1 - 7.6 \text{ Hz and } J_{3,4} = 4.8 - 5.5 \text{ Hz})$ were ascribed to diastereomers with the tc-configuration containing the equatorial CX₃ group, because the axial-axial SSC constant is usually higher than the axial-equatorial one (in this case, a decrease in $J_{2,3}$ compared to that of the *tt*-isomer can be a consequence of a distorted halfchair conformation). The values $J_{2,3} = 1.2$ Hz, $J_{3,4} =$ 2.5 Hz and $J_{2,3} = 1.2$ Hz, $J_{3,4} = 5.0$ Hz were given earlier²⁷ for the ct- and cc-isomers, respectively, of 3-bromo-3,4-dihydro-2-methyl-2*H*-chromen-4-yl acetate with the equatorial Me group, which made it possible to ascribe the values found by us $J_{2,3} \approx J_{3,4} = 1.2-1.8$ Hz to the *ct*- and $J_{2,3} = 1.4-1.8$ Hz and $J_{3,4} = 5.4-5.6$ Hz to the *cc*-diastereomers with the equatorial CX_3 group (Scheme 2, Table 3).

The relative stereochemistry of 2,3,4-trisubstituted chromanes **2** was confirmed by the 2D NOESY experi-

Chromane	Iso-	Content of isomers (%)		
	mer	Method A	Method B	
3-Nitro-4-(<i>p</i> -tolyl-	tt	13	38	
sulfanyl)-	tc	44	3	
2-(trifluoromethyl)-	ct	3	57	
chromane (2a)	сс	40	2	
6-Bromo-3-nitro-	tt	44	38	
4-(p-tolylsulfanyl)-	tc	40	8	
2-(trifluoromethyl)-	ct	10	49	
chromane (2b)	сс	6	5	
3,6-Dinitro-	tt	64	17	
4-(p-tolylsulfanyl)-	tc	5	1	
2-(trifluoromethyl)-	ct	15	69	
chromane (2c)	сс	16	13	
3-Nitro-4-(p-tolyl-	tt	11	20	
sulfanyl)-2-(tri-	tc	67	43	
chloromethyl)-	ct	0	31	
chromane (2d)	сс	22	6	
6-Bromo-3-nitro-	tt	12	23	
4-(p-tolylsulfanyl)-	tc	75	45	
2-(trichloromethyl)-	ct	2	26	
chromane (2e)	сс	11	6	
Ethyl [2-(3,4-dihydro-	tt	21	36	
3-nitro-2-trifluoro-	tc	55	11	
methyl-2H-chromen-	ct	6	50	
4-yl)]sulfanyl	сс	18	3	
acetate (2f)				
Ethyl [2-(6-bromo-	tt	51	18	
3,4-dihydro-3-nitro-	tc	8	7	
2-trifluoromethyl-	ct	32	69	
2H-chromen-4-yl)]-	сс	9	6	
sulfanyl acetate (2g)				
Ethyl [2-(3,4-dihydro-	tt	45	25	
3,6-dinitro-2-tri-	tc	19	10	
fluoromethyl-2H-	ct	20	57	
chromen-4-yl)]-	сс	16	8	
sulfanyl acetate (2h)				

Table 2. Ratio of stereoisomeric chromanes 2a-o in reaction mixtures formed upon the reactions of chromenes 1a-e with S-nucleophiles

ment of adducts 2d (a mixture of the *cc*- and *tc*-isomers in a ratio of 30:70) and 2l (a mixture of the *tt*- and *ct*-isomers in a ratio of 40:60). In the case of minor isomer 2d, cross-peaks were observed between the H(2)-H(3), H(3)-H(4), and H(2)-H(4) protons, whereas in the main isomer 2d the cross-peak of H(2)-H(4) was absent, which agrees with the configurations *cc* and *tc*. In adduct 2l, the cross-peak of H(2)-H(4) was observed only for the minor isomer with the *tt*-configuration. Thus, an analysis of the SSC values and data on the 2D NOESY spectra indicate that compounds 2 exist in CDCl₃ solutions predominantly in the half-chair conformation with the equatorial trihalomethyl group (see Scheme 2; the half-chair conformation in a real molecule can be distorted).

Chromane	lso-	Content of isomers (%)		
	mer	Method A	Method B	
Ethyl [2-(3,4-dihydro-	tt	19	32	
3-nitro-2-trichloro-	tc	59	27	
methyl-2H-chromen-	ct	0	35	
4-yl)]sulfanyl acetate (2i)	сс	22	6	
Ethyl [2-(6-bromo-	tt	24	25	
3,4-dihydro-3-nitro-	tc	60	45	
2-trichloromethyl-	ct	1	25	
2 <i>H</i> -chromen-4-yl)]- sulfanyl acetate (2j)	сс	15	5	
2-(3,4-Dihydro-	tt	55	38	
3-nitro-2-trifluoro-	tc	6	10	
methyl-2H-chromen-	ct	34	48	
4-yl)sulfanyl- ethan-1-ol (2k)	сс	5	4	
2-(6-Bromo-3,4-di-	tt	40	30	
hydro-3-nitro-2-tri-	tc	7	7	
fluoromethyl-2H-	ct	46	58	
chromen-4-yl)sul- fanylethan-1-ol (2l)	сс	7	5	
2-(3,4-Dihydro-	tt	41	20	
3-nitro-2-trifluoro-	tc	11	19	
methyl-2H-chromen-	ct	33	55	
4-yl)sulfanyl- ethan-1-ol (2m)	сс	15	6	
2-(3,4-Dihydro-	tt	42	36	
3-nitro-2-trichloro-	tc	38	24	
methyl-2H-chromen-	ct	10	36	
4-yl)sulfanyl- ethan-1-ol (2n)	сс	10	4	
2-(6-Bromo-3,4-di-	tt	40	40	
hydro-3-nitro-2-tri-	tc	47	28	
chloromethyl-2H-	ct	4	26	
chromen-4-yl)sulfa- nylethan-1-ol (20)	сс	9	6	

An analysis of the ¹H NMR spectra of compounds 2a-o (see Table 3) revealed several empirical rules, which can be useful for configuration determination in the series of 2,3,4-trisubstituted chromanes.

1. When the H(2) atom exists in the *trans*-position toward the NO₂ and SR' groups (*cc*-isomer), its chemical shift (CS) moves to the high field, while for the *cis*-position (*tc*-isomer) the shift is downfield, which is related to the deshielding influence of the substituents. As a result, the difference between the CS of the H(2) atoms in the *tc*- and *cc*-isomers is 1.0-1.2 and 0.7-1.0 ppm for CCl₃- and CF₃-substituted chromanes, respectively, which allows one to identify the *tc*- and *cc*-isomers.

2. The high difference between the CS of the H(3) and H(2) atoms ($\Delta\delta$ 1.1–1.5 and 0.7–1.1 for CCl₃- and

 CF_3 -containing chromanes, respectively) has the diagnostic significance for the *cc*-isomer. In the case of the *ct*-isomer in which these atoms are arranged similarly, the value $\Delta \delta = \delta_{H(3)} - \delta_{H(2)}$ is substantially affected by the CX_3 groups and also by the nature of the substituent at the sulfur atom.

3. The SR' group in the pseudo-equatorial position exerts a greater deshielding effect on the H(5) aromatic proton than that in the pseudo-axial position. Due to this, the presence of the tt- and cc-isomers in a diastereomeric mixture can be concluded from the signal of the H(5) atom, which is observed in a low field and, in addition, appears as a characteristic doublet of triplets or a doublet of doublets because of splitting on the H(4) atom.

4. The CS value of the H(3) atom increases in the series tt < tc < ct, *i.e.*, the H(3) axial proton is more shielded than the equatorial proton. This regularity is violated only for CF₃-containing chromanes **2a**—**c** in which this atom of the *ct*-isomer falls into the region of shielding of the *p*-tolyl substituent, and its signal undergoes an upfield shift of ~0.5 ppm.

It should be mentioned that the transition from CF_3 - to CCl_3 -substituted chromanes is accompanied by the downfield shift of signals of the H(2) proton in the *tt*- and *tc*-isomers (by ~0.3 ppm) and of the H(3) proton in the *ct*- and *cc*-isomers (by ~0.4 ppm). The replacement of the *p*-tolyl substituent at the sulfur atom by the CH_2CO_2Et and $(CH_2)_2OH$ groups affects mainly the CS of the H(3) atom in the *ct*- and *cc*-isomers, which exhibits a downfield shift (by 0.4–0.5 ppm). The presence of the bromine atom in position 6 of the chromane system does not change substantially the CS of the H(2)–H(4) atoms. However, when the 6-NO₂ group appears, the H(2) atom of the *tt*-isomer and H(3) of the *tc*-isomer are deshielded by 0.2–0.3 ppm.

