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Abstract
A decision maker chooses in a probabilistic manner if she does not necessarily
prefer the same choice alternative when repeatedly presented with the same choice
set. Probabilistic choice may occur for a variety of reasons such as unobserved
attributes of choice alternatives, imprecision of preferences, or random errors/
noise in decisions. The Luce choice model (also known as strict utility or
multinomial logit) is derived from the choice axiom (also known as the indepen-
dence from irrelevant alternatives). This axiom postulates that the relative likeli-
hood of choosing one choice alternative A over another choice alternative B is not
affected by the presence or absence of other choice alternatives in the choice set.
This paper presents a dual choice axiom: the relative probability of NOT choosing
A over the probability of NOT choosing B is independent from irrelevant alter-
natives. A new model of probabilistic choice is derived from this dual axiom. This
model coincides with Luce’s choice model only in the case of a binary choice. The
new model has similar properties as the Luce choice model: the higher is the
utility of a choice alternative, the higher is the probability that a decision maker
chooses this alternative and the lower is the probability that he or she chooses any
other alternative. The new model differs from the Luce choice model in two
aspects: utility of choice alternatives is bounded (from above and below) and
choice probabilities are more sensitive to differences in utility of choice
alternatives.
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1 Introduction

Economic theory is traditionally based on deterministic preferences1 leaving little room
for probabilistic choice.2 Empirical research, however, strongly backs probabilistic
choice.3 Probabilistic choice may occur for a variety of reasons such as unobserved
attributes of choice alternatives (e.g. McFadden 1976), imprecision of preferences
(Falmagne 1985; Butler and Loomes 2007, 2011), random errors/noise in decisions
(e.g. Fechner 1860; Hey and Orme 1994). Models of probabilistic choice originated in
mathematical psychology and include inter alia random utility (also known as random
preference or random parameter) approach (e.g., Falmagne 1985; Loomes and Sugden
1995), the Fechner (1860) model of random errors (or strong utility)4 and the Luce
(1959) choice model (strict utility or multinomial logit).5 These models are often used
in econometric estimation on microeconomic data.

Yet, psychological models of probabilistic choice may not always suit economic
data, which creates a demand for new models of probabilistic choice designed for
economic applications. Random utility/preference/parameter approach can rationalize
the preference reversal phenomenon in choice under risk (e.g. Loomes 2005, p.310–
311) but it cannot account for rare violations of dominance that are occasionally
observed in the data (e.g. Loomes and Sugden 1998, p. 585). Fechner (1860) and Luce
(1959) models can rationalize some instances of the common ratio effect (e.g. Loomes
2005, p.305) or violations of the betweenness axiom (e.g., Blavatskyy 2006) in risky
choice and some instances of the common difference effect (e.g., Blavatskyy 2017,
Section 4, pp. 144–145) in intertemporal choice but they generate too many violations
of dominance (Loomes and Sugden 1998, p. 593).6

Luce (1959) developed a general theory of probabilistic choice from the choice
axiom, which is also known as the independence from irrelevant alternatives. Luce
(1959) choice model is often used for eliciting risk preferences (e.g., Camerer and Ho
1994; Wu and Gonzalez 1996; Holt and Laury 2002, Eq. (1), p. 1652) and time
preferences (e.g., Andersen et al. 2008, p. 599, Eq. 9; Meier and Sprenger 2015, p.
276, Eq. 1). Luce (1959) choice axiom postulates that the ratio of the probability of
choosing one alternative to the probability of choosing another alternative is not

