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Abstract
The literature suggests that probability weighting and choice set dependence influ-
ence risky choices. However, their relative importance remains an open question. 
We present a joint test that uses binary choices between lotteries provoking Com-
mon Consequence and Common Ratio Allais Paradoxes and manipulates their joint 
payoff distribution. We show non-parametrically that probability weighting and 
choice set dependence both play a role at describing aggregate choices. To parsimo-
niously account for heterogeneity, we also estimate a structural model using a finite 
mixture approach. The model uncovers substantial heterogeneity and classifies sub-
jects into three types: 38% Prospect Theory types whose choices are predominantly 
driven by probability weighting, 34% Salience Theory types whose choices are 
predominantly driven by choice set dependence, and 28% Expected Utility Theory 
types. The model predicts type-specific differences in the frequency of preference 
reversals out-of-sample, i.e., in choices with a different context than the ones used 
for estimating the model. Moreover, the out-of-sample predictions indicate that the 
choice context shapes the influence of choice set dependence.
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1 Introduction

The past decades of economic research on choice under risk have revealed systematic 
violations of expected utility theory (EUT; von Neumann & Morgenstern, 1953). As 
exposed in the famous Allais Paradoxes, subjects frequently violate EUT’s independ-
ence axiom as they exhibit both risk loving and risk averse behavior (Allais, 1953). 
For example, many individuals are risk loving when buying state lottery tickets and 
risk averse when buying damage insurance (Cicchetti & Dubin, 1994; Forrest et al., 
2002; Garrett & Sobel, 1999; Sydnor, 2010). Moreover, subjects often reverse their 
choice when they have to choose between two lotteries or evaluate them in isolation 
(Lichtenstein & Slovic, 1971; Lindman, 1971). Some of these preference reversals 
violate EUT’s transitivity axiom (Cox & Epstein, 1989; Loomes et al., 1991). These 
and other systematic violations of EUT have spurred the development of various 
alternative decision theories.

These alternative decision theories fit into two major classes. The first major class 
is based on probability weighting and postulates that subjects systematically over-
weight small probabilities and underweight large probabilites. The most prominent 
example is Prospect Theory (Kahneman &  Tversky, 1979), subsequently general-
ized to Cumulative Prospect Theory (CPT; Tversky & Kahneman,  1992). CPT is 
the best-fitting model for aggregate choices in this class (Starmer, 2000; Wakker, 
2010).1 According to CPT, subjects are risk loving when buying a state lottery ticket 
because they overweight the small probability of winning and, conversely, risk 
averse when buying damage insurance because they underweight the large probabil-
ity of not suffering any damage. However, CPT fails to explain preference reversals, 
since subjects always attach the same value to lotteries, regardless whether they have 
to choose among them or evaluate them in isolation.

The other major class of decision theories postulates that the evaluation of lotter-
ies is choice set dependent.2 Prominent members of this class are Salience Theory 
(ST; Bordalo et al., 2012b) and Regret Theory (RT; Loomes & Sugden, 1982).3 We 
focus on ST as the primary example of a choice set dependent theory because it is 
becoming the main contender to CPT (Dertwinkel-Kalt & Koster, 2020). Accord-
ing to ST, individuals focus their limited attention on states of the world with large 
payoff differences between the alternatives. Hence, a lottery’s value is choice set 
dependent as the weight attached to a state depends on the payoffs of the alternatives 
in that state. ST can also explain why individuals are often both risk loving and risk 
averse at the same time. They buy state lottery tickets because they overweight the 
state where they win the big prize due to the large payoff difference between buy-
ing the ticket and winning versus not buying the ticket; at the same time, they buy 

1 Another example in this class of decision theories is Rank Dependent Utility (RDU; Quiggin, 1982). In 
our paper, RDU and CPT formally coincide, as all our lotteries have non-negative payoffs.
2 Loomes and Sugden (1987) refer to the two major classes of decision theories as prospect-based and 
action-based theories, respectively.
3 Other examples of choice set dependent theories are by Rubinstein (1988); Aizpurua et  al. (1990); 
Leland (1994); and Loomes (2010).
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damage insurance, because they overweight the state in which the damage occurs 
due to the large payoff difference between being insured and uninsured in that 
particular state. In contrast to theories based on probability weighting, choice set 
dependent theories are able to describe preference reversals as they allow for viola-
tions of the transitivity axiom.

In this paper, we perform a joint test of the relative importance of probabil-
ity weighting and choice set dependence. This test is relevant in various applica-
tions. On the one hand, ST can naturally explain several behavioral phenomena in 
consumer choice – such as the endowment effect – (Bordalo et al., 2012a, 2013b; 
Dertwinkel-Kalt et al., 2017), the counter-cyclicality of risk premia on financial 
markets (Bordalo et  al., 2013a), and how legally irrelevant information affects 
judicial decisions (Bordalo et al., 2015). But on the other hand, and in contrast to 
CPT, ST can describe the Allais Paradox only in certain choice sets.

We conduct a laboratory experiment to perform the joint test. Subjects face a 
series of binary choices between lotteries provoking three versions of the Allais 
Paradox. To discriminate between the different decision theories, we manipulate the 
joint payoff distribution of the lotteries. That is, every subject faces the lotteries of 
each binary choice twice. In one case, the lotteries’ payoffs are independent of each 
other, while in the other, they depend on each other. This manipulation affects the 
joint payoff distribution of the lotteries but leaves their marginal payoff distributions 
unchanged. If risky choices are driven by probability weighting, the predicted fre-
quency of Allais Paradoxes is the same, as subjects evaluate each lottery in isolation 
and focus exclusively on its marginal payoff distribution. Hence, theories based on 
probability weighting, such as CPT, can explain the Allais Paradox regardless of 
whether lotteries’ payoffs are independent or dependent. However, if risky choices 
are driven by choice set dependence, the predicted frequency of Allais Paradoxes 
is positive with independent payoffs and zero with dependent payoffs. Thus, choice 
set dependent theories, such as ST, cannot explain Allais Paradoxes when payoffs 
depend on each other. We can also control for EUT preferences, as EUT can never 
explain the Allais Paradox.

To obtain our first main result, we analyze the importance of probability weight-
ing and choice set dependence non-parametrically at the aggregate level, i.e., at 
the level of a representative decision maker. At the aggregate level, both choice set 
dependence and probability weighting play a role. Probability weighting plays a 
role, because Allais Paradoxes occur regardless whether lotteries’ payoffs are inde-
pendent or dependent. However, choice set dependence plays a role too, because 
Allais Paradoxes occur more than twice as often when lotteries’ payoffs are inde-
pendent than when they are dependent. This result holds for all three versions of the 
Allais Paradox.

As a next step, we estimate a structural model which follows a finite mixture 
approach. That is, it assumes that there exist three types of subjects: CPT-types 
whose behavior is mostly driven by probability weighting, ST-types whose behavior 
is primarily driven by choice set dependence, and EUT-types. The model character-
izes each of these types by its relative size and average type-specific parameters. 
Moreover, it provides a classification of every subject into the type that best fits her 
choices. The finite mixture approach has three advantages. First, it allows us to take 
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heterogeneity in risk preferences parsimoniously into account (Bruhin et al., 2010; 
Conte et al., 2011), as it does not require estimating individual-specific parameters 
(Harless &  Camerer, 1994;  Hey &  Orme, 1994; Starmer, 2000). Second, it can 
inform us about the specification best suited for representing each major class of 
decision models. Third, it yields type-specific preference parameters which can be 
used to calibrate theoretical models and make quantitative predictions about behav-
ior across various choice contexts.

The structural model yields the second main result. It uncovers vast heterogeneity 
in subjects’ risk preferences and classifies them into 38% CPT-types, 34% ST-types, 
and 28% EUT-types. The result shows that probability weighting and choice set 
dependence both play a similarly important role in describing the non-EUT-types’ 
choices. It also highlights that the mix of types can be decisive for understanding 
and predicting aggregate behavior in applied contexts – such as consumer, investor, 
and judicial choice.

Finally, we use out-of-sample predictions to test the structural model’s power to 
predict behavior across choice contexts. This is a crucial test since one can only use 
a structural model to predict behavior across contexts if the estimated preferences 
are stable. To perform the out-of-sample predictions, we expose subjects to addi-
tional lotteries that may trigger preference reversals. Subjects always first choose 
between two of these additional lotteries and, later, evaluate each of them in isola-
tion. By analyzing the frequency of preference reversals in these additional lotteries, 
we can assess the model’s power to predict behavior in choices with a different con-
text than the ones we use for estimating the model.

The out-of-sample-predictions provide the third main result. The ST-types exhibit 
roughly 1.5 times more preference reversals than the CPT- and EUT-types, con-
firming that the ST-types’ choices are mostly driven by choice set dependence. The 
structural model also predicts quantitative differences in the average frequency of 
preference reversals accurately across the three types. Moreover, the predictions 
suggest that choice set dependence is stronger when subjects trade off a sure amount 
against a lottery than when they have to choose between two lotteries.

The paper contributes to the literature that tests the performance of the major classes 
of decision theories. This literature has tested probability weighting and choice set 
dependence separately and found support for both. On the one hand, there is considera-
ble evidence suggesting that risky choices depend on outcome probabilities irrespective 
of the choice set (for examples, see Camerer & Ho, 1994; Fehr-Duda & Epper, 2012; 
Kahneman & Tversky,  1979; Loomes &  Segal,  1994; Starmer,  2000). On the other 
hand, the literature also recognizes that risky choices depend on the choice set. Early 
studies, qualitatively testing the predictions of RT, find “juxtaposition effects”, i.e., 
that systematic manipulations of the lotteries’ joint payoff distribution that leave their 
marginal distributions unchanged can affect subjects’ choices (Battalio et  al., 1990; 
Harless, 1992; Loomes & Sugden, 1987; Loomes, 1988; Starmer & Sugden, 1989). 
More recent studies, testing ST with the same paradigm, confirm the role of choice set 
dependence in non-incentivized choices on Mturk (Bordalo et al., 2012b), in choices 
between a lottery and a sure amount (Booth & Nolen, 2012), and in choices varying the 
lotteries’ positive skewness (Dertwinkel-Kalt & Koster, 2020). The most closely related 
and complementary study to ours is by Frydman and Mormann (2018). They find that 
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the frequency of Allais Paradoxes varies with three levels of dependency between the 
lotteries’ payoffs and that the evaluation of lotteries changes if one adds an additional 
decoy lottery which subjects can see but not choose. They also estimate a structural 
model of ST separately for each subject and find that only half of their subjects exhibit 
ST’s local thinking. This suggests that there is substantial heterogeneity and the differ-
ent classes of decision theories should be tested jointly. Our paper contributes to this 
literature, as it is one of the first to perform such a joint test and assess the relative 
importance of probability weighting and choice set dependence in a heterogeneous 
population.4

The paper also contributes to the strand of literature that uses finite mixture mod-
els to classify subjects into types. This literature has focused mostly on discrimi-
nating EUT from non-EUT preferences in a single choice context (Bruhin et  al., 
2010; Conte et  al., 2011; Fehr-Duda et  al., 2010; Santos-Pinto et  al., 2015).5 Our 
second main result enhances this strand of literature by uncovering the relative 
importance of probability weighting and choice set dependence within the group of 
non-EUT subjects.

Finally, the paper performs out-of-sample predictions, allowing it to establish a 
link between the aforementioned papers about Allais Paradoxes and the literature on 
preference reversals (Cox & Epstein, 1989; Grether & Plott, 1979; Lichtenstein & 
Slovic, 1971; Lindman, 1971; Loomes et al., 1991; Pommerehne et al., 1982; Reilly, 
1982). The out-of-sample predictions confirm that both phenomena result from 
choice set dependence. Moreover, the paper shows that a parsimonious structural 
model has predictive power across different choice contexts – which is essential for 
modeling and predicting subjects’ behavior across different applications of choice 
under risk.