In the ¹⁹F NMR spectra, the CF₃ groups in the *tt*-, *tc*-, and *cc*-isomers appear as doublets in a narrow region of δ 84.7—86.3, whereas for the *ct*-isomers this region is δ 86.8—87.1, which allows the latter to be detected easily, and their percentage content in a mixture can be calculated. The ³*J*_{CF3,H(2)} SSC constant can also be useful for determination of the diastereomeric composition of a

Chro-					NMR, δ (J/Hz)			IR,
mane	¹ H							v/cm^{-1}
	H(2)	H(3)	H(4)	H(5)	H(6)—H(8)	R′	$CF_3(d)$	
<i>tt</i> -2a	4.77	4.93 (t,	4.88	7.89	6.93 (dd, H(8), $J = 8.2$,	2.32 (s, Me);	85.45	_
	(dq,	J = 8.7)	(br.d,	(dt,	J = 1.2; 7.18 (td,	7.10 (m, H(3'), H(5'));	(J = 5.5)	
	J = 8.5,		J = 8.8)	J = 7.6,	H(6), J = 7.5, J = 1.2);	7.38 (m, H(2´), H(6´))		
	J = 5.5)	5 1 2	475 (1	$J = 1.2)^{a}$	7.30 (m, H(7))	2.24 (Ma)	04.72	
tc-2a	5.4/ (da	5.13 (dd	4.75(d, 1-50)		6.95 - 7.04 (m, H(6),	2.34 (s, Me);	84./2	—
	(uq, I = 7.6)	I = 7.6	J = 5.0)		H(8), 7.28 (III, $H(7)$)	7.09 - 7.19 (III, $H(5')$, H(5') + H(2') + H(6'))	(J - 0.1)	
	J = 7.0, J = 6.1)	J = 7.0, J = 5.0)				$\Pi(5), \Pi(2), \Pi(0))$		
<i>ct</i> -2a	5.11	5.04 (t,	4.73	7.51	7.04 (dd, H(8), $J = 8.2$,	2.40 (s, Me);	86.84	_
	(qd,	J = 1.7)	(br.s)	(dd,	J = 1.1; 7.12 (td, H(6),	7.25 (m, H(3'), H(5'));	(J = 6.1)	
	J = 6.1,	,	· /	J = 7.7,	J = 7.6, J = 1.1);	7.41 (m, H(2´), H(6´))	· · · · ·	
	J = 1.5)			J = 1.6)	7.30 (ddd, $H(7)$, $J = 8.2$,			
					J = 7.4, J = 1.6)			
cc-2a	4.49	5.20	4.61	7.94	7.03 (dd, H(8), $J = 8.2$,	2.40 (s, Me);	85.51	1630, 1555,
	(qd,	(dd,	(br.d,	(dt,	J = 1.2; 7.15 (td, H(6),	7.24 (d, $H(3')$, $H(5')$,	(J = 5.7)	1489, 1381
	J = 5.6, I = 1.7	J = 5.5, J = 1.7	J = 5.5)	J = /.9, I = 1.2)a	J = /.6, J = 1.2;	J = 8.0; 7.56 (d, $H(2^{\prime}) = H(6^{\prime}) = I - 8.0$)		
	J = 1.7	J = 1.7		$J = 1.2)^{-1}$	I = 7.3 $I = 1.5$ $I = 0.9$	$\Pi(2), \Pi(0), J = 0.0)$		
<i>tt</i> -2h	4.77	4.90 (t.	4.82 (d.	8.02	f = 7.3, f = 1.3, f = 0.5	2.33 (s. Me):	85.65	1656, 1597,
	(da,	J = 8.9	J = 9.2)	(dd,	7.37 (ddd, $H(7)$, $J = 8.7$,	7.12 (d, H(3'), H(5'), H(5'))	(J = 5.5)	1555, 1492,
	J = 8.8,	,	,	J = 2.4,	J = 2.4, J = 0.7	J = 8.0; 7.25 (d,	(1476, 1366
	J = 5.5)			$J = 1.0)^{a}$		H(2'), H(6'), J = 8.0)		
tc-2b	5.43	5.12	4.64 (d,	b	6.85–6.95 (d, H(8),	2.32–2.40 (s, Me);	84.91	_
	(quint,	(dd,	J = 5.0)		J = 8.7);	7.08–7.14 (m, H(3'),	(J = 6.1)	
	J = 6.5)	J = 7.2,			7.35—7.42 (m, H(7))	H(5')); 7.23-7.27 (m, H(5')); 7.23-7.27 (m		
2 h	5.07	J = 5.1)	1 65	762(4	6 95 6 05 (d 11(9)	$H(2^{-}), H(6^{-}))$	06 07	
<i>CI-2</i> 0	5.07 (ad	J = 1.7	(hr s)	I = 2.4	I = 8.7	2.32 - 2.40 (s, Me); 7.08 - 7.14 (m. H(3'))	(I = 6.0)	—
	J = 6.0	5 1.7)	(01.3)	J 2.7)	7 35 - 7 42 (m H(7))	H(5')): 7 23-7 27 (m	(5 0.0)	
	J = 1.7)				// (iii, ii(/))	H(2'), H(6')		
cc-2b	4.47 [´]	5.18	4.53	8.07	6.85–6.95 (d, H(8),	2.32–2.40 (s, Me);	85.59	_
	(qd,	(dd,	(br.d,	(dd,	J = 8.7);	7.08–7.14 (m, H(3'),	(J = 5.6)	
	J = 5.5,	J = 5.5,	J = 5.5)	J = 2.4,	7.35–7.42 (m, H(7))	H(5´)); 7.23–7.27 (m,		
-	J = 1.7)	J = 1.7)		$J = 1.3)^{a}$		H(2´), H(6´))		
<i>tt</i> -2c	4.93	4.96	4.89 (d,	8.85	7.08 (d, H(8),	2.33 (s, Me);	86.03	_
	(m)	(m)	J = 9.3)	(dd, I = 2)	J = 9.0;	7.13 (m, $H(3^{\circ})$, $H(5^{\circ})$); 7.20 (m, $H(2^{\circ})$, $H(5^{\circ})$);	(J = 5.3)	
				J = 2.0, $I = 1.0)^{a}$	I = 91 $I = 26$	7.30 (III, $\Pi(2)$, $\Pi(0)$)		
				J = 1.0)	J = 0.1, J = 2.0, J = 0.7			
<i>tc</i> -2c	5.51	5.22	4.72	b		b	85.33	_
	(quint,	(br.t,	(br.d,				(J = 6.1)	
	J = 6.1)	J = 5.7)	J = 5.3)				· · · · ·	
<i>ct</i> -2c	5.22	5.09 (t,	4.74	8.42 (d,	7.19 (d, H(8),	2.42 (s, Me);	86.95	1623, 1589,
	(qd,	J = 1.8)	(br.s)	J = 2.7)	J = 9.1);	7.29 (m, H(3'),	(J = 5.9)	1562, 1524,
	J = 5.9,				8.21 (dd, H(7),	H(5′)); 7.44 (m,		1488, 1368
	J = 1.8)	5.00	4 50	0.00	J = 9.1, J = 2.7	$H(2^{\prime}), H(6^{\prime}))$	05 75	
cc-2 c	4.01	5.26 (2-2	4.59	8.89 (d.d	$1.10 (0, H(\delta), J = 9.1);$	2.41 (s, Me); 7.20 (m $H(2)$)	$\delta 3./3$	—
	I = 5.5	$I = 5 \Delta$	I = 5.4	I = 2.6	I = 9 I = 26	$H(5')$ $(11, \Pi(5'),$ H(5') $(7, 50 (m))$	(J - 5.5)	
	J = 5.5, J = 1.8)	J = 5.4, J = 1.8)	J = 3.4)	J = 2.0, $J = 1.2)^{a}$	J = J.1, J = 2.0, J = 0.7)	H(2') H(6')		
	J 1.0)	J 1.0)		J 1.2)	J 0.7	11(2), 11(0))		

Table 3. ¹H, ¹⁹F NMR and IR spectra of diastereomers of chromanes 2a-o

Table 3 (continued)