1 E.g., expected utility (von Neumann and Morgenstern 1947), subjective expected utility (Savage 1954) or
discounted utility (Samuelson 1937).
2 Machina (1985) and Chew et al. (1991) develop models of probabilistic choice under risk as a result of
deliberate randomization by decision makers with (deterministic) quasi-concave preferences. Hey and
Carbone (1995) find that conscious randomization cannot rationalize their experimental data but Agranov
and Ortoleva (2017) reach the opposite conclusion.
3 E.g., Camerer (1989, p.81), Starmer and Sugden (1989, p.170), Hey and Orme (1994, p.1296), Ballinger and
Wilcox (1997, p.1100), Hey et al. (2010), Blavatskyy and Maafi (2018, p. 266).
4 The Fechner model is an econometric model of discrete choice with random errors (noise, attention slips,
carelessness) additive on the (latent) utility scale (cf. Becker et al. 1963, pp. 44–45; Hey and Orme 1994, p.
1301). Binary Luce (1959) model is a special case of binary Fechner model when such errors are drawn from
the logistic distribution (cf. Yellott 1977).
5 Harless and Camerer (1994) model probabilistic choice with a constant probability of a pure tremble. Yet,
Carbone (1997) and Loomes et al. (2002) find that this constant error model fails to explain their experimental
data and it is essentially “inadequate as a general theory of stochastic choice”.
6 Modified Fechner-type models with heteroscedastic random errors can avoid violations of monotonicity
(e.g., the contextual utility model of Wilcox (2008, 2011)) or violations of the first-order stochastic dominance
(e.g., Blavatskyy 2014).
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affected by the presence (or absence) of other “irrelevant” alternatives in the choice set.
This axiom is simple and intuitively appealing in choice situations when there are no
substitution/complementary effects among choice alternatives.

In Luce (1959) choice model every alternative is chosen with a strictly positive
probability. This property may be undesirable in economic applications where clearly
inferior alternatives are never chosen. Luce (1959) addressed this problem via a two-
stage procedure: first, dominated alternatives are discarded from a choice set; and then a
decision maker chooses in a probabilistic manner among the remaining alternatives.
Yet, this two-stage procedure creates a discontinuous choice function. This paper
proposes a new model of probabilistic choice in which a decision maker may never
choose some alternatives (that are sufficiently undesirable compared to other available
options).

This paper demonstrates that one can formulate a dual version of Luce (1959) choice
axiom that is arguably as intuitively appealing as its classic sibling. The dual choice
axiom proposed in this paper postulates that the ratio of the probability of not choosing
(i.e. rejecting) one alternative to the probability of not choosing (rejecting) another
alternative is not affected by the presence (or absence) of other “irrelevant” alternatives
in the choice set. In case of a binary choice, the dual choice axiom simply mirrors Luce
(1959) choice axiom. The choice of alternative A over alternative B in a direct binary
choice is equivalent to B being rejected in favor of A. Yet, when the choice set contains
three or more alternatives, the dual choice axiom has different implications from Luce
(1959) choice axiom. This paper derives a new model of probabilistic choice from the
above dual choice axiom. In this model, the likelihood that a decision maker does not
choose one alternative from some choice set is proportionate to the ratio of the disutility
of this alternative to the sum of disutilities of all alternatives in the choice set.

For example, consider a country that is about to leave the European Union and faces
three mutually exclusive scenarios: to leave the union without any agreement (“No
Deal Exit”), to leave the union with an agreement (“Deal”) and to stay in the union
(“No Exit”). According to the classic choice axiom, the relative likelihood that one
country leaves the union without any agreement (“No Deal Exit”) rather than stays in
the union (“No Exit”) is not affected by the characteristics of any exiting agreement that
the country negotiated with the union for an orderly exit (“Deal”). According to the
dual choice axiom, the relative likelihood of either “No Deal Exit” or “Deal” rather than
either “No Exit” or “Deal” is not affected by the characteristics of the exiting agree-
ment. In other words, the dual choice axiom postulates that the relative chances that the
country leaves the union (with or without agreement) rather than does not leave without
an agreement are independent from the agreement itself. When choices are hard, a
decision maker can formulate the independence from irrelevant alternatives for a
probability of rejecting rather than choosing certain options.