The paper has the following structure. Section 2 explains the strategy for discrim-
inating between the different decision theories. Section 3 introduces the experimen-
tal design. Section 4 presents the non-parametric results at the aggregate level, while 
Sect. 5 discusses the structural model, its results, and its power to predict preference 
reversals in a different choice context. Finally, Sect. 6 concludes.

2  Discriminating between decision theories

This section describes our empirical strategy for discriminating between EUT, prob-
ability weighting, and choice set dependence. We focus on the two most descrip-
tive behavioral theories, i.e., CPT representing probability weighting and ST 

4 A concurrent study by Königsheim et  al. (2019), uses finite mixture models to classify decisions 
instead of subjects. Despite this difference in methodology and the use of a substantially smaller set of 
lottery choices, this study also finds evidence for both CPT and ST, as well as a similar degree of local 
thinking in ST-decisions.
5 Harrison and Rutström (2009) also apply finite mixture models in order to distinguish EUT from non-
EUT behavior. However, they classify decisions instead of subjects. Other studies have also used finite 
mixture models to analyze strategic decision making in various domains (for examples see Bruhin et al., 
2019; El-Gamal & Grether, 1995; Fischbacher et al., 2013; Houser et al., 2004; Houser & Winter, 2004).
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representing choice set dependence. The empirical strategy (i) relies on a series of 
binary choices between lotteries that may trigger Common Consequence and Com-
mon Ratio Allais Paradoxes and (ii) manipulates the choice set by making the two 
lotteries’ payoffs either independent or dependent of each other.

We explain the empirical strategy with the following binary choice between lot-
teries X and Y, taken from Kahneman and Tversky (1979), which may trigger the 
Common Consequence Allais Paradox:6

Note that the two lotteries have a common consequence, i.e., a payoff z which occurs 
with probability p2 in both lotteries. In this example, the Common Consequence 
Allais Paradox refers to the robust empirical finding that if z = 2400 , most individu-
als prefer Y over X, whereas if z = 0 , most individuals prefer X over Y.

Next, we show that EUT can never describe the Allais Paradox, CPT can always 
describe it, and ST can only describe the Allais Paradox when the payoffs of the two 
lotteries are independent but not when they are dependent.

2.1  EUT

According to EUT, the decision maker evaluates any lottery L with non-negative 
payoffs x = (x1,… , xJ) and associated probabilities p = (p1,… , pJ) as:

where v is an increasing utility function over monetary payoffs with v(0) = 0.7 Note 
that the value VEUT (L) only depends on the attributes of lottery L and not on the 
attributes of the other lotteries in the choice set. EUT cannot explain the Common 
Consequence Allais Paradox since, when comparing the values of the two lotteries 
VEUT (X) and VEUT (Y) , the term involving the common consequence, p2 v(z) , cancels 
out. Hence, the decision maker’s choice between X and Y does not depend on the 
value of the common consequence z.

2.2  CPT

According to CPT, the decision maker ranks the non-negative monetary payoffs of 
any lottery L such that x1 ≥ … ≥ xJ and evaluates the lottery as:

(1)X =

⎧
⎪⎨⎪⎩

2500 p1 = 0.33

z p2 = 0.66

0 p3 = 0.01

vs. Y =

�
2400 p1 + p3 = 0.34

z p2 = 0.66
.

VEUT (L) =

J∑
j=1

pj v(xj) ,

7 This assumes that subjects are interested in lottery payoffs and not final wealth states.

6 The analogous example for the Common Ratio Allais Paradox can be found in Appendix A.
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where �j is the decision weight attached to the value of payoff xj . As in EUT, the 
value VCPT (L) only depends on the attributes of lottery L, i.e., the decision maker 
evaluates the lottery in isolation. The decision weights are given by:

where pk is payoff xk ’s probability and w is the probability weighting function. Typi-
cally, the probability weighting function in CPT exhibits three properties (Fehr-Duda 
& Epper, 2012; Kahneman & Tversky, 1979; Prelec, 1998; Wakker, 2010): 

1. Strictly increasing and satisfying w(0) = 0 and w(1) = 1 . This ensures that deci-
sion weights are non-negative and sum to one.

2. Inverse S-shape. The probability weighting function is concave for small probabili-
ties and convex for large probabilities. This property ensures the decision maker 
overweights small probabilities and underweights large probabilities. It is neces-
sary for CPT to be able to explain the Common Consequence Allais Paradox, as 
explained further below.

3. Subproportionality. For the probabilities 1 ≥ q > p > 0 and the scaling factor 
0 < 𝜆 < 1 , the inequality w(q)

w(p)
>

w(𝜆q)

w(𝜆p)
 holds. Subproportionality is needed for CPT 

to be able to explain the Common Ratio Allais Paradox, as shown in Appendix A.

We now explain how CPT can describe the Common Consequence Allais Paradox 
in the choice between lotteries X and Y. When z = 2400 , the choice is:

In this case, the decision maker tends to prefer Y over X. Due to the decision maker’s 
tendency to overestimate small probabilities and underestimate large probabilities, 
the decision weight attached to the lowest payoff of X, 1 − w(0.99) , is larger than its 
objective probability p3 = 0.01 , which renders X unattractive.

In contrast, when z = 0 , the choice is:

In this case, the decision maker tends to prefer X over Y. Now, the decision weights 
of the two lotteries’ highest payoffs, w(0.33) and w(0.34), are very close and, 

VCPT (L) =

J∑
j=1

�CPT
j

(p) v(xj) ,

�CPT
j

(p) =

⎧
⎪⎨⎪⎩

w(p1) − w(0) for j = 1

w
�∑j

k=1
pk

�
− w

�∑j−1

k=1
pk

�
for 2 ≤ j ≤ J − 1

w(1) − w
�∑J−1

k=1
pk

�
for j = J

,

X =

⎧⎪⎨⎪⎩

2500 p1 = 0.33

2400 p2 = 0.66

0 p3 = 0.01

vs. Y = 2400 .

X =

{
2500 p1 = 0.33

0 p2 + p3 = 0.67
vs. Y =

{
2400 p1 + p3 = 0.34

0 p2 = 0.66
.
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therefore, the decision is driven by the difference in utilities between v(2500) and 
v(2400) rather than the difference in probabilities.

In sum, CPT can always explain the Allais Paradox because the decision weights 
depend non-linearly on the marginal payoff distribution of the lottery under considera-
tion, which remains unchanged regardless whether the lotteries’ payoffs are independ-
ent or dependent.

2.3  ST

According to ST, cognitive limitations cause the decision maker to be a local thinker 
who focuses her attention on states of the world in which one payoff stands out relative 
to the payoffs of the alternative. The decision maker overweights these salient states 
relative to the others. As the salience of a state directly depends on the payoffs of the 
alternative, a lottery’s value is choice set dependent and – in contrast to EUT and CPT 
– lotteries are no longer evaluated in isolation.

Formally, if the decision maker has to choose between two lotteries L1 and L2 , she 
ranks each possible state s ∈ {1,… , S} according to its salience �(x1

s
, x2

s
) , where x1

s
 and 

x2
s
 are the payoffs of L1 and L2 , respectively, in state s. The salience function � satisfies 

four properties: 

1. Ordering. For two states s and s̃ , we have that if [xmin
s

, xmax
s

] is a subset of 
[xmin

s̃
, xmax

s̃
] , then 𝜎(x1

s̃
, x2

s̃
) > 𝜎(x1

s
, x2

s
) . Ordering implies that states with bigger 

differences in payoffs are more salient.
2. Diminishing Sensitivity. For any 𝜖 > 0 , 𝜎(x1

s
, x2

s
) > 𝜎(x1

s
+ 𝜖, x2

s
+ 𝜖) . Diminish-

ing sensitivity implies that, for states with a given difference in payoffs, salience 
diminishes the further away from zero the difference in payoffs is.

3. Symmetry: �(x1
s
, x2

s
) = �(x2

s
, x1

s
) . Symmetry implies that permutations of payoffs 

between lotteries leave the salience of a state unchanged.
4. Zero Contrast. For two states s and s̃ where x1

s
= x2

s
 and x1

s̃
≠ x2

s̃
 , 

𝜎(x1
s
, x2

s
) < 𝜎(x1

s̃
, x2

s̃
) . Zero contrast implies that if two lotteries offer the same 

payoff in a particular state, this state is the least salient.

The decision weight of each state s depends on the state’s salience-rank, rs ∈ {1,… , S} 
with lower values being associated with higher salience:

where ps is the probability that state s is realized, and 0 < 𝛿 ≤ 1 is the decision maker’s 
degree of local thinking. For � = 1 , the decision maker weights states by their objective 
probabilities, whereas, for 𝛿 < 1 , the decision maker is a local thinker and overweights 
salient states. This yields the following values for lotteries L1 and L2:

(2)�ST
s
(x1, x2) = ps

�rs∑
m∈S �

rm pm
,

VST (L1) =

S∑
s=1

�ST
s
(x1, x2) v(x1

s
)
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and

Note that the value of each lottery depends on both lotteries in the choice set {L1, L2}.
We now explain how ST can describe the Common Consequence Allais Paradox 

in the choice between lotteries X and Y when their payoffs are independent of each 
other. When z = 2400 , there are three states of the world which rank in salience as 
follows: 𝜎(0, 2400) > 𝜎(2500, 2400) > 𝜎(2400, 2400) . The decision maker prefers 
lottery Y over X if VST (Y) > VST (X) , where:

and

Using v(0) = 0 and the decision weights given by Eq. (2), the condition for prefer-
ring Y over X becomes:

Intuitively, lottery X provides the lowest payoff in the most salient state which makes 
lottery Y relatively attractive despite having a lower expected payoff. Hence, when 
the common consequence is z = 2400 and the degree of local thinking is severe 
enough, the decision maker prefers Y over X.

In contrast, when z = 0 , there are four states of the world which rank in sali-
ence as follows: 𝜎(2500, 0) > 𝜎(0, 2400) > 𝜎(2500, 2400) > 𝜎(0, 0) . The decision 
maker prefers lottery X over Y if VST (X) > VST (Y) , where:

and

Using v(0) = 0 and the decision weights given by Eq. (2), the decision maker prefers 
X over Y when:

VST (L2) =

S∑
s=1

�ST
s
(x1, x2) v(x2

s
) .

VST (Y) = v(2400) ,

VST (X) = �ST
2
(2500, 2400) v(2500)

+ �ST
3
(2400, 2400) v(2400)

+ �ST
1
(0, 2400) v(0) .

(3)𝛿 <
0.01

0.33

v(2400)

v(2500) − v(2400)
.

VST (X) =
[
�ST
1
(2500, 0) + �ST

3
(2500, 2400)

]
v(2500)

+
[
�ST
2
(0, 2400) + �ST

4
(0, 0)

]
v(0) ,

VST (Y) =
[
�ST
2
(0, 2400) + �ST

3
(2500, 2400)

]
v(2400)

+
[
�ST
1
(2500, 0) + �ST

4
(0, 0)

]
v(0) .
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Now, lottery X provides the highest payoff in the most salient state. Hence, when the 
common consequence is z = 0 and the degree of local thinking is severe enough, the 
decision maker prefers X over Y.

We now turn to the case in which the two lotteries’ payoffs are dependent of 
each other. In that case, ST can no longer describe the Common Consequence 
Allais Paradox. When the two lotteries’ payoffs are dependent of each other, 
there are just the following three states of the world:

The ranking in terms of salience of these three states, 𝜎(0, 2400) > 𝜎(2500,

2400) > 𝜎(z, z) , is independent of the common consequence z. Hence, regard-
less of the common consequence, the decision maker tends to prefer Y over X, 
and the Common Consequence Allais Paradox can no longer be described by ST 
when the lotteries’ payoffs are dependent of each other.

In sum, ST can explain the Allais Paradox only when the lotteries’ payoffs are 
independent but not when they are dependent of each other. This is because deci-
sion weights depend on the joint payoff distribution of the two lotteries in the choice 
set, which changes when we manipulate the lotteries’ joint payoff distribution.