Chro-	NMR, δ (<i>J</i> /Hz)							
mane					¹ H		¹⁹ F	v/cm^{-1}
	H(2)	H(3)	H(4)	H(5)	H(6)—H(8)	R´	$CF_3(d)$	
<i>tt</i> -2d	5.08 (d, J = 7.6)	5.18 (t, J = 7.8)	4.79 (d, J = 8.0)	7.69 (dt, J = 7.9, $J = 1.2)^{a}$	b	b	_	_
<i>tc</i> -2d	5.74 (d, $J = 6.7$)	5.31 (dd, J = 6.7, J = 5.5)	4.78 (d, J = 5.5)		6.96—7.06 (m, H(6), H(8)); 7.28 (m, H(7))	2.34 (s, Me); 7.08 (m, H(3'), H(5')); 7.19 (m, H(2'), H(6'))	_	_
<i>ct</i> -2d	5.17 (d, <i>J</i> = 1.2)	5.53 (t, $J = 1.5$)	4.70 (br.s)	7.53 (dd, J = 7.9, J = 1.6)	b	b	_	1655, 1589, 1560, 1487, 1372
cc-2d	4.55 (d, J = 1.5)	5.63 (dd, J = 5.5, J = 1.5)	4.64 (br.d, <i>J</i> = 5.5)	7.95 (dt, J = 7.8, J = 1.3) ^a	7.12 (m, H(6), H(8)); 7.33 (m, H(7))	2.39 (s, Me); 7.24 (m, H(3'), H(5')); 7.57 (m, H(2') H(6'))	_	_
<i>tt</i> -2e	5.09 (d, J = 7.7)	J = 7.8	4.71 (d, J = 7.9)	7.81 (dd, J = 2.3, $J = 0.9)^a$	6.94 (d, H(8), J = 8.6); 7.40 (ddd, H(7), $J = 8.6$, J = 2.3, $J = 0.6$)	2.34 (s, Me); 7.13 (m, H(3'), H(5')); 7.28 (m, H(2'), H(6'))	_	_
<i>tc</i> -2e	5.71 (d, <i>J</i> = 6.5)	5.30 (dd, J = 6.5, J = 5.5)	4.70 (d, J = 5.5)	7.12 (m)	6.93 (d, H(8), J = 8.6); 7.37 (dd, H(7), J = 8.6, J = 2.4)	2.36 (s, Me); 7.12 (m, H(3'), H(5')); 7.20 (m, H(2'), H(6'))	_	1642, 1566, 1490, 1472, 1362
ct-2e	5.13 (s)	5.50 (t, $J = 1.5$)	4.62 (br.s)	7.64 (dd, J = 2.3, J = 0.6)	7.02 (d, H(8), J = 8.6); 7.45 (m, H(7))	b	_	_
cc-2e	4.53 (d, <i>J</i> = 1.4)	5.60 (dd, J = 5.5, J = 1.5)	4.56 (dt, J = 5.4, J = 1.0)	8.08 (dd, J = 2.4, $J = 1.2)^{a}$	6.98 (d, H(8), J = 8.7); 7.43 (ddd, H(7), $J = 8.7$, J = 2.4, $J = 1.0$)	2.40 (s, Me); 7.23–7.26 (m, H(3'), H(5')); 7.55–7.59 (m, H(2'), H(6'))	_	_
<i>tt</i> -2f	4.83 (dq, J = 9.0, J = 5.5)	5.35 (t, $J = 9.2$)	4.87 (br.d, J = 9.0)	7.69 (dt, J = 7.9, $J = 1.3)^a$	7.05–7.16 (m, H(6), H(8)); 7.29 (m, H(7))	1.26 (t, Me, $J = 7.1$); 3.17 (AB system, SCH ₂ , $J = 15.2$); 4.12 (ABX ₃ system, OCH ₂ , J = 10.8, J = 7.1)	85.43 (<i>J</i> = 5.5)	_
<i>tc</i> -2f	5.52 (quint, J = 6.2)	5.26 (dd, J = 7.0, J = 5.0)	4.94 (d, $J = 5.0$)	7.37 (dd, J = 7.9, J = 1.7)	b	1.30 (t, Me, $J = 7.1$); 3.58 (s, SCH ₂); 4.22 (q, OCH ₂ , J = 7.1)	84.98 (<i>J</i> = 6.2)	_
ct-2f	5.02 (qd, J = 5.8, J = 1.8)	5.49 (t, J = 1.8)	4.70 (br.s)	7.41 (dd, J = 7.9, J = 1.7)	7.02 (dd, H(8), $J = 8.4$, J = 1.0); 7.09 (td, H(6), J = 7.6, $J = 1.0$); 7.28 (ddd, H(7), $J = 8.4$, J = 7.4, $J = 1.5$)	1.33 (t, Me, $J = 7.1$); 3.47 (AB system, SCH ₂ , $J = 15.7$); 4.27 (qd, OCH ₂ , J = 7.1, $J = 0.6$)	87.02 (<i>J</i> = 6.0)	1728, 1612, 1590, 1556, 1489, 1369
cc-2f	4.63 (qd, J = 5.7, J = 1.7)	5.63 (dd, J = 5.6, J = 1.7)	b	7.70 (dt, J = 7.9, $J = 1.2)^{a}$	b	1.29 (t, Me, $J = 7.1$); 3.23 (AB system, SCH ₂ , $J = 15.5$); 4.21 (qd, OCH ₂ , $J = 7.1$, $J = 0.9$)	85.62 (<i>J</i> = 5.7)	_