This paper is closest to Marley and Louviere (2005) who consider a model of
probabilistic choice where a decision maker selects the worst alternative from the
choice set.7 Their model is similar to Luce (1959) choice model: the higher is the
disutility of a choice alternative the more it is likely to be selected as the worst
alternative. Marley and Louviere (2005) effectively impose the independence from

7 They also consider a related model where a decision maker selects the best and the worst alternative from the
choice set.
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irrelevant alternatives on the relative probability of selecting the worst choice alterna-
tive whereas the dual choice axiom proposed in this paper imposes the independence
from irrelevant alternatives on the relative probability of rejecting a choice alternative.
In other words, we consider alternatives that are not chosen (rejected) from a choice set,
which does not necessarily imply that these alternatives are the worst available
alternatives (considered in Marley and Louviere (2005)). In case of a binary choice,
when an alternative that is not chosen is automatically the worst available alternative,
the model of probabilistic choice derived in this paper from the dual choice axiom
coincides with the model of Marley and Louviere (2005) and a binary Luce (1959)
choice model.

The remainder of the paper is organized as follows. Section 2 presents math-
ematical notation, formulates classic Luce (1959) choice axiom and a new dual
choice axiom. Section 3 presents a new model of probabilistic choice derived from
the dual choice axiom. Section 4 compares the new model with Luce (1959)
choice model using an example of ternary choice. Section 5 concludes with a
general discussion.

2 Notation, choice axiom and dual choice axiom

Let S be a choice set with n ≥ 2 choice alternatives. A choice alternative A∈S can be a
consumption bundle, a risky lottery (a probability distribution), an uncertain act (a
random variable), a stream of intertemporal outcomes, a behavioral strategy etc. We
denote choice alternatives by capital Latin letters A, B, C etc.

A decision maker can be an individual or a group of individuals. Let P(A|S) ∈
(0,1) denote the probability that a decision maker chooses alternative A∈S from the
choice set S. The probability that alternative A∈S is not chosen from the choice set
S is given by 1—P(A|S). As Luce (1959), we assume that choice alternatives,
which are never chosen, can be deleted from the choice set without any effect on
decision making. Thus, without loss of generality, we consider only choice sets
that contain alternatives that are chosen with a strictly positive probability.
Finally, let P(A,B) ∈ (0,1) denote the probability that a decision maker chooses
alternative A over alternative B in a direct binary choice (i.e. B is not chosen from
the set {A,B}) and let P(B,A) = 1 — P(A,B) denote the probability that a decision
maker chooses alternative B over alternative A in a direct binary choice (i.e. A is
not chosen from set {A,B}).

We consider two axioms imposed on choice probabilities. The first axiom
is Luce (1959) choice axiom (Eq. 2 below) and the second axiom is a dual
choice axiom (Eq. 3 below). To distinguish between these two cases, we use
subscript “Luce” to denote choice probabilities that satisfy Luce (1959) choice
axiom. For example, PLuce(A,B) denotes the probability that a decision maker
chooses alternative A over alternative B in a direct binary choice in Luce
choice model.

A decision maker can choose only one choice alternative from the choice set so that

∑A∈SP AjSð Þ ¼ 1 ð1Þ
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Luce (1959) choice axiom postulates that for any A,B∈S, the relative likelihood

PLuce AjSð Þ
PLuce BjSð Þ ¼

PLuce A;Bð Þ
PLuce B;Að Þ ð2Þ

depends only on the characteristics of choice alternatives A and B (and is independent
from the characteristics of other “irrelevant” choice alternatives).8 For example, the
relative likelihood that an airline purchases a Boeing aircraft rather than an Airbus
aircraft depends only on the characteristics of these two aircrafts and is not affected by
the characteristics of other aircrafts available on the market.