2.4  Empirical strategy

Table 1 summarizes the empirical strategy to discriminate between EUT, probability 
weighting, and choice set dependence. EUT can never explain the Allais Paradox. In 
contrast, probability weighting – represented by CPT – can explain the Allais paradox 
regardless whether the lotteries’ payoffs are independent or dependent. Finally, choice 
set dependence – represented by ST – can explain the Allais paradox only when the 
lotteries’ payoffs are independent but not when they are dependent of each other.

(4)
(0.33) (0.66) v(2500) − 𝛿 (0.67) (0.34) v(2400)

+𝛿2 (0.33) (0.34) [v(2500) − v(2400)] > 0 .

Table 1  When can the Allais Paradox occur?



149

1 3

Journal of Risk and Uncertainty (2022) 65:139–184 

3  Experimental design

This section presents the experimental design which consists of two parts. In the main 
part, subjects make choices that may trigger three versions of the Allais Paradox: the 
classical and a generalized version of the Common Consequence Allais Paradox as 
well as the Common Ratio Allais Paradox. Based on these choices, we discriminate 
between EUT, probability weighting, as well as choice set dependence, and classify 
subjects into EUT-, CPT-, and ST-types, respectively. In the additional part, subjects 
make choices that could lead to preference reversals which allow us to validate our 
results in a different choice context.

3.1  Main part

We now present the main part of the experiment. First, we explain how we construct 
the series of binary choices. Subsequently, we describe the two formats which we use 
to present the binary choices to the subjects.

3.1.1  Choices between lotteries

Every subject goes through two blocks of binary choices between lotteries that may 
trigger the Allais Paradoxes. Both blocks feature the same lotteries, except that in one 
block the lotteries’ payoffs are independent while in the other they are dependent.

The binary choices within each block feature lotteries that vary systematically in 
payoffs and probabilities. This systematic variation not only allows us to estimate the 
parameters of each decision theory in the structural model but also ensures that our 
results are not driven by a particular set of lotteries. To avoid order effects, we rand-
omize (i) the order of the binary choices within each of the two blocks across subjects 
and (ii) counterbalance the order of the two blocks across subjects.

The binary choices that may trigger the classical and the generalized version of the 
Common Consequence Allais Paradox are based on a 3 × 3 × 2 design. The design 
uses the following three different payoff levels:

Payoff Level 1: X =

⎧
⎪⎨⎪⎩

2500 p1
z p2
0 p3

vs. Y =

�
2400 p1 + p3

z p2

Payoff Level 2: X =

⎧⎪⎨⎪⎩

5000 p1
z p2
0 p3

vs. Y =

�
4800 p1 + p3

z p2

Payoff Level 3: X =

⎧
⎪⎨⎪⎩

3000 p1
z p2

500 p3

vs. Y =

�
2600 p1 + p3

z p2

.
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Varying the payoffs across these three levels while keeping probabilities constant 
identifies the curvature of the utility function, v. Similarly, the design features three 
different probability distributions, p = (p1, p2, p3) , over the lotteries’ payoffs:

Varying the probability distributions while keeping the lotteries’ payoffs constant 
identifies the shape of probability weighting function, w, in CPT and the degree of 
local thinking, � , in ST. Finally, the design uses the following levels of the com-
mon consequence, z, to trigger the two versions of the Common Consequence Allais 
Paradox: 

1. z = x3 , i.e., the common consequence is equal to the lowest payoff of lottery X. 
In this case, lotteries X and Y offer two payoffs each.

2. z = y1 , i.e., the common consequence is equal to the first payoff of lottery Y. In 
this case, lottery X offers three payoffs and lottery Y is a sure amount.

3. z is different from any other payoff of the two lotteries and slightly below the first 
payoff of lottery Y.8 In this case, lottery X offers three payoffs and lottery Y offers 
two payoffs.

The first two levels of the common consequence, 1 and 2a, trigger the classical ver-
sion of the Common Consequence Allais Paradox, as described in the previous sec-
tion. The first and the third levels, 1 and 2b, trigger a generalized version of the 
Common Consequence Allais Paradox. The advantage of this generalized version is 
that the lottery Y does not degenerate into a sure amount which could lead to a spe-
cific certainty effect. However, the disadvantage of this generalized version is that, 
if lottery payoffs are independent, subjects have to consider 2 × 3 = 6 possible states 
of the world resulting in higher cognitive load.

To expose subjects to an even broader variety of decision situations, the design 
also includes binary choices that may trigger the Common Ratio Allais Paradox. 
These choices are based on a similar 3 × 3 × 2 design, as shown in Appendix B. To 
provoke the Common Ratio Allais Paradox, the design scales down probability lev-
els but keeps the lotteries’ payoffs unchanged. Moreover, as before, it manipulates 
the lotteries’ joint payoff distribution to discriminate between the different classes 
of decision theories. While CPT can describe the Common Ratio Allais Paradox 
regardless of the lotteries’ joint payoff distribution, ST can describe it only when 
payoffs are independent but not when they are dependent (see Appendix A for 
details). The mechanism in ST works as follows: when payoffs are independent, the 
decision maker’s evaluation of the lotteries depends on the salience of the states as 
well as their objective probabilities. However, when payoffs are dependent, her eval-
uation no longer depends on the objective probabilities. This mechanism is arguably 

Probability Distribution 1: p = (0.33, 0.66, 0.01)

Probability Distribution 2: p = (0.30, 0.65, 0.05)

Probability Distribution 3: p = (0.25, 0.60, 0.15).

8 For Payoff Level 1: z = 2000 ; for Payoff Level 2: z = 4000 ; for Payoff Level 3: z = 2000.
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more subtle than the one behind the Common Consequence Allais Paradox, as the 
lotteries’ payoffs in each binary choice remain unchanged.

3.1.2  Presentation format

We present the binary choices between lotteries in two formats, the “canonical pres-
entation” and the “states of the world presentation”, exposing half of the subjects to 
either of them. The two formats differ in the way they present the choices between 
lotteries with independent payoffs to the subjects. In the canonical presentation, as 
shown by the screenshot in Panel (a) of Fig. 1, the lotteries X and Y are presented 
side by side as separate lotteries with independent payoff distributions. In the states 
of the world presentation, as shown by the screenshot in Panel (b) of Fig. 1, the lot-
teries are presented in a table displaying their joint payoff distribution. For choices 
between lotteries with dependent payoffs, the two presentation formats are identical 
and display the lotteries’ joint payoff distribution.

The two presentation formats have distinct advantages and disadvantages. The 
main advantages of the canonical presentation are that it emphasizes the difference 
between lotteries with independent vs. dependent payoffs and that subjects are prob-
ably more used to the canonical presentation of lotteries with independent payoffs. 
However, the main disadvantage of the canonical presentation is that between the 
two blocks not only the lotteries’ joint payoff distribution changes but also their vis-
ual presentation. In contrast, the states of the world presentation keeps the visual 
presentation constant across the two blocks, but presents lotteries with independ-
ent payoffs in an unfamiliar way. Ideally, our results should remain valid under both 
presentation formats.

3.2  Additional part

To validate the classification of subjects into types in a different choice context, we 
perform out-of-sample predictions about the frequency of preference reversals. To 
trigger preference reversals we first expose subjects to six binary choices between 
additional lotteries and, subsequently, let them evaluate these lotteries in isolation by 
stating their certainty equivalent. We added the six binary choices to the main part 
of the experiment but used these choices neither for estimating the subject’s prefer-
ences nor for classifying them into types.

Each of the six binary choices consists of a relatively safe lottery X̃ with a low 
payoff-variance and a more risky lottery Ỹ  with high payoff-variance. The two lot-
teries have the following format:

with a scaling factor t ∈ {2, 4, 16} . All six binary choices can be found in  
Appendix C. As Bordalo et al. (2012b) discuss in detail, subjects tend to prefer  
the relatively safe lottery X̃ over the risky lottery Ỹ  in a pairwise choice but,  

X̃ =

{
x p

0 1 − p
vs. Ỹ =

{
tx p∕t

0 1 − p∕t
,
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at the same time, indicate a higher certainty equivalent for Ỹ  than for X̃ when 
evaluating the lotteries in isolation. Bordalo et  al. (2012b) also explain that ST 
can describe these so called preference reversals due to the change in the choice 

Fig. 1  Presentation of a lottery with independent payoffs (translated from French)
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set while EUT and CPT can never describe them.9 Section  2 of the Online 
Appendix derives for each of the six binary choices the conditions under which 
ST describes a preference reversal.

To elicit the certainty equivalents in the additional part of the experiment, we 
present each of the lotteries L̃ ∈ {X̃, Ỹ} in a choice menu in which the subject has 
to indicate whether she prefers the lottery or a certain payoff zr . Figure  2 shows 
an example fo such a choice menu. The certain payoff increases from the lottery’s 
lowest payoff, z1 = 0 , to its highest payoff z21 in 21 equal increments. The point 
where the subject switches from preferring the certain payoff to preferring the lot-
tery allows us to approximate the certainty equivalent by CE(L̃k) = (zk + zk+1)∕2 for 
k ∈ {1,… , 20}.10

We randomize the order in which we elicit the certainty equivalents of the addi-
tional lotteries across subjects. Moreover, since the six binary choices between the 

Fig. 2  Elicitation of certainty equivalents in the additional part of the experiment. This screenshot shows 
an example of the choice menu we used for eliciting the subjects’ certainty equivalents, when they had to 
evaluate lotteries in isolation during the additional part of the experiment. The example is translated from 
French. Payoff are reported in points with 100 points corresponding to 1 Swiss Franc or 1.04 USD

9 When subjects consider lotteries with non-negative payoffs and derive utility from lottery payoffs 
rather than absolute wealth levels, then the reference point is equal to zero (Tversky & Kahneman, 1992). 
In this case, CPT cannot explain preference reversals. However, an extended version of CPT assuming an 
endogenous reference point can generate preference reversals (Schmidt et al., 2008).
10 We did not impose a unique switch-point. 34 of 283 subjects (12.0%) switched more than once and, 
thus, did not reveal a unique certainty equivalent for at least one lottery. We dropped these subject from 
the out-of-sample analysis shown in Sect. 5.4. However, exhibiting more than one switch-point is inde-
pendent of these subjects’ type-membership ( �2-test of independence: p-value = 0.534).
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additional lotteries appear in the main part of the experiment, subjects should not 
recall the additional lotteries when stating their certainty equivalents.11

By comparing the binary choices between the additional lotteries and their cer-
tainty equivalents, we can detect the number of preference reversals of each subject. 
Since there are six binary choices, each subject can exhibit between 0 and 6 prefer-
ence reversals.

3.3  Number of choices

Subjects in the canonical presentation go through a total of 93 binary choices, while 
subjects in the states of the world presentation go through 84 binary choices. The 
number of binary choices differs between the presentation formats since the 9 binary 
choices designed for triggering the Common Consequence Allais Paradox in which 
lottery X has three payoffs and lottery Y is a sure amount look identical regardless 
whether the lotteries’ payoffs are independent or dependent. Table 4 in Appendix D 
decomposes the number of choices in each presentation format. Regardless of the 
presentation format, each subject also evaluates 9 lotteries in isolation during the 
additional part of the experiment.

3.4  Implementation in the lab and incentives

We conducted the experiment in the computer lab at the University of Lausanne 
(LABEX) using an application based on PHP and MySQL. Most subjects were stu-
dents of the University of Lausanne and the École Polytechnique Fédérale de Lausanne 
(EPFL), recruited via ORSEE (Greiner, 2015). The experiment consisted of 14 sessions 
with 283 subjects in total.