Table 3	(continued)
---------	-------------

Chro-	NMR, δ (J/Hz)						IR,	
mane					¹ H		¹⁹ F	v/cm^{-1}
	H(2)	H(3)	H(4)	H(5)	H(6)—H(8)	R´	$CF_3(d)$	
<i>tt</i> -2g	4.85 (dq, J = 8.9, J = 5.5)	5.33 (t, $J = 8.9$)	4.84 (d, <i>J</i> = 9.2)	7.83 (dd, J = 2.4, $J = 1.0)^{a}$	6.91 (d, H(8), $J = 8.8$); 7.39 (ddd, H(7), J = 8.8, J = 2.4, J = 0.7)	1.29 (t, Me, $J = 7.1$); 3.23 (AB system, SCH ₂ , $J = 15.2$); 4.16 (q. OCH ₂ , $J = 7.1$)	85.67 (<i>J</i> = 5.5)	_
tc-2g	5.44 (quint, $J = 6.1$)	5.33 (t, J = 5.5)	b	7.65 (d, $J = 2.4$)		1.35 (t, Me, $J = 7.1$); 3.30 (AB system, SCH ₂ , $J = 15.4$); 4.25 (a, OCH ₂ , $J = 7.1$)	85.37 (<i>J</i> = 6.3)	_
ct-2g	4.98 (qd, J = 5.9, J = 1.6)	5.49 (t, $J = 1.8$)	4.65 (br.s)	7.55 (d, J = 2.4)	6.92 (d, H(8), J = 8.8); 7.39 (dd, H(7), J = 8.8, J = 2.4)	1.34 (t, Me, $J = 7.1$); 3.49 (AB system, SCH ₂ , $J = 15.8$); 4.28 (q, OCH ₂ , $J = 7.1$)	87.06 (<i>J</i> = 5.9)	1739, 1605, 1567, 1479, 1378
cc-2g	4.64 (qd, J = 5.7, J = 1.7)	5.62 (dd, J = 5.5, J = 1.7)	4.78 (br.d, <i>J</i> = 5.0)	7.84 (dd, J = 2.4, $J = 1.0)^{a}$	<i>b</i>	b	85.69 (<i>J</i> = 5.7)	_
<i>tt</i> -2h	5.06 (dq, J = 8.2, J = 5.7)	5.39 (t, $J = 8.4$)	4.96 (br.d, <i>J</i> = 8.5)	8.68 (dd, J = 2.6, $J = 1.2)^{a}$	7.15 (d, H(8), J = 9.1); 8.19 (m, H(7))	1.30 (t, Me, <i>J</i> = 7.1); 3.33 (AB system, SCH ₂ , <i>J</i> = 15.4); 4.22 (q, OCH ₂ , <i>J</i> = 7.1)	86.27 (<i>J</i> = 5.7)	_
<i>tc</i> -2h	5.46 (qd, J = 6.4, J = 4.4)	5.55 (t, $J = 4.7$)	4.83 (d, <i>J</i> = 4.7)	8.58 (dd, J = 2.6, J = 0.6)	b	b	86.05 (<i>J</i> = 6.4)	_
<i>ct</i> -2h	5.12 (qd, J = 5.8, J = 1.8)	5.62 (t, $J = 1.8$)	4.77 (br.s)	8.39 (d, J = 2.7)	7.17 (d, H(8), $J = 9.1$); 8.19 (dd, H(7), J = 9.1, J = 2.6)	1.33 (t, Me, J = 7.1); 3.57 (AB system, SCH ₂ , J = 16.0); 4.30 (q, OCH ₂ , J = 7.1)	87.13 (<i>J</i> = 5.8)	1745, 1622, 1585, 1567, 1517, 1484, 1368
cc-2h	4.78 (qd, J = 5.5, J = 1.8)	5.72 (dd, J = 5.6, J = 1.8)	4.87 (d, <i>J</i> = 5.6)	8.69 (dd, J = 2.6, $J = 1.2)^{a}$	<i>b</i>	b	85.85 (<i>J</i> = 5.5)	_
<i>tt</i> -2i	5.17 (d, J = 7.6)	5.35 (t, J = 7.9)	4.79 (d, J = 8.0)	7.60 (dt, J = 7.6, $J = 1.2)^{a}$	b	1.26 (t, Me, <i>J</i> = 7.1); 3.24 (s, SCH ₂); 4.16 (q, OCH ₂ , <i>J</i> = 7.1)	_	_
<i>tc</i> -2i	5.76 (d, J = 6.8)	5.38 (dd, J = 5.4, J = 6.8)	5.01 (d, $J = 5.4$)	7.32 (dd, J = 7.8, J = 1.6)	b	1.29 (t, Me, <i>J</i> = 7.1); 3.16 (AB system, SCH ₂ , <i>J</i> = 15.5); 4.19 (m, OCH ₂)	_	_
<i>ct</i> -2i	5.01 (dd, J = 1.5, J = 0.6)	5.88 (t, J = 1.5)	4.68 (br.s)	7.43 (ddd, J = 7.9, J = 1.6, J = 0.6)	7.09 (td, H(6), $J = 7.6$, J = 1.1); 7.10 (d, H(8), J = 8.3); 7.31 (dddd, H(7), $J = 8.3$, $J = 7.3$, J = 1.6, $J = 0.6$)	1.34 (t, Me, <i>J</i> = 7.1); 3.49 (AB system, SCH ₂ , <i>J</i> = 15.5); 4.28 (q, OCH ₂ , <i>J</i> = 7.1)	_	1731, 1613, 1589, 1554, 1486, 1367
cc-2i	4.69 (d, <i>J</i> = 1.4)	6.05 (dd, J = 5.6, J = 1.5)	4.84 (d, <i>J</i> = 5.6)	7.71 (dt, J = 7.8, $J = 1.2)^a$	b	1.34 (t, Me, J = 7.1); 3.47 (AB system, SCH ₂ , J = 14.8); 4.27 (m, OCH ₂)	_	_
tt-2j	5.19 (d, J = 7.5)	5.30 (dd, J = 8.4, J = 7.5)	4.75 (br.d, <i>J</i> = 8.4)	7.75 (dd, J = 2.3, $J = 0.9)^a$	7.00 (d, H(8), J = 8.6); 7.44 (dd, H(7), J = 8.6, J = 2.3)	1.28 (t, Me, <i>J</i> = 7.2); 3.28 (AB system, SCH ₂ , <i>J</i> = 15.2); 4.19 (q, OCH ₂ , <i>J</i> = 7.2)	_	_

Chro-					NMR, δ (J/Hz)			IR,
mane					¹ H		¹⁹ F	v/cm^{-1}
_	H(2)	H(3)	H(4)	H(5)	H(6)—H(8)	R´	$CF_3(d)$	
tc- 2 j	5.69 (d, J = 6.2)	5.42 (dd, J = 6.2, I = 5.4)	4.96 (d, J = 5.4)	7.55 (d, $J = 2.3$)	6.99 (d, H(8), J = 8.6); 7.44 (dd, H(7), I = 8.6, $I = 2.3$)	1.31 (t, Me, $J = 7.2$); 3.21 (AB system, SCH ₂ , $J = 15.3$); 4.22 (a, OCH: $J = 7.2$)	_	1724, 1638, 1561, 1478, 1368
ct-2j	4.97 (d, J = 0.8)	J = 3.4) 5.88 (t, J = 1.5)	4.65 (br.s)	7.56 (d, $J = 2.3$)	J = 8.0, J = 2.3) 7.02 (d, H(8), J = 8.6); 7.41 (dd, H(7), J = 8.6, J = 2.3)	1.32 (q, $OCH_2, J = 7.2$) 1.34 (t, Me, $J = 7.1$); 3.50 (AB system, SCH ₂ , $J = 15.5$); 4.28 (q, $OCH_2, J = 7.1$)	_	-
<i>сс-</i> 2ј	4.67 (d, <i>J</i> = 1.4)	6.04 (dd, J = 5.6, J = 1.4)	4.80 (br.d, $J = 5.6$)	7.85 (dd, J = 2.3, $J = 1.1)^a$	6.97 (d, H(8), J = 8.7); 7.40 (ddd, H(7), $J = 8.7$, $J = 2.3$, J = 0.9)	1.35 (t, Me, $J = 7.2$); 3.46 (AB system, SCH ₂ , $J = 14.9$); 4.28 (m, OCH ₂)	_	_
<i>tt</i> -2k	4.83 (dq, J = 9.5, J = 5.4)	5.19 (t, <i>J</i> = 9.7)	4.76 (br.d, <i>J</i> = 9.9)	7.73 (dt, J = 7.9, $J = 1.2)^a$	7.01 (dd, H(8), $J = 8.2$, J = 1.1); 7.14 (td, H(6), J = 7.7, $J = 1.1$); 7.28 (m, H(7))	1.90 (br.s, OH); 2.57–2.71 (m, SCH ₂); 3.70–3.82 (m, OCH ₂)	85.24 (<i>J</i> = 5.4)	3368, 1603, 1572, 1484, 1371
<i>tc-</i> 2k	5.53 (dq, J = 7.6, J = 6.1)	5.22 (dd, J = 7.6, J = 4.9)	4.80 (d, J = 4.9)	7.39 (dd, J = 7.6, J = 1.5)	b	b	84.85 (<i>J</i> = 6.2)	_
<i>ct</i> - 2 k	5.03 (qd, J = 6.1, J = 1.2)	5.54 (t, $J = 1.7$)	4.66 (br.s)	7.42 (dd, J = 7.8, J = 1.2)	7.00 (dd, H(8), $J = 8.2$, J = 1.2); 7.07 (td, H(6), J = 7.6, $J = 1.2$); 7.26 (m, H(7))	2.00 (br.s, OH); 2.84—3.07 (m, SCH ₂); 3.90—4.05 (m, OCH ₂)	86.97 (<i>J</i> = 6.1)	_
cc-2k	4.61 (qd, J = 5.8, J = 1.8)	5.68 (dd, J = 5.6, J = 1.8)	4.72 (br.s)	<i>b</i>	b	b	85.50 (<i>J</i> = 5.8)	_
<i>tt-</i> 21	4.84 (dq, J = 9.2, J = 5.5)	5.21 (t, $J = 9.4$)	4.73 (d, J = 9.6)	7.88 (dd, J = 2.4, $J = 1.1)^a$	6.90 (d, H(8), J = 8.7); 7.38 (ddd, H(7), J = 8.7, J = 2.4, J = 0.8)	1.90 (br.s, OH); 2.64 (ddd, SC <u>H</u> H, J = 13.9, J = 7.3, J = 5.0); 2.73 (ddd, SCH <u>H</u> , J = 13.9, J = 5.8, J = 4.6); 3.75-3.87 (m, OCH ₂)	85.46 (<i>J</i> = 5.5)	_
tc-21	5.44 (quint, $J = 6.1$)	5.31 (dd, J = 6.1, J = 4.8)	4.74 (d, $J = 4.8$)	7.68 (d, $J = 2.4$)	b		85.22 (<i>J</i> = 6.3)	_
ct- 2 1	4.99 (qd, J = 5.9, J = 1.5)	5.55 (t, $J = 1.7$)	4.65 (br.s)	7.56 (dd, J = 2.4, J = 0.5)	6.91 (d, H(8), J = 8.7); 7.36 (ddd, H(7), $J = 8.8$, J = 2.4, $J = 0.5$)	1.80 (br.s, OH); 2.88 (ddd, SC <u>H</u> H, J = 14.6, J = 7.6, J = 3.7); 3.05 (ddd, SCH <u>H</u> , J = 14.6, J = 6.2, J = 3.8); 3.96 (ddd, OC <u>H</u> H, J = 11.0, J = 7.6, J = 3.7); 4.06 (ddd, OCH <u>H</u> , J = 11.0, J = 6.2, J = 3.8);	86.98 (<i>J</i> = 5.9)	3484, 1553, 1479, 1367
cc-2l	4.59 (qd, J = 5.7, J = 1.6)	5.70 (dd, J = 5.5, J = 1.7)	4.70 (br.d, J = 5.5)	7.91 (dd, J = 2.4, $J = 1.2)^{a}$	b		85.57 (<i>J</i> = 5.7)	_

Korotaev et al.