In his discussion of the independence from irrelevant alternatives, Luce (1959)
makes it clear that the choice axiom (2) is only one reasonable version of the
independence from irrelevant alternatives in the context of probabilistic choice: “… if
one is comparing two alternatives according to some algebraic criterion, say preference,
this comparison should be unaffected by the addition of new alternatives or the
subtraction of old ones (different from the two under consideration). Exactly what
should be taken to be the probabilistic analogue of this idea is not perfectly clear, but
one reasonable possibility is the requirement that the ratio of the probability of choosing
one alternative to the probability of choosing the other should not depend upon the total
set of alternatives available”. In other words, Luce (1959) acknowledged that condition
(2) is a choice axiom, not the choice axiom that it became over the last 60 years. This
paper formulates a different probabilistic version of the independence from irrelevant
alternatives. It is particularly appealing when decision makers face difficult choices so
that it may be intuitive to reason in terms of alternatives that are not chosen.

In this paper we formulate a dual choice axiom: the ratio of probability that A∈S is
NOT chosen from the set S to probability that B∈S is NOT chosen from the set S
depends only on the characteristics of choice alternatives A and B (and is independent
from the characteristics of other “irrelevant” choice alternatives). For example, the
relative likelihood that a Democratic candidate does not win an election compared to
the likelihood that a Republican candidate does not win an election is not affected by
the presence of other independent candidates. While the classic choice axiom estab-
lishes independence from irrelevant alternatives for the relative probability of choice,
the dual choice axiom does the same for the relative probability of not choosing.
Arguably, the dual choice axiom has the same intuitive appeal as the classic choice
axiom.

Formally, for any two alternatives A,B∈S, our dual choice axiom can be written as

1−P AjSð Þ
1−P BjSð Þ ¼

P B;Að Þ
P A;Bð Þ ð3Þ

8 Luce (1959, Axiom 1, part (i)) formulated his choice axiom in a different form: the probability that a decision
maker chooses an alternative from set T that lies in the nonempty set R ⊂ T is equal to the probability that this
decision maker chooses an alternative from set T that lies in the nonempty set S ⊂ T multiplied by the
probability that the decision maker chooses an alternative from set S that lies in set R ⊂ S. Yet, it can be easily
shown that this formulation implies the independence from irrelevant alternatives property (2), cf. Luce (1959,
Lemma 3).
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The dual choice axiom (3) constrains binary choice probabilities in the same
way as Luce (1959) choice axiom (2). Specifically, if dual choice axiom (3)
holds then binary choice probabilities must satisfy the product rule (cf. Eq.
(16) in the proof of proposition 1 in the Appendix). Likewise, if Luce (1959)
choice axiom (2) holds then binary choice probabilities must satisfy the
product rule as well. Thus, the constraints implied by dual choice axiom (3)
on binary choice probabilities are the same as the constraints implied by Luce
choice axiom (2). For non-binary choice probabilities, the constraints implied
by (3) are similar (but not the same) as the constraints implied by Luce
choice axiom (2). The main difference is that dual choice axiom (3) restricts
probabilities of not choosing (which sum up to n-1, cf. Eq. (7) below)
whereas Luce choice axiom (2) restricts probabilities of choosing (which
sum up to one, cf. Eq. (1) above).

3 Model of probabilistic choice

First, we show that dual choice axiom (3) implies the same restriction on binary choice
probabilities as the classic choice axiom (2) — a binary Luce choice model, which is
also known as binary strict utility.

Proposition 1 If n ≥ 3 and dual choice axiom (3) holds then

P A;Bð Þ ¼ U Að Þ
U Að Þ þ U Bð Þ ð4Þ

where U : S→ℝ+ is utility function unique up to a multiplication by a positive
constant.

The proof is presented in the Appendix.
According to proposition 1, our newly proposed dual choice axiom (3) has the same

implication for binary probabilistic choice as the classic choice axiom (2). This result is
perhaps not surprising given that only two outcomes are possible in binary choice:
either A is chosen, or A is not chosen. In other words, in the context of binary choice,
dual choice axiom simply mirrors classic choice axiom. Yet, for choice among n ≥ 3
alternatives, implications of dual choice axiom (3) differ from those of classic choice
axiom (2), as demonstrated by the following proposition 2.