To incentivize subjects’ choices in both parts of the experiment, we applied the 
prior incentive system (Johnson et  al., 2021). This avoids violations of isolation, 
which may otherwise arise with a random incentive system, as pointed out by Holt 
(1986). In each part, every subject had to draw a sealed envelope from an urn before 
making any choices. The envelope contained one of the choices the subject was 
going to make in that part and which later was used for payment. At the very end of 
the experiment, the subject went to another room where she opened the envelopes 
together with an assistant. To determine her payment, which she received in cash at 
the end, she rolled two dice if the choice in the corresponding envelope involved two 

11 One way to analyze whether subjects recall some of the choices from the main part of the experi-
ment is to exploit their random order. In particular, we can check whether inconsistencies between the 
binary choices in the main part and the corresponding choices implied by the certainty equivalents in the 
additional part are less frequent when the two types of choices are close to each other and, thus, easier to 
recall. When performing this check, we find no significant correlation between the choice inconsistencies 
and the order in which the pairwise choices appeared during the main part (t-test: p-value = 0.215). Thus, 
there is no evidence that subjects recall the choices from the main part.
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lotteries with independent payoffs and only one die if the choice involved two lotter-
ies with dependent payoffs.

At the beginning of the experiment, subjects received general instructions inform-
ing them about the structure of the experiment, their anonymity, the show up fee, 
and the conversion rate of points into Swiss Francs.12 At the beginning of each part, 
subjects received additional printed instructions. These additional instructions com-
prised a description of the choices and the payment procedure for that part. They 
carefully described the difference between lotteries with independent and depend-
ent payoffs. They also explained that, at the end of the experiment, the subject will 
open the envelope to determine her payoff and roll one one or two dice, depending 
on whether the lotteries’ payoffs in the payment relevant choice are independent or 
dependent. The instructions also contained several comprehension questions whose 
answers the assistants verified before subjects could begin. The additional instruc-
tions differed depending on whether a subject was exposed to the canonical presen-
tation or the states of the world presentation. All instructions were written in French. 
English translations are available in Sect. 8 of the Online Appendix.

After making their choices, but before determining and receiving their payments, 
subjects filled in a demographic questionnaire, completed a short version of the Big 
5 personality questionnaire, and a cognitive ability test with 12 questions based on 
Raven’s matrices. The instructions were shown on screen at the beginning of each 
task. The cognitive ability test was also incentivized and subjects received 50 points 
per correct answer.13

Each subject received a show-up fee of 10 Swiss Francs. Total earnings varied 
between 12.00 and 142.50 Swiss Francs with a mean of 57.66 and a standard devia-
tion of 26.39 Swiss Francs. Each session lasted approximately 90 minutes.

4  Non‑parametric results

In this section, we present the non-parametric results. We start by summarizing the 
systematic patterns in the frequency of Allais Paradoxes before discussing whether 
they can be described by EUT, CPT, and ST.

Figure 3 shows the average frequency of Allais Paradoxes relative to their maxi-
mum possible number separately for lotteries with independent and dependent pay-
offs. Panel (a) exhibits the frequency of Allais Paradoxes in the expected direction, 
that is, the direction predicted by CPT and ST. Regardless of the presentation for-
mat, Allais Paradoxes in the expected direction occur often with both independent 
and dependent payoffs. However, they are substantially more frequent with inde-
pendent payoffs than with dependent payoffs. For example, for both presentation 

12 Payoffs were shown in points. 100 points corresponded to one Swiss Franc. At the time of the experi-
ment, one Swiss Franc corresponded to roughly 1.04 USD.
13 We find that the classification of subjects into types is neither related to their individual characteristics 
nor to their average decision time. Results and a brief discussion of this finding are available in Sect. 3 of 
the Online Appendix.
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formats combined, the frequency of Allais Paradoxes in the expected direction is 
28.3% with independent payoffs and 16.9% with dependent payoffs.

Panel (b) exhibits the frequency of Allais Paradoxes in the inverse direction, that 
is, the direction none of the theories can explain. Regardless of the presentation 
format, Allais Paradoxes in the inverse direction not only are much less frequent 
than those in the expected direction but also occur with the same frequency across 

Fig. 3  Relative frequency of Allais Paradoxes. The figure shows the average frequency of Allais Paradoxes 
relative to their maximum possible number for lotteries with independent and dependent payoffs. Panel (a) 
depicts the relative frequency of Allais Paradoxes in the expected direction. Panel (b) shows the relative 
frequency of Allais Paradoxes in the inverse direction and reflects noise. Panel (c) shows the difference 
between the relative frequencies of Allais Paradoxes in the expected and inverse directions, i.e., net of noise. 
The two bars on the left pool the choices from subjects exposed to the canonical presentation with those 
from subjects exposed to the states of the world presentation. The two bars in the middle and on the right 
separate the choices by presentation format
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independent and dependent payoffs.14 Given that neither theory can describe these 
Allais Paradoxes in the inverse direction and given that their frequency is constant 
across presentation formats as well as across independent and dependent payoffs, we 
interpret them as the result of decision noise. This interpretation is in line with the 
literature which acknowledges the existence and relevance of decision noise (e.g. 
Hey, 2005).

Panel (c) exhibits the difference in the relative frequency of Allais Paradoxes in 
the expected and in the inverse directions. Under the assumption that the level of 
decision noise is the same in both directions, we can interpret this difference as the 
frequency of Allais Paradoxes net of decision noise. These net frequencies confirm 
that, regardless of the presentation format, Allais Paradoxes occur often and are 
more than twice as frequent with independent than with dependent payoffs. More 
specifically, the ratio of Allais Paradoxes between independent and dependent pay-
offs is 2.127 for both presentation formats combined, 2.755 for the canonical presen-
tation, and 1.648 for the states of the world presentation.

We now discuss which of the three theories is able to describe the above pat-
terns. EUT fails to describe the patterns as it never predicts any Allais Paradoxes 
and, thus, their net frequencies should always be zero. CPT and ST can each 
describe some but not all of the above patterns. While CPT can describe the occur-
rence of Allais Paradoxes for both independent and dependent payoffs, it cannot 
describe that their net frequency is higher with independent payoffs than with 
dependent payoffs. In contrast, ST can describe that Allais Paradoxes are more fre-
quent with independent payoffs than with dependent payoffs. However, it cannot 
describe the occurrence of Allais Paradoxes with dependent payoffs. In sum, none 
of the three theories alone can explain all of the above patterns in the aggregate 
frequency of Allais Paradoxes. However, CPT and ST each describe some of the 
patterns and, thus, both of them play a role. This non-parametric evidence yields 
our first main result.

Result 1 Probability weighting and choice set dependence both play a role in 
explaining aggregate choices. 

1. Subjects exhibit a high frequency of Allais Paradoxes no matter if payoffs are 
independent or dependent.

2. However, subjects exhibit a higher frequency of Allais Paradoxes with independ-
ent than with dependent payoffs.

3. The result is robust across the three versions of the Allais Paradox and the two 
presentation formats.

14 These frequencies are close to those found by Huck and Müller (2012) who analyzed the frequency of 
Allais Paradoxes both in the lab and in a representative sample of the Dutch population. In the lab, they 
found the frequency of Allais Paradoxes to be 13.0% in the expected direction and 2.7% in the inverse 
direction. In the Dutch population, the frequencies are 21.7% in the expected and 9% in the inverse direc-
tion.
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Figure 4 illustrates that Result 1 holds across all three versions of the Allais Paradox. 
The bars on the left and in the middle show the net frequency of the classical version 
and the general version of the Common Consequence Allais Paradox, respectively (see 
Sect. 3.1.1 for details). The bars on the right show the net frequency of the Common 
Ratio Allais Paradox. Allais Paradoxes occur often and are more frequent with independ-
ent than with dependent payoffs. However, the difference in the net frequencies between 
independent and dependent payoffs is less pronounced for the Common Ratio than for 
the Common Consequence Allais Paradox. This is probably because the mechanism in 
ST behind the Common Ratio Allais Paradox is more subtle than the one behind the 
Common Consequence Allais Paradox, as mentioned earlier in Sect. 3.1.1.15

Result 1 is also robust across the two presentation formats. This robustness allows 
us to addresses two concerns about the relevance of choice set dependence.

First, it confirms the results by Loomes and Sugden (1987), Loomes (1988), and 
Starmer and Sugden (1989) who found juxtaposition effects in common ratio lot-
tery choices using the states of the world presentation format. It also rules out the 
concern that by making the common consequence more obvious, the states of the 
world presentation influences the frequency of Allais Paradoxes (Birnbaum, 2004; 
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Fig. 4  Net frequency of each version of the Allais Paradox. The figure shows the net frequency of 
each of the three different versions of the Allais Paradox, separately for lotteries with independent and 
dependent payoffs. The two bars on the left show the net frequency of the classical version of the Com-
mon Consequence Allais Paradox (see Sect. 3.1.1, level of the common consequence: 1 vs. 2a). The two 
bars in the middle show the net frequency of the general version of the Common Consequence Allais 
Paradox (see Sect. 3.1.1, level of the common consequence: 1 vs. 2b). The two bars on the right show the 
net frequency of the Common Ratio Allais Paradox. Net frequency of Allais Paradoxes refers to the dif-
ference in the relative frequency of Allais Paradoxes in the expected and the inverse directions. Choices 
from both presentation formats are pooled together

15 Table  7 in Appendix F presents an even more detailed look at the frequency of choices of lotteries 
X and Y, disaggregated by independent and dependent payoffs as well as by each version of the Allais 
Paradox. As explained in Sect. 2, opting for Y in the first choice and for X in the second corresponds to the 
expected direction of the Allais Paradox.
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Birnbaum et al., 2017; Keller, 1985; Leland, 2010) or decision times (for details, see 
Appendix A).

Second, the robustness across presentation formats confirms that manipulating 
the lotteries’ joint payoff distribution affects the frequency of Allais Paradoxes pri-
marily through choice set dependence and not through event-splitting effects. An 
event-splitting occurs when an event with a given payoff is split into sub-events that 
offer the event’s payoff in multiple states of the world. Earlier papers raised the con-
cern that event-splitting could influence subjects’ choices if splitting an event into 
sub-events increases its weight (Humphrey, 1995; Starmer & Sugden, 1993). If such 
event-splitting effects played a role in our data, their strength would depend on the 
presentation format: they would be stronger in the states of the world presentation 
where the number of sub-states in which a payoff appears is particularly prominent. 
However, our first main result holds across the two presentation formats in our data. 
Thus, we conclude that event-splitting effects play no significant role in our results 
(for details, see Appendix E.2).

Next, we analyze the distribution of the net frequency of Allais Paradoxes to get 
a first glimpse at the potential heterogeneity that may be behind Result 1. Figure 5 
depicts the corresponding histograms separately for lotteries with independent and 
dependent payoffs. Not surprisingly, the distribution for lotteries with independent 
payoffs is located to the right of the distribution for lotteries with dependent payoffs. 
However, interestingly, both distributions appear to be bimodal. They both exhibit 
one mode at the lowest bin, corresponding to a net frequency of Allais Paradoxes 
between 0 and 5%, and another mode at a bin corresponding to a higher net fre-
quency. This multimodality suggests that Result 1 may be driven by considerable 
heterogeneity in subjects’ risk preferences. In particular, the choices of some sub-
jects may be predominantly influenced by probability weighting whereas the choices 
of others may be primarily driven by choice set dependence. There may also exist a 
minority of EUT-subjects who display no or only few Allais Paradoxes. We examine 
this possibility with the structural model which we present in the next section.
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Fig. 5  Distribution of the net frequency of Allais Paradoxes. The histograms show the distribution of  
the net frequency of Allais Paradoxes for independent and dependent lottery payoffs. Net frequency of 
Allais Paradoxes refers to the difference in the relative frequencies of Allais Paradoxes in the expected 
and the inverse directions. Choices from both presentation formats are pooled together
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5  Structural model

In this section, we discuss the set-up and the results of the structural model. We 
also validate the model’s power to predict preference reversals in a different choice 
context.