Table 3	(continued)
---------	-------------

Chro-	ro- NMR, δ (<i>J</i> /Hz)							IR,
mane				¹⁹ F	v/cm^{-1}			
_	H(2)	H(3)	H(4)	H(5)	H(6)—H(8)	R´	$CF_3(d)$	
<i>tt</i> -2m	5.03	5.32 (t,	4.86 (d,	8.72	7.14 (d, H(8),	2.70-3.15 (m, SCH ₂);	85.97	_
	(dq,	J = 8.9)	J = 9.0)	(dd,	J = 9.1);	3.87–4.15 (m, OCH ₂)	(J = 5.6)	
	J = 8.8,			J = 2.6,	8.15–8.20 (dd, H(7),			
	J = 5.6)	/	4.02 (1	$J = 1.2)^{a}$	J = 9.1, J = 2.6)		05.00	
<i>tc</i> -2 m	5.44	5.57 (t,	4.83 (d,	8.60	7.12 (d, H(8),	2.70-3.15 (m, SCH ₂);	85.88	—
	(qa,	J = 4.8)	J = 5.0)	(aa, I - 2.6)	J = 9.1; 8 15 8 20 (dd H(7))	3.87-4.15 (m, OCH ₂)	(J = 6.4)	
	J = 0.4, I = 4.7)			J = 2.0, $I = 0.9)^{a}$	8.13 - 8.20 (dd, H(7), I = 9.1 $I = 2.6$)			
ct-2m	5 = 4.7	5 71 (t	4 80	9 – 0.9) 8 40 (d	7 15 (d H(8))	2.70 - 3.15 (m SCH ₂):	87.04	3535 1535
c, 2 m	(ad.	J = 1.8	(br.s)	J = 2.7	J = 9.1):	3.87 - 4.15 (m, OCH ₂)	(J = 5.9)	1657, 1565,
	J = 5.8.	• 110)	(0115)	•)	8.16 (dd, H(7),		(0 015)	1621, 1521,
	J = 1.7)				J = 9.1, J = 2.7			1480, 1345
<i>cc</i> -2m	4.74	5.83	b	8.76	7.13 (d, H(8), $J = 9.1$);	2.70-3.15 (m, SCH ₂);	85.70	_
	(qd,	(dd,		(dd,	8.15-8.20 (dd,	3.87 - 4.15 (m, OCH ₂)	(J = 5.6)	
	J = 5.5,	J = 5.5,		J = 2.6,	H(7), J = 9.1,			
	J = 1.7)	J = 1.5)		$J = 1.0)^{a}$	J = 2.6)			
<i>tt</i> -2n	5.20 (d,	5.22 (t,	4.64 (d,	7.65	7.06—7.18 (m,	1.90 (br.s, OH);	—	—
	J = 7.6)	J = 7.6)	J = 7.6)	(dt,	H(8), H(6));	2.70–3.10 (m, SCH ₂);		
				J = 7.6,	7.26—7.44 (m, H(7))	$3.72-4.06 \text{ (m, OCH}_2\text{)}$		
4- 2-	5 77 (1	5.20	4 03 (1	$J = 1.2)^{a}$	7.0(7.19 (1.00 (br a OII):		
<i>tc-2</i> n	5.77(0, 1-6.8)	3.30 (dd	4.82(0, 1-5.2)		/.00 - /.18 (m,	1.90 (DF.S, OH);	_	_
	J = 0.8)	I = 6.8	J = 5.5)		7.26 - 7.44 (m H(7))	$2.70-3.10$ (III, $3CH_2$), $3.72-4.06$ (m. OCH_2)		
		J = 0.3, J = 5.4)			7.20—7.44 (III, II(7))	5.72-4.00 (III, OCH ₂)		
<i>ct</i> -2n	5.06	5.91 (t.	4.67	b	7.06—7.18 (m.	1.90 (br.s. OH):	_	_
	(dd,	J = 1.5)	(br.s)		H(8), H(6));	2.70-3.10 (m, SCH ₂);		
	J = 1.5,	,	· /		7.26–7.44 (m, H(7))	3.72–4.06 (m, OCH ₂)		
	J = 0.8)							
<i>cc</i> -2n	b	6.09	4.75	7.77	7.06–7.18 (m,	1.90 (br.s, OH);	_	_
		(dd,	(br.d,	(dt,	H(8), H(6));	2.70—3.10 (m, SCH ₂);		
		J = 5.6,	J = 5.6)	J = 7.6,	7.26—7.44 (m, H(7))	3.72—4.06 (m, OCH ₂)		
	5 00 (1	J = 1.5)	1 (0	$J = 1.2)^{a}$				2472 15(1
11-20	5.23(0, 1-75)	5.18 (dd	4.62	/.81 (dd	6.98 (0, H(8), I = 8.6), 7.42 (ddd	1.90 (t, OH, $J = 5.6$);	_	34/2, 1561, 1474, 1265
	J = 7.5)	(uu, I - 8.8)	(01.0, 1-8.8)	(uu, I - 2.4)	J = 8.6), 7.45 (ddd, H(7) $I = 8.6$	$2.70-2.81$ (III, SCH_2),		14/4, 1505
		J = 0.0, I = 7.5)	J = 0.0)	J = 2.4, $I = 1.0)^{a}$	II(7), J = 8.0, I = 2.4, I = 0.9	$5.80 - 5.80$ (III, OCH_2)		
tc-20	5 68 (d	5 40	4 80 (d	7 52 (d	6.99 (d H(8))	1.85 (t OH I = 5.6)	_	_
20	J = 6.3)	(dd.	J = 5.5)	J = 2.4	J = 8.6): 7.43 (dd.	2.70-2.81 (m, SCH ₂):		
	,	J = 6.3,	,		H(7), J = 8.6,	$3.80 - 3.86 (m, OCH_2)$		
		J = 5.5)			J = 2.4)			
ct-20	5.01	5.92 (t,	4.66	7.56 (d,	6.98 (d, H(8),	1.90 (br.s, OH);	_	_
	(dd,	J = 1.5)	(br.s)	J = 2.4)	J = 8.8; 7.39 (dd,	2.89 (ddd, SC <u>H</u> H,		
	J = 1.5,				H(7), J = 8.8,	J = 14.5, J = 6.8, J = 4.2;		
	J = 0.6)				J = 2.4)	3.08 (ddd, SCH <u>H</u> ,		
						J = 14.5, J = 6.5, J = 4.0);		
-		<i></i>		- • • •		3.98–4.09 (m, OCH ₂)		
cc-20	4.65 (d,	6.12	4.74	7.91	6.96 (d, H(8),	$3.96-4.08 \text{ (m, OCH}_2\text{)}$	—	_
	J = 1.4)	(dd, I - 5)	(br.d, I = 5.0)	(dd, I - 24)	J = 8.6); 7.39 (ddd,			
		J = 5.0, I = 1.4	J = 5.6)	J = 2.4, I = 1.2)a	$\Pi(I), J = 8.0,$ I = 2.3, I = 1.1			
		J = 1.4)		$J = 1.2)^{a}$	J = 2.5, J = 1.1)			

^{*a*} $J_{5,4} \approx J_{5,7} = 1.0 - 1.2$ Hz. ^{*b*} Chemical shifts were not determined because of superposition of signals or a low content of the diastereomer.

Fig. 1. General view of a molecule of *trans-cis*-isomer 2d.

Fig. 2. Distorted boat conformation of isomer *tc*-2d in crystal.

mixture, because this value is 6.1-6.4 in *tc*-, 5.8-6.1 in *ct*-, and 5.3-5.8 Hz in the *tt*- or *cc*-isomers (see Table 3).