Proposition 2 If n ≥ 3 and dual choice axiom (3) holds then

P AjSð Þ ¼ 1−
n−1

∑B∈S
U Að Þ
U Bð Þ

ð5Þ

where U : S→ℝ+ is utility function unique up to a multiplication by a positive
constant.

The proof is presented in the Appendix.
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Model (5) can be alternatively presented as Eq. (6).

1−P AjSð Þ ¼ n−1ð Þ U−1 Að Þ
∑B∈SU

−1 Bð Þ ð6Þ

Equation (6) emphasizes the duality of the new model to classic Luce (1959) choice
model. According to formula (6), the probability 1— P(A|S) of not choosing alternative
A from the set S is proportionate to the disutility of this alternative U−1(A). If the choice
set contains n alternatives then probabilities of not choosing (rejecting) an alternative
should sum up to n-1.

∑A∈S 1−P AjSð Þ½ � ¼ n−1 ð7Þ

Therefore, disutility U−1(A) in formula (6) is divided by the sum of disutilities of all
alternatives and multiplied by n-1.

Model of probabilistic choice (5) has similar properties as Luce (1959) choice
model. The higher is utility of alternative A, the higher is the probability that a decision
maker chooses A from the choice set S and the lower is the probability that he or she
chooses any other alternative B from the choice set S. From a dual perspective, the
higher is utility of alternative A, the lower is the probability 1 — P(A|S) that a decision
maker does not choose A from the choice set S and the higher is that the probability that
he or she does not choose any other alternative B from the choice set S. If alternative A
yields a higher utility than alternative B then according to model (5) a decision maker is
more likely to choose alternative A rather than alternative B from any choice set
containing both A and B. Model (5) satisfies the regularity condition (e.g., Marley
1965): a decision maker is more likely to choose alternative A from a subset of the
choice set S than from the set S itself.

In the degenerate case n = 1 Eq. (5) becomes simply P(A|S) = 1, i.e. when the choice
set contains only one alternative a decision maker always chooses this alternative. For
n = 2 Eq. (5) becomes Eq. (4), i.e. when the choice set contains two choice alternatives
a decision maker behaves as in a binary Luce (1959) choice model (strict utility). If all
choice alternatives yield the same utility (U(A) =U(B) for all A,B∈S) then Eq. (5)
becomes P(A|S) = 1/n, i.e. a decision maker chooses at random among all such
alternatives.

In Luce (1959) choice model utility of an alternative is bounded to be a positive
number. Yet, it is unbounded in relative terms—utility of alternative A can be much
smaller than utilities of other available alternatives and a decision maker still chooses A
with a strictly positive probability. This can be viewed as an undesirable feature of Luce
(1959) choice model. Arguably, when one alternative is much less desirable than other
available alternatives (in terms of utility) a choice decision is simple—a clearly inferior
alternative is discarded.

Model of probabilistic choice (5) allows this possibility—an alternative that is much
less desirable than other alternatives can be chosen with zero probability. Unlike Luce
(1959) choice model, model (5) imposes “smart” relative bounds on the utility of every
alternative. For an alternative to be chosen with a positive probability, its utility must be
sufficiently high compared to the utilities of other available alternatives.
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When utility of alternative A decreases, the probability (5) that a decision maker
chooses this alternative decreases as well. Yet, so far, nothing restricts probability (5) to
remain strictly positive. In other words, utility of alternative Amust remain high enough
so that a decision maker chooses alternative A with a strictly positive probability, i.e.
the denominator of the fraction on the right-hand-side of Eq. (5) should always exceed
the nominator. This imposes a lower bound (8) on the utility of alternative A.

U Að Þ > n−2

∑ B∈S
B≠A

1

U Bð Þ
ð8Þ

When n = 2 inequality (8) becomes simply U(A) > 0, i.e., like in Luce (1959) choice
model, utility must be a positive real number. When n > 2 inequality (8) effectively
restricts the utility of A not to fall below (n-2)/(n-1) of the harmonic mean of utilities of
all other available alternatives.