5.1  Set‑up

The structural model is based on a finite mixture model (see McLachlan & 
Peel, 2000, for an overview) and uses a random utility approach for discrete choices 
(McFadden, 1981). It discriminates between subjects whose preferences are best 
described by EUT, subjects whose preferences display probability weighting and are 
best described by CPT, and subjects whose preferences display choice set depend-
ence and are best described by ST. Controlling for the presence of EUT subjects is 
important, as the behavior of a minority of our subjects may still be best described 
by EUT, as previously found by other studies (Bruhin et  al., 2010; Conte et  al., 
2011).

5.1.1  Random utility approach

The random utility approach allows the structural model to explicitly take decision 
noise into account. Consider a subject i ∈ {1,… ,N} whose preferences are best 
described by decision model M in the set of decision models M = {EUT ,CPT , ST} . 
She prefers lottery Xg over Yg in binary choice g ∈ {1,… ,G} when the random  
utility of choosing Xg , VM(Xg, �M) + �X , is higher than the random utility of choos-
ing Yg , VM(Yg, �M) + �Y . The random errors, �X and �Y , are realizations of an  
extreme value 1 distribution with scale parameter 1∕�M , and the vector �M com-
prises decision model M’s preference parameters. This implies that the probability  
of subject i choosing Xg , i.e., Cig = X , is given by:

The parameter �M governs the choice sensitivity with respect to differences in 
the lotteries’ deterministic value. If �M is 0, the subject chooses each lottery with 
probability 50% regardless of the deterministic value it provides. If �M is arbitrar-
ily large, the probability of choosing the lottery with the higher deterministic value 
approaches 1.

Subject i’s contribution to the density function of the random utility model cor-
responds to the product of the choice probabilities over all G binary decisions, i.e.,

(5)

Pr(Cig = X; �M , �M) = Pr[VM(Xg, �M) − VM(Yg, �M) ≥ �Y − �X]

=
exp[�M VM(Xg, �M)]

exp[�M VM(Xg, �M)] + exp[�M VM(Yg, �M)]
.
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where I(Cig = X) is 1 if subject i chooses lottery Xg and 0 otherwise.

5.1.2  Finite mixture model

Since risk preferences may be heterogeneous, we do not directly observe which 
model best describes subject i’s preferences. In other words, we do not know ex-ante 
whether subject i is an EUT-, CPT-, or ST-type. Hence, we have to weight i’s type-
specific density contributions by the corresponding ex-ante probabilities of type-
membership, �M , in order to obtain her contribution to the likelihood of the finite 
mixture model:

where the vector Ψ = (�EUT , �CPT , �ST , �EUT , �CPT , �ST ,�EUT ,�CPT ) comprises all 
parameters that need to be estimated, and �ST = 1 − �EUT − �CPT.16 Note that the 
ex-ante probabilities of type-membership are the same across all subjects and cor-
respond to the relative sizes of the types in the population.

Once we estimated the parameters of the finite mixture model, we can classify 
each subject into the type she most likely belongs to, given her choices and the esti-
mated parameters Ψ̂ . To do so, we apply Bayes’ rule and obtain subject i’s individ-
ual ex-post probabilities of type-membership:

Based on these individual ex-post probabilities of type-membership, we can also 
assess the ambiguity in the classification of subjects into types. If the finite mixture 
model classifies subjects cleanly into types, most �iM should be either close to 0 or to 
1. In contrast, if the finite mixture model fails to come up with a clean classification 
of subjects into distinct types, many �iM will be in the vicinity of 1/3.

fM(Ci;�M , �M) =

G∏
g=1

Pr(Cig = X; �M , �M)
I(Cig=X)

Pr(Cig = Y; �M , �M)
1−I(Cig=X) ,

(6)
�(Ψ;Ci) = �EUT fEUT (Ci; �EUT , �EUT )

+ �CPT fCPT (Ci; �CPT , �CPT )

+ �ST fST (Ci; �ST , �ST ) ,

(7)𝜏iM =
�̂�M fM(Ci; �̂�M , �̂�M)∑

m∈M �̂�m fm(Ci; �̂�m, �̂�m)
.

16 Since i’s likelihood contribution is highly non-linear, we apply the expectation maximization (EM) 
algorithm to obtain the model’s maximum likelihood estimates Ψ̂ (Dempster et al., 1977). The EM algo-
rithm proceeds iteratively in two steps: In the E-step, it computes the individual ex-post probabilities 
of type-membership given the actual fit of the model (see equation (7)). In the subsequent M-step, it 
updates the fit of the model by using the previously computed ex-post probabilities to maximize each 
types’ log likelihood contribution separately. To ensure that we find the global maximum of the log like-
lihood function despite the EM algorithm’s property to converge towards the nearest maximum, we apply 
it over a large grid of start values.
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5.1.3  Specification of functional forms

To keep the model parsimonious and yet flexible in fitting the data, we specify the 
following functional forms. In all three decision models, we use a power specifica-
tion for the utility function v, i.e.,

which has a convenient interpretation, since � measures v’s concavity. Specifying 
the same utility function across all three models puts them on equal footing regard-
ing their flexibility to encompass potential non-linearities in utility. Moreover, this 
specification turned out to be a neat compromise between parsimony and goodness 
of fit (Stott, 2006). In CPT, we follow the proposal by Prelec (1998) and specify the 
probability weighting function as:

where 0 < 𝛼 measures likelihood sensitivity and reflects the shape of the probability 
weighting function. When � = 1 , w is linear in probabilities. When � gets closer to 
zero, w becomes more inversely S-shaped. When � gets larger than one, w becomes 
more S-shaped. This specification of the probability weighting function satisfies the 
three properties discussed in Sect. 2.2. We also tested the two-parameter version of 
Prelec’s probability weighting function. However, as the second parameter measur-
ing the function’s net index of convexity is estimated to be almost 1, results remain 
virtually unchanged (see Appendix G). Hence, we opt for the one-parameter version 
to keep the total number of parameters the same for CPT and ST. In ST, the decision 
weights depend on the degree of local thinking 0 < 𝛿 ≤ 1 which we estimate based 
on the functional form given in Eq. (2). In all binary choices we use for triggering 
Allais Paradoxes, the salience ranking of the states of the world is fully determined 
by ordering, diminishing sensitivity, symmetry, and zero contrast (Sect.  1 of the 
Online Appendix shows this for every binary choice we use). Hence, we do not need 
to specify a particular salience function.

5.2  Monte Carlo simulations

5.2.1  Parameter recovery and discriminatory power

We conduct a series of Monte Carlo Simulations to assess the structural model’s 
power to recover a wide range of parameters and discriminate between the three 
preference types. The Monte Carlo Simulations also allow us to test the structural 
model’s robustness against potential serial correlation in the subjects’ errors. In 
these simulations, we impose a vector of true parameters which we use to simulate 
the subjects’ choices in each type. Subsequently, we try to recover these true param-
eters and the subjects’ individual type-membership by estimating the structural 
model on the simulated choices. This allows us to calculate the potential bias in the 

v(x) =

{
x1−�

1−�
for � ≠ 1

ln x for � = 1
,

w(p) = exp(−(− ln(p))�) ,



163

1 3

Journal of Risk and Uncertainty (2022) 65:139–184 

estimated parameters, their overall precision in terms of Mean Squared Errors, and 
the fraction of correctly classified subjects. Each simulation is based on 1,000 simu-
lation runs. Section 4 of the Online Appendix discusses the set-up and the results of 
these Monte Carlo Simulations in detail.

The simulations reveal that the structural model’s power to recover a wide range 
of parameters and discriminate between the different types is remarkably high. In 
particular, the structural model provides unbiased and precise estimates even in a 
situation where discriminating between EUT-, CPT-, and ST-types is extremely hard 
– that is, when the simulated subjects have an identical utility function and the same 
choice sensitivity across the three types and only differ slightly in their degrees of 
likelihood sensitivity and local thinking. In such a situation, the structural model 
still classifies the vast majority of simulated subjects into the correct type. We sup-
pose that the model’s ability to detect even slight behavioral differences between the 
types is mainly because, instead of estimating at the individual level, the model effi-
ciently exploits the choices of all subjects simultaneously. This allows it to recover 
the true parameters with high precision as individual noise averages out.17

5.2.2  Robustness against serially correlated errors

Moreover, the simulations confirm the structural model’s robustness against poten-
tial serial correlation in the subjects’ errors. This robustness is an important feature, 
since we cannot rule out that the errors subjects make when evaluating lotteries are 
serially correlated across the binary choices. However, the simulations reveal that 
the estimated parameters remain unbiased and precise, even if the subjects’ errors, �X 
and �Y , follow an AR(1) process with a high degree of serial correlation of � = 0.6 . 
Also, the vast majority of subjects remains classified in the correct type. The rea-
son for this robustness against serially correlated errors is likely because we rand-
omized the order of choices across subjects. Since the finite mixture model exploits 
the choices of all subjects simultaneously, their random order causes the impact of 
serial correlation to average out. Furthermore, to ensure that inferences about the 
estimated parameters are valid even with serially correlated errors, we report cluster-
robust standard errors.

5.2.3  Robustness against heterogeneity within types

Finally, the simulations reveal that the structural model is robust against heterogene-
ity within types. This robustness is important as there is likely heterogeneity not only 
between but also within the three types. The simulations reveal that the estimated 
parameters remain representative for the average preferences in each type when the 
subjects’ individual parameters – �i and �i or �i , respectively – are heterogeneous 

17 Notice that the model’s ability to recover a wide range of parameters in these simulations also rules 
out identification issues caused by the random utility approach’s potential non-monotonicity in the con-
text of risky choices (see Apesteguia & Ballester, 2018).
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and drawn from a uniform distribution within each type. The intuition is that the 
structural model discriminates between the types primarily based on the frequency 
of Allais Paradoxes and estimates parameters that are representative for each type. 
Thus, random individual deviations within a type form these representative param-
eters cancel each other out.

In sum, the simulations highlight that the experimental choices contain rich infor-
mation about subjects’ risk preferences and type-membership. By taking the choices 
of all subjects simultaneously into account, the structural model exploits this infor-
mation efficiently and is robust against potential serial correlation in the errors and 
heterogeneity within the types.

5.3  Structural model results

We now present and interpret the results of the structural model. When classifying sub-
jects into types using their ex-post probabilities of type-membership, we obtain a clean 
classification of subjects into 80 EUT-types, 108 CPT-types, and 95 ST-types. Most of 
the ex-post probabilities of individual type-membership are either close to 0 or 1, con-
firming that almost all subjects can be unambiguously classified into one of these three 
types. Figure 6 shows histograms with the ex-post probabilities of type-membership.

Table 2 exhibits the type-specific parameter estimates of the finite mixture model. 
The results show that there is substantial heterogeneity in subjects’ risk preferences. 
The choices of 28.4% of subjects are best described by EUT, the choices of 37.9% 
by CPT, and those of the remaining 33.7% by ST. This classification confirms Result 
1 obtained non-parametrically at the aggregate level. The majority of subjects is best 
described by either CPT or ST, while – consistent with previous evidence (Bruhin 
et al., 2010; Conte et al., 2011) – only a minority is best described by EUT.

On average, the 80 EUT-types display an almost linear utility function which makes 
them essentially risk neutral.18 Although the estimated concavity of 𝛽 = 0.080 is 
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Fig. 6  Distribution of ex-post probabilities of type-membership. Each panel in the figure shows the dis-
tribution over all subjects of the individual ex-post probability, �iM , of belonging to the corresponding 
type M ∈ {EUT ,CPT , ST} (see Eq. (7)). The resulting classification of subjects into types is clean as for 
nearly all subjects these ex-post probabilities of type-membership are either close to 0 or 1

18 In fact, EUT evaluated at the type-specific estimates predicts 64.1% of the EUT-types’ choices cor-
rectly – only slightly more than a comparison of the lotteries’ expected payoffs which yields 61.0% cor-
rect predictions.
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statistically significant, it is negligible in economic magnitude. Moreover, among the 
three types, the EUT-types exhibit the highest level of decision noise which translates 
into a relatively low estimated choice sensitivity.