The X-ray diffraction study of crystals of individual diastereomers tc-2d and ct-2f was carried out for the ultimate confirmation of the structures of diastereomeric forms drawn on the basis of analysis of the SSC values and 2D NOESY spectra. The structure of a molecule of tc-2d is shown in Figs 1 and 2 and confirms the configuration ascribed to this molecule. The bond lengths in tc-2d are close to mean statistical values,³¹ and the pyran fragment takes the form of a distorted boat, which is related, most likely, to steric interactions between the bulky substituents. The endocyclic torsion angles in the pyran fragment are given below.

Angle	Value/deg
O(1) - C(2) - C(3) - C(4)	22.9(2)
C(2) - C(3) - C(4) - C(4a)	-51.7(2)
C(3)-C(4)-C(4a)-C(8a)	40.4(2)
C(4) - C(4a) - C(8a) - O(1)	2.5(3)
C(4a) - C(8a) - O(1) - C(2)	-36.9(3)
C(8a) - O(1) - C(2) - C(3)	22.0(2)

Note that of approximately 300 chromane structures available at the Cambridge Structure Database³² only in four structures the pyran fragment has a boat or a distorted boat conformation.

The dihedral angles between the mean plane drawn through the atoms of the pyran cycle and the C(3)-N(1) and C(2)-C(9) bonds are 68.0 and 139.8°, respectively, and the dihedral angle between the sulfanyl fragment and *p*-tolyl ring is 66.9°. The aromatic rings are unfolded relatively to each other at an angle of 48.6°. Molecules of *tc*-**2d** in crystal form a complicated supramolecular motive of 1d-architecture (chains along the crystallographic axis *c*) due to van der Waals interactions of the C-H...O and C-H...S types: O(1)...H(4a), 2.58 Å; O(2)...H(6a), 2.64 Å; O(3)...H(2a), 2.31 Å; S(1)...H(3a), 2.92 Å (Fig. 3).

The structure of isomer ct-**2f** is presented in Fig. 4 showing that the sulfanyl and nitro groups occupy the axial positions and the trifluoromethyl group is in the equatorial position. The pyran cycle exists in the conformation of a weakly distorted half-chair with the deviation of the C(2) and C(3) atoms from the plane of other atoms by -0.363(3) and 0.308(4) Å, respectively. In crystal of compound ct-**2f**, one can distinguish the C(13)-H...F(2) intermolecular interactions with an H...F distance of 2.48 Å (the sum of van der Waals radii is 2.56 Å),³³ which link the molecules to form centrosymmetric dimers. Also note π -stacking of the interaction between the benzene rings of the neighboring molecules with intercenter and interplanar distances of 3.915 and 3.531 Å, respectively.

Then we studied the interaction of chromenes 1a,c with aromatic amines and found that reflux of 3-nitro-2-trifluoromethyl-2*H*-chromene (1a) with aniline, *p*-toluidine, and *p*-anisidine in benzene for 4–6 h afforded 4-arylamino-3-nitro-2-trifluoromethylchromanes 3a-c

Fig. 3. Packing of molecules tc-2d in crystal.

Fig. 4. General view of a molecule of *cis*—*trans*-isomer 2f.

(Scheme 3). After the reaction mixture was recrystallized from hexane or its mixture with dichloromethane, only one diastereomer was isolated in each case (30-63% yields), whose configuration and conformation were determined on the basis of the ¹H NMR spectral data. For instance, the high SSC values ($J_{2,3} = 10.5 - 10.6$ Hz and $J_{3,4} = 9.7$ Hz) indicate the existence of the pyran fragment in the half-chair conformation with the 2-CF₃ and 3-NO₂ substituents in the equatorial positions and the 4-NHAr group in the pseudo-equatorial position. Therefore, compounds 3a-c have the *tt*-configuration. It is interesting that the reaction of 3,6-dinitro-2-trifluoromethyl-2H-chromene (1c) with aniline and *p*-toluidine ceases within 2 h and affords chromanes 3d,e as ct-diastereomers with $J_{2,3} \approx J_{3,4} = 1.9$ Hz (Table 4). It should be mentioned that the replacement of trihalomethyl group by phenyl in chromenes 1 decreases sharply their reac-

Scheme 3

3: Ar = Ph (**a**, **d**), 4-MeC₆H₄ (**b**, **e**), 4-MeOC₆H₄ (**c**)

tivity. For example, 3-nitro-2-phenyl-2*H*-chromene³⁴ and 6-bromo-3-nitro-2-phenyl-2*H*-chromene react with neither aniline nor ethyl mercaptoacetate under the studied conditions, or a complicated mixture of products is formed, indicating a considerable contribution of the CF_3 and CCl_3 groups to the activation of the double bond of chromenes **1**.

To conclude, the reaction of 3-nitro-2-trihalomethyl-2*H*-chromenes with thiols proceeds as nucleophilic addition to the activated double bond according to the Michael reaction mechanism and leads to diastereomeric mixtures of 2,3,4-trisubstituted chromanes, whose structures were determined by the analysis of the SSC values and 2D NOESY spectra and confirmed by X-ray diffraction data. Similar reactions with aromatic amines afford *trans*-*trans*- or *cis*-*trans*-4-arylamino-3-nitro-2-trifluoromethylchromanes.

Experimental

IR spectra were recorded on a Perkin–Elmer Spectrum BX-II instrument in KBr pellets. ¹H and ¹⁹F NMR spectra were recorded on a Bruker DRX-400 spectrometer in CDCl₃ with working frequencies of 400.1 (¹H) and 376.5 MHz (¹⁹F) using Me₄Si and C₆F₆, respectively, as internal standards. 2D NOESY experiments were conducted using standard impulse sequences from the Bruker NMR Suite 2.6 software with a mixing time of 1.7 s.

The starting chromenes **1a,b,d,e** were synthesized according to known procedures.²⁵

3,6-Dinitro-2-trifluoromethyl-2*H***-chromene (1c)** was synthesized according to a known procedure²⁵ with the only difference that the reaction was conducted for 48 h. The yield was 75%, m.p. 128–129 °C (from ethanol), light yellow powder. Found (%): C, 41.29; H, 1.40; N, 9.61. $C_{10}H_5F_3N_2O_5$. Calculated (%): C, 41.40; H, 1.74; N, 9.65. IR, v/cm⁻¹: 3072, 1664, 1619, 1582, 1514, 1476, 1344. ¹H NMR, δ : 6.22 (q, 1 H, H(2),

Chro- mane	NMR, δ (J/Hz)									
			¹⁹ F	v/cm^{-1}						
	H(2)	H(3) (t)	H(4)	H(5)	H(6)—H(8)	ArNH	CF ₃ (d)			
tt-3a	5.19	5.08	5.45	7.37	7.05 (d, H(8), $J = 8.4$);	3.97 (br.d, $J = 9.4$);	85.67	3389, 1603,		
	(dq,	(J =	(br.t,	(dt,	7.06 (td, H(6),	6.68–6.72 (m, H(2 [']),	(J = 6.0)	1565, 1512,		
	J = 7.9,	8.0)	J = 8.7)	J = 7.9,	J = 7.6, J = 1.2;	H(6')); 6.85 (tt, H(4'),		1488, 1376		
	J = 6.0)	,	,	$J = 1.2)^*$	7.31 (dddd, H(7),	J = 7.6, J = 1.0;				
	,			,	J = 8.2, J = 7.4,	7.20-7.25 (m,				
					J = 1.7, J = 0.7)	H(3'), H(5'))				
tt-3b	5.17	5.07	5.40	7.38	7.01-7.07 (m,	2.26 (s, Me); 3.80-3.90	85.61	3378, 1616,		
	(dq,	(J =	(br.d,	(dt,	H(6), H(8));	(br.s); 6.59–6.63 (m,	(J = 5.9)	1566, 1520,		
	J = 8.0,	8.0)	J = 7.9)	J = 7.9,	7.30 (dddd, H(7),	H(2´), H(6´));		1488, 1375		
	J = 5.9)			$J = 1.1)^*$	J = 8.3, J = 7.4,	7.01–7.07 (m,				
					J = 1.6, J = 0.6)	H(3'), H(5'))				
tt-3c	5.15	5.07	5.34	7.40	7.03 (dd, H(8),	3.40-3.90 (br.s);	85.58	3371, 1610,		
	(dq,	(J =	(br.d,	(dt,	J = 8.2, J = 1.2;	3.76 (s, OMe);	(J = 5.9)	1570, 1518,		
	J = 8.1,	8.1)	J = 8.1)	J = 7.7,	7.06 (td, H(6), $J = 7.5$,	6.63–6.67 (m, H(2 [']),		1488, 1372		
	J = 5.9)			$J = 1.0)^*$	J = 1.2; 7.30 (br.t,	H(6')); 6.78–6.82 (m,				
	,			,	H(7), J = 8.0)	H(3'), H(5'))				
<i>ct</i> -3d	4.86	5.31	5.04	8.34	7.28 (d, H(8),	4.03 (br.d, $J = 4.2$);	87.30	3392, 1658,		
	(qd,	(J =	(br.d,	(d,	J = 9.1; 8.28 (dd, H(7),	6.74–6.78 (m, H(2'),	(J = 5.8)	1622, 1603,		
	J = 5.8,	1.9)	J = 4.0)	J = 2.6)	J = 9.1, J = 2.6	H(6')); 6.99 (tt, H(4'),		1564, 1526,		
	J = 1.9)					J = 7.5, J = 0.9;		1499, 1484,		
						7.32—7.38 (m,		1345, 1326		
						H(3'), H(5'))				
ct-3e	4.85	5.30	5.00	8.33	7.27 (d, H(8),	2.32 (s, Me); 3.91 (br.d,	87.26	3393, 1622,		
	(qd,	(J =	(br.d,	(d,	J = 9.1; 8.27 (dd,	J = 4.2; 6.67 (d,	(J = 5.9)	1590, 1557,		
	J = 5.9,	1.9)	J = 4.0)	J = 2.6)	H(7), J = 9.1,	H(2'), H(6'), J = 8.3);	. /	1524, 1485,		
	J = 1.9)	,	,	,	J = 2.6)	7.15 (d, H(3'),		1348, 1329		
						H(5'), J = 8.3)				

Table 4. ¹H, ¹⁹F NMR and IR spectra of 4-ArNH-chromanes 3a-e

* $J_{5,4} \approx J_{5,7} = 1.0 - 1.2$ Hz.

J = 6.0 Hz); 7.24 (m, 1 H, H(8)); 8.17 (s, 1 H, H(4)); 8.35 (m, 2 H, H(5), H(7)). ¹⁹F NMR, δ : 83.99 (d, CF₃, J = 6.0 Hz).

Reaction of chromenes 1a—e with thiols (general procedure A). A mixture of chromene 1 (1.0 mmol) and the corresponding thiol (1.0 mmol) in benzene (5 mL) was kept for 5 h at 65 °C. Then the solution was cooled to room temperature, the solvent was removed, and the residue was washed with hexane.

General procedure *B*. A mixture of chromene 1 (1.0 mmol), the corresponding thiol (1.0 mmol), and anhydrous K_2CO_3 (0.1 mmol) in dichloromethane (5 mL) was stirred for 2 days at ~20 °C. Then a 5% solution of HCl was added to the mixture to reach an acidic pH, and the solution was extracted with dichloromethane (2×2 mL). Combined extracts were washed with water (2×1 mL) and dried with anhydrous Na₂SO₄, the solvent was removed, and the residue was washed with hexane.

Chromane ct-20 is formed as one stereoisomer on refluxing in benzene in the presence of K₂CO₃. Individual stereoisomers of other chromanes were isolated by recrystallization from hexane (chromanes tt-2b, tc-2d, and ct-2f,i,l) or a hexane—dichloromethane (3 : 1) mixture (cc-2a,j and tt-2k,l). Chromane tc-2e was isolated from the mother liquor after the reaction mixture was washed with hexane. Since the conversion was low, a diastereomeric mixture of 2n was not isolated. The data on the ¹H, ¹⁹F NMR and IR spectra of diastereomers of chromanes 2a-o are presented in Table 3. The yields, melting points, and elemental analysis data for chromanes 2a-m,o are given in Table 5.

Reaction of chromenes 1a,c with aromatic amines. A mixture of chromene 1 (1.0 mmol) and the corresponding amine (1.0 mmol) was refluxed for 4-6 h in benzene (8 mL). Then the solution was cooled, the solvent was removed, and the residue was recrystallized from hexane (chromanes 3a-c) or a hexane—dichloromethane (3 : 1) mixture (chromanes 3d,e).

The ¹H, ¹⁹F NMR and IR spectral data for chromanes 3a-e are presented in Table 4. The yields, melting points, and elemental analysis data for chromanes 3a-e are given in Table 5.

X-ray diffraction study of compound *tc***-2d** was carried out on a Bruker P4 diffractometer (Mo-K α radiation, graphite monochromator, 20/0 scan mode in the range 20 < 54°). A crystalline sample of compound *tc***-2d** 1.10×0.36×0.34 mm in size was chosen for experiment. The crystals are monoclinic: *a* = 10.035(3) Å, *b* = 19.642(4) Å, *c* = 10.109(4) Å, β = 106.08(2)°, *V* = 1914.6(10) Å³, space group *P*2₁/*c*, *Z* = 4, C₁₇H₁₄Cl₃NO₃S, *d*_{calc} = 1.453 g cm⁻³, μ = 0.603 mm⁻¹. Intensities of 4184 independent reflections were measured. An absorption correction was applied by crystal facet (transmission 0.79–0.83). The struc-

Chro- mane	Yield (%)	M.p./°C (isomeric com-	Found Calculated (%)			Molecular formula	
		position (%))	С	Н	N		
cc-2a	37	187—188	<u>54.92</u> 55.28	$\frac{3.82}{3.82}$	$\frac{3.79}{3.93}$	$C_{17}H_{14}F_{3}NO_{3}S$	
<i>tt</i> -2b	36	104—105	<u>45.55</u> 45.55	<u>2.81</u> 2.92	$\frac{3.24}{3.12}$	$\mathrm{C}_{17}\mathrm{H}_{13}\mathrm{BrF}_{3}\mathrm{NO}_{3}\mathrm{S}$	
2c	100	143—145 (17 (<i>tt</i>), 1 (<i>tc</i>), 69 (<i>ct</i>), 13 (<i>cc</i>))	<u>49.66</u> 49.28	<u>3.22</u> 3.16	<u>6.75</u> 6.76	$C_{17}H_{13}F_3N_2O_5S$	
tc-2d	39	117—118	<u>48.60</u> 48.76	<u>3.41</u> 3.37	<u>3.28</u> 3.35	$C_{17}H_{14}Cl_3NO_3S$	
<i>tc</i> -2e	41	102-103	$\frac{41.10}{41.03}$	<u>2.68</u> 2.63	<u>2.83</u> 2.81	C ₁₇ H ₁₃ BrCl ₃ NO ₃ S	
<i>ct</i> - 2f	42	95—96	<u>46.24</u> 46.03	<u>3.82</u> 3.86	<u>3.85</u> 3.83	$C_{14}H_{14}F_3NO_5S$	
ct-2g	28	74—75	<u>37.89</u> 37.85	<u>2.71</u> 2.95	<u>3.27</u> 3.15	$C_{14}H_{13}BrF_3NO_5S$	
<i>ct</i> -2h	15	121-122	$\frac{41.17}{40.98}$	<u>3.22</u> 3.19	<u>6.78</u> 6.83	$C_{14}H_{13}F_3N_2O_7S$	
<i>ct</i> -2i	27	129—130	$\frac{40.58}{40.55}$	$\frac{3.26}{3.40}$	$\frac{3.30}{3.38}$	$C_{14}H_{14}Cl_3NO_5S$	
cc-2j	10	149—150	$\frac{34.04}{34.07}$	$\frac{2.68}{2.65}$	$\frac{2.75}{2.84}$	$C_{14}H_{13}BrCl_3NO_5S$	
<i>tt</i> -2k	15	87—88	<u>44.32</u> 44.58	<u>3.68</u> 3.74	<u>4.38</u> 4.33	$C_{12}H_{12}F_3NO_4S$	
21	29 (<i>tt</i>), 35 (<i>ct</i>)	90—92 (<i>tt</i>) 115—116 (<i>ct</i>)	<u>35.89</u> 35.84	<u>2.89</u> 2.76	<u>3.54</u> 3.48	$C_{12}H_{11}BrF_3NO_4S$	
2m	15	125—126 (22 (<i>tt</i>), 8 (<i>tc</i>), 67 (<i>ct</i>), 3 (<i>cc</i>))	<u>39.01</u> 39.14	<u>3.12</u> 3.01	<u>7.52</u> 7.61	$C_{12}H_{11}F_3N_2O_6S$	
<i>ct</i> -20	32	137—138	<u>32.08</u> 31.92	<u>2.45</u> 2.46	$\frac{3.07}{3.10}$	$C_{12}H_{13}BrCl_3NO_4S$	
tt-3a	63	151-152	<u>56.77</u> 56.81	<u>3.82</u> 3.87	<u>8.37</u> 8.28	$C_{16}H_{13}F_3N_2O_3$	
<i>tt</i> -3b	30	146—147	<u>57.74</u> 57.96	<u>4.21</u> 4.29	<u>7.95</u> 7.95	$C_{17}H_{15}F_3N_2O_3$	
tt-3c	47	127—128	<u>55.55</u> 55.44	<u>4.15</u> 4.11	<u>7.64</u> 7.61	$C_{17}H_{15}F_{3}N_{2}O_{4}$	
ct-3d	65	199—200	<u>49.94</u> 50.14	<u>3.09</u> 3.16	<u>10.84</u> 10.96	$C_{16}H_{12}F_3N_3O_5$	
ct-3e	70	201-202	<u>51.21</u> 51.39	<u>3.32</u> 3.55	<u>10.36</u> 10.58	$C_{17}H_{14}F_3N_3O_5$	