The 108 CPT-types exhibit, on average, a concave utility function with 𝛽 = 0.572 
and a strongly inverse S-shaped probability weighting function with �̂� = 0.469 . This 
confirms that the CPT-types’ choices are strongly influenced by probability weight-
ing. With these parameter estimates, the average CPT-type displays the Common 
Consequence Allais Paradox discussed in the motivating example in Sect. 2.

The 95 ST-types display, on average, a strongly concave utility function with 
𝛽 = 0.870 and a seemingly low but statistically significant degree of local thinking 
corresponding to 𝛿 = 0.924 . Note that, although the average ST-type’s degree of 

Table 2  Type-specific parameter estimates of the finite mixture model

Subject cluster-robust standard errors are reported in parentheses and based on 1,000 bootstrap replica-
tions. Significantly different from 0 (1) at the 1% level: ∗∗∗ (◦◦◦ ); at the 5% level: ∗∗ (◦◦)
a The relative group sizes are not tested against zero, since under the null hypothesis that a type’s relative 
size is zero, the preference parameters are meaningless. Consequently, the test statistic would exhibit an 
unknown distribution (for a more detailed discussion see (McLachlan & Peel, 2000). The distribution 
of the test statistic could be bootstrapped under the null hypothesis. However, since the estimates of the 
relative group sizes are sufficiently far from the edges of the parameter space, this is not done here
b Subjects are assigned to the best-fitting model according to their ex-post probabilities of type-membership 
(see Eq. (7)). The number of assigned subjects is not tested against zero, for the same reason as the relative 
group sizes are not tested against zero
c Choices are predicted by using the subjects’ classification into types and by calculating the lotteries’ 
values, VM(Xg, �̂�M) and VM(Yg, �̂�M) , for the type-specific parameter estimates �̂�M  

Type-specific estimates EUT CPT ST

Relative size ( �)a 0.284 0.379 0.337
(0.042) (0.045) (0.041)

Concavity of utility function ( �) 0.080∗∗ 0.572∗∗∗ 0.870∗∗∗

(0.031) (0.057) (0.017)
Likelihood sensitivity ( �) 0.469◦◦◦

(0.027)
Degree of local thinking ( �) 0.924◦◦◦

(0.013)
Choice sensitivity ( �) 0.010∗∗∗ 0.302∗∗∗ 2.756∗∗∗

(0.003) (0.112) (0.339)
Number of  subjectsb 80 108 95

(12.597) (12.956) (11.935)
Number of observations 23,316
Log Likelihood –11,458.71
AIC 22,937.41
BIC 23,017.98
Share of correctly predicted  choicesc

   overall 0.750
   per type 0.641 0.759 0.830
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local thinking appears to be low, she still exhibits the Common Consequence Allais 
Paradox discussed in the motivating example in Sect. 2. The reason is that with a 
strongly concave utility function, even a low degree of local thinking is sufficient to 
generate the Common Consequence Allais Paradox.19

Next, we analyze how well the structural model fits the subjects’ choices com-
pared to aggregate models that neglect any heterogeneity and assume a representa-
tive decision maker. The estimation results of the aggregate models can be found in 
Appendix G. The Akaike Information Criterion (AIC) and the Bayesian Informa-
tion Criterion (BIC) both indicate that the structural model fits the subjects’ choices 
considerably better than any of the aggregate models. Moreover, when we use the 
subjects’ classification into types and the type-specific parameter estimates to pre-
dict choices in-sample, the structural model yields 75.0% correct predictions overall, 
that is, 75.0% of the predicted choices coincide with the subjects’ empirical choices. 
This more than the 50% correct predictions we would expect from purely random 
behavior and – not surprisingly due to the finite mixture model’s higher number of 
parameters – also more than any of the aggregate models. The percentage of cor-
rectly predicted choices per type confirms that the ST- and CPT-types’ choices are 
less noisy than the EUT-types’ choices: while the model correctly predicts 83.0% of 
the ST-types’ and 75.9% of the CPT-types’ choices, the percentage of correctly pre-
dicted choices is just 64.1% for the EUT-types. In sum, the analysis reveals that the 
structural model’s parsimonious way of taking heterogeneity into account leads to a 
superior fit compared to the aggregate models.20

Finally, we also analyze how the structural model’s fit compares to models with 
only two types – i.e., finite mixture models (i) with only EUT- and CPT-types, (ii) 
with only EUT- and ST-types, and (iii) with only CPT- and ST-types. Detailed 
results are available in Sect. 6 of the Online Appendix. Overall, the structural model 
with three types fits the data much better than each of the models with two types. 
Two results from the models with two types stand out. First, in the model with only 
EUT- and CPT-types, the relative sizes of the types and their parameters are in line 
with previous studies discriminating between EUT- and CPT-types (Bruhin et  al., 
2010; Conte et al., 2011). Second, in the two models featuring ST-types, the share 
of ST-types is 44% in the model mixing them with EUT-types and 38% in the model 
mixing them with CPT-types. Moreover – as in the model with three types – the ST-
types’ degree of local thinking is mild with an estimated � above 0.9 and their utility 
function is strongly concave with an estimated � above 0.8.

Overall, the structural estimations and the subjects’ type-specific behavior yield 
our second main result.

19 This is mainly due to inequality (3), as the difference v(2500) − v(2400) gets smaller. On the other 
hand, Inequality (4) is less affected by the concavity of the utility function and can still be satisfied with a 
small degree of local thinking.
20 An interesting question that the structural model cannot directly address is whether probability 
weighting and salience exclusively drive the choices of the CPT- and ST-types, or whether they influence 
the choices of all types to a varying degree. We address this question in Sect. 5 of the Online Appendix.
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Result 2 There is vast heterogeneity in the subjects’ risk preferences. Subjects are 
parsimoniously classified into 28% EUT-types, 38% CPT-types, and 34% ST-types 
according to the decision theory best describing their behavior.

Finally, we carried out robustness checks to ensure that this result does not 
depend on a particular specification of our model. They reveal that the result 
remains virtually unchanged if we use a Fechner-type error directly affecting sub-
jects’ choices instead of the random utility approach. However, the random utility 
approach yields a superior fit of the structural model. Similarly, modeling choice set 
dependence with ST yields a superior fit compared to modeling it with RT, the other 
major choice set dependent theory.21

5.4  Predictions of preference reversals

Next, we assess how well the structural model predicts preference reversals in the 
additional part of the experiment (see Sect.  3.2). These out-of-sample predictions 
across choice contexts represent a particularly stringent test of the structural model 
for two reasons. First, the model needs to predict behavior in choices that differ in 
payoffs and probabilities from the ones it was estimated on. Second, the model also 
needs to predict behavior across choice contexts, i.e., in choices that trigger prefer-
ence reversals instead of Allais Paradoxes.

We start by describing and interpreting the net frequencies of preference rever-
sals for each of the three types. Subsequently, we use the structural model’s random 
utility approach to make quantitative predictions about these net frequencies. Com-
paring the empirical and the predicted net frequencies of preference reversals will 
reveal the aspects of behavior the structural model predicts well and potential other 
aspects which the model does not capture. Such other aspects of behavior which 
our structural model does not capture would be particularly interesting, as they may 
provide hints about the instability of certain preference components across choice 
contexts.

5.4.1  Net frequencies of preference reversals across types

Figure 7 shows the average net frequency of preference reversals for each of the three 
preference types, i.e., the difference in the frequencies of preference reversals in the 
expected and in the inverse direction. It reveals that with a net frequency of 43.3% 
the ST-types exhibit substantially more preference reversals than the EUT- and the 
CPT-types whose net frequencies are just 32.6% and 25.8%, respectively. Moreover, 
the EUT- and CPT-types net frequencies of preference reversals are not significantly 
different. This evidence is in line with our expectation that choice set dependence 

21 ST fits the data better than RT because it exhibits a concave salience function, which is in line with 
diminishing sensitivity. In contrast, the original version of RT assumes a convex regret function. However, a  
generalized version of RT allowing for a concave regret function nests ST as a special case (Herweg & 
Müller, 2021; Lanzani, 2021). See Sect. 7 of the Online Appendix for further details.
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mainly drives the ST-types’ choices and generates their preference reversals. How-
ever, the positive net frequencies of preference reversals of the EUT- and CPT-types 
indicate that choice set dependence might influence their choices too, although to a 
lesser extent than the ST-types’ choices.

5.4.2  Quantitative predictions

We now use the structural model’s random utility approach to make quantitative pre-
dictions about the frequency of preference reversals for each preference type. We 
start by predicting the probability that a subject belonging to type M with estimated 
parameters �̂�M and �̂�M indicates a higher certainty equivalent for lottery X̃ than 
for lottery Ỹ  when she evaluates the two lotteries separately in a choice menu (see 
Fig. 2). First, we predict for each of the two lotteries L̃ ∈ {X̃, Ỹ} and for each of the 
21 rows r of the corresponding choice menu the probability that the subject prefers 
the lottery over the sure amount zr , z1 < … < z21:

P̂r[VM(L̃) > v(zr)] =
exp[�̂�M VM(L̃, �̂�M)]

exp[�̂�M VM(L̃, �̂�M)] + exp[�̂�M VM(zr, �̂�M)]
.

Fig. 7  Net frequency of preference reversals by type. The figure shows the net frequency of preference 
reversals by type for the choices of the additional part of the experiment (see Sect. 3.2). Net frequency 
of preference reversals refers to the difference in the relative frequencies of preference reversals in the 
expected and the inverse directions. The black dots indicate the predicted net frequencies for each type 
based on the structural model’s random utility approach (see Sect.  5.4.2). The white circles represent 
the predictions adjusted by the estimated intercept (0.274) as shown in the first column of Table 3. The 
numbers in parentheses indicate the number of subjects in each of the three types. 34 of the 283 subjects 
(12.0%) are excluded from the analysis because they exhibit more than one switch-point in at least one 
of the choice menus used for eliciting the certainty equivalents. Exhibiting more than one switch-point is 
independent of type-membership ( �2-test of independence: p-value = 0.534)
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Second, by assuming a unique switch-point, we use these predicted probabilities to 
infer the probability distribution over the k ∈ {1,… , 20} possible certainty equiv-
alents for each lottery.22 The predicted probability that the certainty equivalent 
CE(L̃) = (zk + zk+1)∕2 ≡ z̄k , corresponds to:

Since we assume a unique switch-point, we need to normalize these predicted prob-
abilities to P̂r[CE(L̃) = z̄k] = P̃r[CE(L̃) = z̄k]∕

∑20

m=1
P̃r[CE(L̃) = z̄m] to obtain a 

proper probability distribution which sums up to one. Third, by combining the prob-
ability distributions over the possible certainty equivalents of the two lotteries, we 
obtain the joint probability distribution over the 20 × 20 = 400 states in which either 
the certainty equivalent of lottery X̃ or the one of lottery Ỹ  is higher. Knowing this 
joint probability distribution allows us to predict the probability that the subject indi-
cates a higher certainty equivalent for X̃ than Ỹ  . Subsequently, we evaluate Eq. (5) to 
predict the probability that the subject will choose X̃ over Ỹ  in the pairwise choice. 
By applying this procedure to all 6 choices of the additional part (see Appendix C), 
we can predict the type-specific frequencies of preference reversals in the expected 
and inverse directions using the structural model and the estimated parameters �̂�M 
and �̂�M . Finally, the predicted net frequency of preference reversals is the difference 
between the predicted frequency of preference reversals in the expected direction 
and those in the inverse direction.

Table  3 compares the empirical to the predicted net frequencies of preference 
reversals using OLS regressions. We start by interpreting the estimated coefficients 
of the regression in the first column, which uses the type-specific parameters �̂�M and 
�̂�M to predict the subjects’ net frequencies of preference reversals. The coefficient on 
the predicted net frequencies of preference reversals is 0.907 and not significantly 
different from one. This indicates that the structural model captures the behavio-
ral differences between the types remarkably well as, on average, a given change in 
the predicted frequencies of preference reversals translates nearly one to one into a 
change in the corresponding empirical frequencies. In other words, the structural 
model predicts the average differences in the empirical net frequencies of preference 
reversals between the three types almost perfectly.

However, the estimated intercept is positive, revealing that the structural model 
consistently underestimates the frequency of preference reversals across all three 
types by 27.4 percentage points. This can be seen when we visualize the type-specific 
predictions in Fig.  7: as indicated by the black dots, the predicted net frequencies 
of preference reversals are consistently too low across all three types. Moreover, as 

P̃r[CE(L̃) = z̄k] =

k∏
r=1

P̂r[VM(L̃) > v(zr)]

×

21∏
r=k+1

(
1 − P̂r[VM(L̃) > v(zr)]

)
.

22 Assuming a unique switch-point is consistent with our approach of excluding the 34 (12.0%) subjects 
who switched multiple times.
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indicated by the white circles, when we adjust the predicted net frequencies by the 
estimated intercept of 0.274, they all match the empirical frequencies almost per-
fectly and fall well within the 95% confidence intervals.

This evidence suggests not only that choice set dependence plays a role across 
all three types but also that its influence is stronger in the choices of the additional 
part than in the choices of the main part. We hypothesize that this could be because 
the influence of choice set dependence may be shaped by the choice context. More 
specifically, in the additional part, subjects fill out choice menus that always offer 
choices between a lottery with two payoffs and a series of sure amounts. This spe-
cific choice context may shift the subjects’ focus of attention towards differences 
in payoffs and, thus, may inflate the role of choice set dependence. In contrast, in 
main part, subjects always face binary choices between two lotteries with up to three 
payoffs. This choice context may shift the subjects’ focus of attention towards dif-
ferences in probabilities and, thus, may dampen the influence of choice set depend-
ence. Overall, the evidence gained from the out-of-sample predictions suggests that 
exploring how the choice context shapes the role of choice set dependence is an 
important avenue for future research.

Next, we interpret the fraction of the variance in the empirical net frequencies of 
preference reversals which the structural model manages to predict. At first glance, 
the fraction of the predicted variance is disappointingly low with an R 2 of just 0.054. 
The low R 2 indicates that the structural model is not well suited for predicting indi-
vidual net frequencies of preference reversals since there is apparently a consider-
able amount of heterogeneity within each of the three preference types. However, as 

Table 3  OLS regressions of 
empirical on predicted net 
frequencies of preference 
reversals

Significantly different from 0 at the 1% level: ∗∗∗ ; at the 5% level: ∗∗  
a The corresponding regressions collapse the data by the type-specific 
averages

Empirical Net  
Frequencies of 
Preference  
Reversals

Predictions based on type-specific 
parameter estimates ( ̂𝜃M , �̂�M)

0.907∗∗∗ 
(0.241)

Predictions based on individual-specific 
parameter estimates ( ̂𝜃Mi, �̂�Mi)

0.149∗∗

(0.060)
Intercept 0.274∗∗∗ 0.297∗∗∗

(0.025) (0.025)
Number of observations 249 249
R2 for predicting individual differences 
in net frequencies of preference reversals

0.054 0.025

R2 for predicting type-specific differences 
in net frequencies of preference  reversalsa

0.936 0.122

p-value ( H0 : coefficient on predictions = 1) 0.699 < 0.001
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discussed above, the structural model predicts the average differences in the net fre-
quencies of preference reversals between the types remarkably well and, in fact, the 
R 2 of the corresponding regression amounts to 0.936.

Finally, we investigate whether the heterogeneity within each of the three pref-
erence types results from systematic differences in individual preferences or rather 
from noise. To do so, we take the finite mixture model’s classification of subjects into 
types and estimate the parameters of the corresponding decision models separately 
for each subject i. This yields a distinct set of parameter estimates for every subject, 
�̂�Mi and �̂�Mi , which we use for predicting individual-specific net frequencies of prefer-
ence reversals. If the heterogeneity within the types results mainly from systematic 
differences in individual preferences, the predictions based on the individual-specific 
estimates would pick up these differences and, thus, would exhibit a superior out-of-
sample performance than the predictions based on the type-specific estimates. In con-
trast, if the heterogeneity within the types results mainly from noise, which randomly 
changes across the two parts of the experiment, the predictions based on the individ-
ual-specific estimates would pick up this random noise and, thus, their out-of-sample 
performance would fall short of the predictions based on the type-specific estimates.

The second column of Table  3 reveals that the performance of the predictions 
based on the individual-specific estimates falls short of those based on the more 
parsimonious type-specific estimates in all relevant dimensions. First, the estimated 
coefficient of the predictions based on the individual-specific estimates (0.149) is 
far below one, indicating that they severely underestimate differences in the net fre-
quencies of preference reversals across types. With an intercept of 0.297, they also 
consistently underestimate the level of preference reversals. Second, and even more 
striking, the predictions based on the individual-specific estimates explain a frac-
tion of just R 2 = 0.025 of the variance in the empirical net frequencies of preference 
reversals – much less than the predictions based on the more parsimonious type-
specific estimates. They are also worse at predicting the average differences across 
types as the corresponding R 2 is just 0.122. Overall, these results indicate not only 
that the individual heterogeneity within the preference types primarily results from 
noise but also that, despite their parsimony, the structural model’s type-specific esti-
mates pick up most of the relevant heterogeneity across the types.

The analysis of the structural model’s power to predict preference reversals yields 
the third main result.

Result 3 The structural model has power to predict type-specific behavioral differ-
ences across choice contexts. 

1. Subjects classified as ST-types exhibit significantly more preference reversals 
than the other subjects.

2. The structural model accurately predicts the quantitative differences in the average 
frequencies of preference reversals across types.

3. Due to their parsimony, the structural model’s type-specific parameter estimates 
outperform noisy individual estimates.
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Furthermore, the predictions of preference reversals suggest that the choice context 
shapes the relative importance of choice set dependence.

6  Conclusion

The paper assesses the relative importance of probability weighting and choice set 
dependence both non-parametrically and with a structural model. This represents 
one of the first joint tests of the two most descriptive behavioral theories of choice 
under risk.

There are three main results. First, for aggregate choices, both choice set depend-
ence and probability weighting matter. This result does not rely on specific func-
tional forms and is robust across the three versions of the Allais Paradox as well 
as across the two presentation formats. Second, there is substantial heterogeneity 
in risk preferences which can be parsimoniously characterized by three types: 38% 
CPT-types, 34% ST-types, and 28% EUT-types. Finally, this classification of sub-
jects is valid in a different choice context, as the subjects classified as ST-types 
exhibit significantly more preference reversals than their peers.

These results are directly relevant for the literature that aims at identifying the 
main behavioral drivers of risky choices. Knowing about the relative importance of 
probability weighting and choice set dependence could inspire new decision theories 
taking both concepts into account and lead to better predictions in various domains 
of risk taking behavior, such as investment, asset pricing, insurance, and health 
behavior.

The conclusions also open up avenues for future research. First, our methodol-
ogy could be used to study how the relative importance of probability weighting 
and choice set dependence varies with educational background, cognitive ability, 
and other socio economic characteristics in the general population. Studying this 
variation in the general population could lead to new explanations for the observed 
variation in socio-economic outcomes as the different types may fall prey to dis-
tinct behavioral traps during their lives. Second, to improve the decision models’ 
predictive power, it would be important to explore how the choice context shapes the 
role of choice set dependence. Knowing how the choice context influences the role 
of choice set dependence could lead to more accurate predictions in other domains 
such as consumer, investor, and judicial choice.

Appendix A. Common ratio Allais Paradox

We now use an example of two lotteries, X and Y, that may induce the Common 
Ratio Allais Paradox:

X =

{
6000 p =

1

2
q

0 1 − p = 1 −
1

2
q

vs. Y =

{
3000 q

0 1 − q
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In this example, the Common Ratio Allais Paradox refers to the empirical finding 
that if p is high most individuals prefer Y over X, whereas if p is scaled down by a 
factor 0 < 𝜆 < 1 individuals prefer X over Y for a sufficiently small �.

A.1 EUT

EUT cannot describe the Common Ratio Allais Paradox in the above example. The 
decision maker evaluates lottery X as VEUT (X) = p v(6000) + (1 − p) v(0) and lottery 
Y as VEUT (Y) = 2p v(3000) + (1 − 2p) v(0) . The decision maker chooses lottery X 
over Y if:

Hence, the choice does not depend on the value of the probability p.

A.2 CPT

CPT can describe the Common Ratio Allais Paradox in the above example. The 
decision maker prefers lottery Y over X if:

Note that when p is scaled down by the factor � , the right hand side of the above 
inequality remains unchanged, while the left hand side decreases due to the proba-
bility weighting function’s subproportionality, i.e., w(q)

w(p)
>

w(𝜆q)

w(𝜆p)
 . Hence, for a suffi-

ciently low � the sign of the above inequality may change, and the decision maker 
prefers X to Y and exhibits the Common Ratio Allais Paradox.

A.3 ST

ST can describe the Common Ratio Allais Paradox in the above example when the two 
lotteries’ payoffs are independent. In this case, there are four states of the world which 
rank in salience as follows: 𝜎(6000, 0) > 𝜎(0, 3000) > 𝜎(6000, 3000) > 𝜎(0, 0) . 
Hence, the decision maker evaluates lottery X as:

VEUT (X) > VEUT (Y)

p v(6000) > 2p v(3000) − p v(0)

v(6000) > 2v(3000) − v(0) .

VCPT (Y) > VCPT (X)

w(q) v(3000) + [1 − w(q)] v(0) > w(p) v(6000) + [1 − w(p)] v(0)

w(q)

w(p)
>

v(6000) − v(0)

v(3000) − v(0)
.

VST (X) =
[
�ST
1
(6000, 0) + �ST

3
(6000, 3000)

]
v(6000)

+
[
�ST
2
(0, 3000) + �ST

4
(0, 0)

]
v(0)
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and

Using v(0) = 0 and the decision weights given by Eq. (2), the decision maker prefers 
Y over X when:

Note that when p is scaled down, the right hand side of the above inequality remains 
unchanged, while the left hand side decreases. Hence, for a sufficiently low � the 
sign of the above inequality may change, and the decision maker prefers X to Y and 
exhibits the Common Ratio Allais Paradox.

However, when the payoffs of the two lotteries depend of each other, ST can 
no longer describe the Common Ration Allais Paradox. In this case, there are just 
three states of the world:

The ranking in terms of salience of these three states is as follows: 𝜎(0, 3000) >
𝜎(6000, 3000) > 𝜎(0, 0) . Hence, the decision maker evaluates lottery X as:

and evaluates lottery Y as

Using v(0) = 0 and the decision weights given by Eq. (2), the decision maker prefers 
X over Y when:

Hence, regardless of the value of p, the decision maker always prefers X over Y when 
the above inequality holds, and otherwise always prefers Y over X. Consequently, the 

VST (Y) =
[
�ST
2
(0, 3000) + �ST

3
(6000, 3000)

]
v(3000)

+
[
�ST
1
(6000, 0) + �ST

4
(0, 0)

]
v(0) .

v(3000) [𝛿(1 − p)q + 𝛿2pq] > v(6000) [p(1 − q) + 𝛿2pq]

v(3000) 2𝛿 [1 − p(1 − 𝛿)] > v(6000) [1 − 2p(1 − 𝛿2)]

1 − p(1 − 𝛿)

1 − 2p(1 − 𝛿2)
>

v(6000)

2𝛿v(3000)
.

VST (X) = �ST
2
(6000, 3000) v(6000)

+
[
�ST
1
(0, 3000) + �ST

3
(0, 0)

]
v(0),

VST (Y) =
[
�ST
1
(0, 3000) + �ST

2
(6000, 3000)

]
v(3000)

+ �ST
3
(0, 0) v(0).

v(6000) 𝛿p > v(3000) (𝛿p + p)

v(6000) 𝛿p > v(3000) (𝛿p + p)

v(6000)

v(3000)
>

1 + 𝛿

𝛿
.
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decision maker never exhibits the Common Ratio Allais Paradox when the lotteries’ 
payoffs are dependent.