Table 5. Physicochemical properties and elemental composition of chromanes 2a-m, o and 3a-e

ture was solved by a direct method using the SHELXS-97 program.³⁵ Structural parameters were refined by the least-squares method in the full-matrix anisotropic approximation according to the SHELXL-97 program.³⁵ Parameters of H atoms were calculated in each refinement cycle by coordinates of the corresponding carbon atoms (riding model). The final refinement of the structure was performed for all F^2 to $wR_2 = 0.1220$, S = 1.030, and 226 parameters were refined (R = 0.0431 for 3547 $F > 4\sigma$). The number in the Cambridge Structure Database is 269115.

X-ray diffraction study of compound ct**-2f** was carried out on a Bruker P4 diffractometer (Mo-K α radiation, graphite monochromator). Triclinic crystal system, a = 9.1219(6) Å,

b = 10.0004(8) Å, c = 10.7195(8) Å, $\alpha = 67.597(6)^{\circ}$, $\beta = 65.697(6)^{\circ}$, $\gamma = 70.162(6)^{\circ}$, V = 804.4(1) Å³, space group $P\overline{1}$, Z = 2, $C_{14}H_{14}F_{3}NO_{5}S$, $d_{calc} = 1.508$ g cm⁻³. Intensities of 3335 reflections with $2\theta < 52^{\circ}$ were measured in the $\theta/2\theta$ scan mode, of which 3113 reflections were independent ($R_{int} = 0.013$). Absorption was applied by the empirical method from the psi-curves (transmission 0.875–0.901). The structure was solved by a direct method and refined by the leastsquares method in the anisotropic-isotropic (for H atoms) approximation using the SHELX-97 program package.³⁵ Positions of H atoms were calculated geometrically (riding model). The final values of the divergence factors are $wR_2 = 0.1167$, GOOF = 1.088 for all reflections, R = 0.0408 for $2614 I > 2\sigma(I)$. The number in the Cambridge Structure Database is 289242.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 04-03-32463).

References

- 1. G. P. Ellis, in *The Chemistry of Heterocyclic Compounds*, Ed. G. P. Ellis, Wiley, New York, 1977, **31**.
- W. S. Bowers, in *Comprehensive Insect Physiology, Biochemistry and Pharmacology*, Eds L. I. Gilbert and G. A. Kerkut, Pergamon Press, Oxford, 1985, 8, 551.
- 3. W. S. Bowers, T. Ohta, J. S. Cleere, and P. A. Marsella, *Science*, 1976, **193**, 542.
- 4. R. Bergmann and R. Gericke, J. Med. Chem., 1990, 33, 492.
- G. Burrell, F. Cassidy, J. M. Evans, D. Lightowler, and G. Stemp, J. Med. Chem., 1990, 33, 3023.
- 6. R. Gericke, J. Harting, I. Lues, and C. Schittenhelm, *J. Med. Chem.*, 1991, **34**, 3074.
- 7. A. E. Fenwick, Tetrahedron Lett., 1993, 34, 1815.
- 8. H. Koga, H. Sato, T. Ishizawa, N. Taka, and T. Takahashi, *Tetrahedron Lett.*, 1995, **36**, 87.
- 9. T. Takahashi, H. Koga, H. Sato, T. Ishizawa, N. Taka, and J. Imagawa, *Bioorg. Med. Chem.*, 1998, **6**, 323.
- T. A. Engler, J. P. Reddy, K. D. Combrink, and D. V. Velde, J. Org. Chem., 1990, 55, 1248.
- M. G. Murugesh, K. Subburaj, and G. K. Trivedi, *Tetrahedron*, 1996, **52**, 2217.
- 12. J. D. Hepworth and R. Livingstone, J. Chem. Soc. C, 1966, 2013.
- 13. G. Descotes and D. Missos, Synthesis, 1971, 149.
- 14. R. C. Jennings and A. P. Ottridge, J. Chem. Soc., Perkin Trans. 1, 1984, 1733.
- P. Anastasis and P. E. Brown, J. Chem. Soc., Perkin Trans. 1, 1982, 2013.
- 16. P. Anastasis and P. E. Brown, J. Chem. Soc., Perkin Trans. 1, 1983, 197.
- 17. J. Bujons, F. Camps, and A. Messeguer, *Tetrahedron Lett.*, 1990, **31**, 5235.

- 18. T. S. Rao, A. K. Singh, and G. K. Trivedi, *Heterocycles*, 1984, 22, 1377.
- R. P. K. Kodukulla, S. Hariharan, and G. K. Trivedi, *Tetrahedron*, 1994, **50**, 4623.
- 20. S. Hariharan, H. H. Mathur, and G. K. Trivedi, *Indian J. Chem.*, 1988, **27B**, 994.
- M. Nyerges, A. Virányi, G. Marth, A. Dancsó, G. Blaskó, and L. Töke, *Synlett*, 2004, 2761.
- N. Ono, N. Banshou, S. Ito, T. Murashima, and T. Ogawa, J. Heterocycl. Chem., 1997, 34, 1243.
- T. Shimizu, Y. Hayashi, K. Yamada, T. Nishio, and K. Teramura, Bull. Chem. Soc. Jpn, 1981, 54, 217.
- 24. S. Biswas, P. R. Maulik, R. C. Gupta, M. Seth, and A. P. Bhaduri, *Acta Crystallogr., Sect. C*, 1996, C52, 1036.
- 25. V. Yu. Korotaev, I. B. Kutyashev, and V. Ya. Sosnovskikh, *Heteroatom. Chem.*, 2005, **16**, 492.
- 26. V. Yu. Korotaev, V. Ya. Sosnovskikh, I. B. Kutyashev, and M. I. Kodess, *Lett. Org. Chem.*, 2005, 2, 616.
- 27. H. Hofmann and G. Salbeck, Chem. Ber., 1970, 103, 2768.
- 28. A. Arduini, A. Bosi, A. Pochini, and R. Ungaro, *Tetrahedron*, 1985, **41**, 3095.
- N. Ishizuka, K. Matsumura, K. Sakai, M. Fujimoto, S. Mihara, and T. Yamamori, *J. Med. Chem.*, 2002, 45, 2041.
- 30. A. Arduini, A. Pochini, and R. Ungaro, J. Chem. Soc., Perkin Trans. 1, 1986, 1391.
- 31. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, and R. Taylor, J. Chem. Soc., Perkin Trans 2, 1987, S1.
- 32. F. H. Allen and O. Kennard, *Chemical Design Automation News*, 1993, 8, 31 (Version 5.23).
- 33. R. S. Rowland and R. Taylor, J. Phys. Chem., 1996, 100, 7384.
- 34. M.-C. Yan, Y.-J. Jang, W.-Y. Kuo, Z. Tu, K.-H. Shen, T.-S. Cuo, C.-H. Ueng, and C.-F. Yao, *Heterocycles*, 2002, 57, 1033.
- G. M. Sheldrick, SHELX-97, Programs for Crystal Structure Determination and Refinement, University of Göttingen, Göttingen (Germany), 1997.

Received December 6, 2005; in revised form January 17, 2006