Appendix B. Choices to trigger the common ratio Allais Paradox

The binary choices that may trigger the Common Ratio Allais Paradox are based on 
a subset of a 3 × 3 × 2 design. The design uses the following three different payoff 
levels:

The design features three different probability levels q ∈ {0.90, 0.80, 0.70} . To trig-
ger the Common Ratio Allais Paradox each of these three probability levels is scaled 
down: 0.90 is scaled down to 0.02, 0.80 to 0.10, and 0.70 to 0.20. From the result-
ing 18 binary choices this design generates, we exclude 3 binary choices which we 
use for triggering preference reversals and making out-of-sample predictions (see 
Appendix C).

Appendix C. Choices to trigger preference reversals

The six binary choices that may trigger preference reversals are based on the fol-
lowing lotteries X̃ and Ỹ :

Payoff Level 1: X =

{
6000 p =

1

2
q

0 1 − p = 1 −
1

2
q

vs. Y =

{
3000 q

0 1 − q
,

Payoff Level 2: X =

{
5500 p =

1

2
q

500 1 − p = 1 −
1

2
q

vs. Y =

{
3000 q

500 1 − q
,

Payoff Level 3: X =

{
7000 p =

1

2
q

1000 1 − p = 1 −
1

2
q

vs. Y =

{
4000 q

1000 1 − q
.

Choice 1: X̃ =

{
400 p = 0.96

0 1 − p = 0.04
vs. Ỹ =

{
1600 q = 0.24

0 1 − q = 0.76
,

Choice 2: X̃ =

{
1600 p = 0.24

0 1 − p = 0.76
vs. Ỹ =

{
6400 q = 0.06

0 1 − q = 0.94
,

Choice 3: X̃ =

{
400 p = 0.96

0 1 − p = 0.04
vs. Ỹ =

{
6400 q = 0.06

0 1 − q = 0.94
,
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The first three binary choices are similar to the ones stated in Bordalo et al. (2012b). 
The last three binary choices are based on Payoff Level 1 of the 3 × 3 × 2 design 
used for generating choices that may trigger the Common Ratio Allais Paradox (see 
Appendix B).

Choice 4: X̃ =

{
3000 p = 0.90

0 1 − p = 0.10
vs. Ỹ =

{
6000 q = 0.45

0 1 − q = 0.55
,

Choice 5: X̃ =

{
3000 p = 0.80

0 1 − p = 0.20
vs. Ỹ =

{
6000 q = 0.40

0 1 − q = 0.60
,

Choice 6: X̃ =

{
3000 p = 0.70

0 1 − p = 0.30
vs. Ỹ =

{
6000 q = 0.35

0 1 − q = 0.65
.

Appendix D. Number of choices

Table 4  Number of binary choices by presentation format and type of Allais Paradox

a Three of the 3 × 3 × 2 = 18 binary choices to trigger the Common Ratio Allais Paradox were used to 
make out-of-sample predictions of preference reversals. These three binary choices were left out in the 
calculation of the frequencies of Allais Paradoxes and the structural estimations (see Appendices B and C)
b In the states of the world presentation, the nine binary choices where lottery X has three possible payoffs 
and lottery Y is a sure amount look identical regardless whether the lotteries’ payoffs are independent or 
dependent. Since we did not want to present the same choices twice, subjects exposed to the states of the 
world presentation had to go through nine binary choices less than those exposed to the canonical pres-
entation

Canonical

Allais Paradox Independent Payoffs Dependent Payoffs Preference 
Reversal

   Common Consequence 27 27
   Common  Ratioa 15 18

Total Binary Choices 42 45 6

States of the World

Allais Paradox Independent Payoffs Dependent Payoffs Preference 
Reversal

   Common Consequence 18b 27
   Common  Ratioa 15 18

Total 33 45 6
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Table 5  Differences in the Frequency of Allais Paradoxes between the Canonical Presentation and the 
States of the World Presentation

Payoffs Independent Dependent

Expected direction 0.048 –0.014
Inverse direction –0.014 0.008

Appendix E. Comparison between the two presentation formats

This section of compares the subjects’ choice patterns across the two presen-
tation formats to rule out two concerns regarding the importance of choice set 
dependence.

E.1 Prominence of common consequence

The first concern is that the states of the world presentation makes the common conse-
quence more prominent, which could influence the number of Allais Paradoxes and the 
subjects’ decision times. When comparing the frequencies of Allais Paradoxes across 
the two presentation formats, we find one statistically significant but small difference.

Table  5 exhibits all differences in the frequencies of Allais Paradoxes. With 
independent payoffs, the frequency in the expected direction is 4.8 percentage 
points higher in the canonical presentation than in the states of the world presen-
tation (t-test: p-value = 0.007). However, this difference is much smaller than in 
Birnbaum et al. (2017) who argue that the states of the world presentation makes 
the common consequence more prominent and, thus, may lower the frequency 
of Allais Paradoxes. Perhaps the difference is small in our case because, when 
presenting the choices to the subjects, Birnbaum et al. (2017) place the common 
consequence always in the first column while we place it in a random column. 
This random placement may lower the common consequence’s prominence. With 
dependent payoffs, the frequency of Allais Paradoxes in the expected direction 
is 1.4 percentage points lower in the canonical presentation than in the states of 
the world presentation (t-test: p-value = 0.313). In the inverse direction, it is 1.4 
percentage points lower in the canonical presentation than in states of the world 
presentation with independent payoffs (t-test: p-value = 0.169), and 0.8 percent-
age points higher with dependent payoffs (t-test: p-value = 0.379).

In terms of average decision times, subjects exposed to the canonical presenta-
tion needed 12.03 seconds per binary choice, while those exposed to the states of 
the world presentation needed 14.74 seconds. The difference of 2.71 seconds is 
significant (t-test: p-value < 0.001) and may reflect the higher complexity of the 
states of the world presentation. Subjects also required more time with independ-
ent than with dependent payoffs: 0.48 seconds more in the canonical presentation 
(t-test: p-value = 0.034) and 6.50 seconds in the states of the world presentation 
(t-test: p-value < 0.001).
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E.2 Event‑splitting effects

The second concern is that the change in the frequency of Allais Paradoxes in 
response to a manipulation of the lotteries’ joint payoff distribution may be driven 
by event-splitting effects rather than choice set dependence. Event-splitting 
occurs when, depending on the lotteries’ joint payoff distribution, some payoffs 
appear in multiple states of the world. This might affect subjects’ choices if they 
weight payoffs by the number of states in which they appear.

If event-splitting effects play a role in our data, they should be particularly 
strong in the states of the world presentation of choices provoking the generalized 
version of the Common Consequence Allais Paradox. For instance, the states of 
the world presentation of the choice in Eq. (1) with a common consequence z = 0 
and independent payoffs is

while with dependent payoffs it is

We see that lottery X offers the highest payoff, 2500, in two states with inde-
pendent payoffs but in just one state with dependent payoffs. This may render X 
more attractive with independent payoffs than with dependent payoffs. In addi-
tion, lottery Y offers the lowest payoff, 0, in two states with independent payoffs 
but in just one state with dependent payoffs. This may render Y more attractive 
with dependent payoffs than with independent payoffs. In contrast, in the canon-
ical presentation, event-splitting effects are absent as the two lotteries are pre-
sented side by side as two separate options when payoffs are independent.

To test whether event-splitting effects play a role in our data, we compare the 
subjects’ choice patterns between the two presentation formats. To maximize the 
chance of finding event-splitting effects, we only look at the choices provoking 
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the generalized version of the Common Consequence Allais Paradox where these 
effects should be strongest. However, as Table 6 reveals, the choice patterns are 
virtually identical across the two presentation formats. Hence, we conclude that, 
in our data, the differences in the frequencies of Allais Paradoxes in response to 
manipulations of the lotteries’ joint payoff distribution are driven by choice set 
dependence and not by event-splitting effects.

Table 6  Comparing choice patterns between presentation formats in lotteries provoking the generalized 
version of the common consequence Allais Paradox

States of the World Presentation ( N = 145)

Frequency choosing X over Y in Choice 1 with z = x3

Independent Payoffs Dependent Payoffs Difference
Mean 0.166 0.152 0.014
Std. Error (0.014) (0.013) (0.014)
Frequency choosing X over Y in Choice 2 with z < y1

Independent Payoffs Dependent Payoffs Difference
Mean 0.348 0.192 0.156
Std. Error (0.013) (0.014) (0.019)
Difference: Choice 1 - Choice 2

Independent Payoffs Dependent Payoffs Difference
Mean –0.182 –0.041 –0.142
Std. Error (0.018) (0.014) (0.024)

Canonical Presentation ( N = 138)

Frequency choosing X over Y in Choice 1 with z = x3

Independent Payoffs Dependent Payoffs Difference
Mean 0.193 0.163 0.030
Std. Error (0.017) (0.015) (0.014)
Frequency choosing X over Y in Choice 2 with z < y1

Independent Payoffs Dependent Payoffs Difference
Mean 0.398 0.187 0.211
Std. Error (0.014) (0.014) (0.017)
Difference: Choice 1 - Choice 2

Independent Payoffs Dependent Payoffs Contrast
Mean –0.205 –0.023 –0.181
Std. Error (0.019) (0.014) (0.020)
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Appendix F. Frequency of choices

Appendix G. Structural estimations at the aggregate level

Table 8 reveals that, at the aggregate level, all decision models fit the subjects’ choices 
considerably worse than the finite mixture model (Table 2) which accounts for hetero-
geneity in a parsimonious way. Compared to the estimations at the aggregate level, the 
finite mixture model not only achieves a higher log likelihood but also lower values of 
the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC).

Table 7  Frequency choosing lotteries X and Y by version of the Allais Paradox
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Table 8  Structural estimations at the aggregate level

Subject cluster-robust standard errors are reported in parentheses. Significantly different from 0 (1) at the 
1% level: ∗∗∗ (◦◦◦ ); at the 5% level: ∗∗ (◦◦ ); at the 10% level: ∗ ( ◦)
a CPT2 is a specification also based on Cumulative Prospect Theory but uses the more flexible, two-
parameter version of the probability weighting function by Prelec (1998): w(p) = exp(−�(− ln(p))�) , 
where � is the net index of concavity
b Choices are predicted by calculating the lotteries’ values, VM(Xg, �̂�M) and VM(Yg, �̂�M) , for the parameter 
estimates �̂�M of the corresponding model

Specification of Decision Theory EUT CPT CPT2a ST

Concavity of utility function ( �) 0.125∗∗ 0.489∗∗∗ 0.503∗∗∗ 0.870∗∗∗

(0.010) (0.045) (0.038) (0.012)
Likelihood sensitivity ( �) 0.681◦◦◦ 0.692◦◦◦

(0.027) (0.030)
Net index of convexity ( �) 0.962◦

(0.020)
Degree of local thinking ( �) 0.931◦◦◦

(0.008)
Choice sensitivity ( �) 0.020∗∗∗ 0.161∗∗∗ 0.186∗∗∗ 0.014∗∗∗

(0.001) (0.044) (0.041) (0.001)
Number of subjects 283 283 283 283
Number of observations 23,316 23,316 23,316 23,316
Log Likelihood –12,714.52 –12,386.13 –12,382.20 –12,650.83
AIC 25,433.03 24,778.25 24,772.39 25,307.65
BIC 25,449.15 24,802.42 24,804.62 25,331.82
Share of correctly predicted  choicesb 0.644 0.727 0.727 0.665

Moreover, the alternative specification of Cumulative Prospect Theory, CPT2, 
using the more flexible, two-parameter version of Prelec’s probability weighting 
function exhibits only a negligibly better fit than the baseline specification of CPT. 
This is because the estimated net index of concavity, �̂� = 0.962 , is very close to one. 
Thus, we opt for the baseline specification of CPT, as it exhibits the same number of 
parameters as ST.
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