Second, when utility of alternative A increases, the probabilities, with which a
decision maker chooses other alternatives, decrease. Yet, so far, nothing restricts these
probabilities to remain strictly positive. Thus, utility of alternative A must remain low
enough so that a decision maker chooses other available alternatives with a strictly
positive probability. It is sufficient only to check that the alternative that has the lowest
utility min

C∈S
U Cð Þ is chosen with a strictly positive probability (since any alternative that

yields a higher utility is chosen with a higher probability). This imposes inequality (9)
on utility of alternative A.

1

U Að Þ > ∑ B∈S
B≠A

1

min
C∈S

U Cð Þ −
1

U Bð Þ

2
4

3
5 ð9Þ

When all available alternatives but A yield the same utility, which is smaller than utility
of A, then the right-hand-side of inequality (9) becomes zero, i.e. inequality (9) is
satisfied for any positive real valued utility function. This happens, for example, in case
of a binary choice when there is only one alternative other than A and this alternative
yields a smaller utility than A. If not all available alternatives other than A yield the
same utility, the right-hand side of inequality (9) is strictly positive and we can rewrite
inequality (9) as an upper bound (10) on utility of alternative A.

U Að Þ < 1

∑ B∈S
B≠A

1

min
C∈S

U Cð Þ −
1

U Bð Þ

2
4

3
5

ð10Þ

Inequalities (8) and (10) can be combined in one condition: the least desirable alterna-
tive in the choice set must yield utility greater than (n-1)/n of the harmonic mean utility
of all available choice alternatives (i.e., min

C∈S
U Cð Þ > n−1ð Þ =∑B∈S

1
U Bð Þ). In other
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words, in model (5) the least desirable alternative cannot be significantly inferior
compared to other alternatives.

4 Example: Ternary choice

Figure 1 illustrates model of probabilistic choice (5) for ternary choice among three
alternatives A, B and C. Utilities of alternatives B and C are fixed at U(B) = 2 and
U(C) = 3. Utility of alternative A is shown on the horizontal axis (in this case, the lower
bound (8) is U(A) > 1.2 and the upper bound (10) is U(A) < 6). Probabilities
P(A|{A,B,C}), P(B|{A,B,C}) and P(C|{A,B,C}) are shown as black, grey and white
areas correspondingly. Figure 1 shows that as U(A) increases from 1.25 to 6 probability
P(A|{A,B,C}) increases from 0.02 to 0.67; probability P(B|{A,B,C}) decreases from
0.39 to 0 and probability P(C|{A,B,C}) decreases from 0.59 to 0.33. Note that the ratio
of probability that B is not chosen to probability that C is not chosen [1—
P(B|{A,B,C})]/[1—P(C|{A,B,C})] stays constant at 3/2 for all values U(A)∈[1.25,6],
in accordance with the dual choice axiom (3). In contrast, the ratio of probability that B
is chosen to probability that C is chosen diminishes from 0.66 to zero, in violation of
the classic choice axiom (2).

For comparison, Fig. 2 illustrates classic Luce (1959) choice model

PLuce Aj A;B;Cf gð Þ ¼ U Að Þ
U Að Þ þ U Bð Þ þ U Cð Þ

for the same parameters U(A)∈[1.25,6], U(B) = 2 and U(C) = 3. Figure 2 shows that as
U(A) increases from 1.25 to 6 probability PLuce(A|{A,B,C}) in Luce (1959) choice
model increases from 0.2 to 0.55; probability PLuce(B|{A,B,C}) in Luce (1959) choice
model decreases from 0.32 to 0.18 and probability PLuce(C|{A,B,C}) in Luce (1959)

Fig. 1 Model (5) for ternary choice when U(B) = 2, U(C) = 3 and different values of U(A) as shown on the
horizontal axis
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choice model decreases from 0.48 to 0.27. Note that the ratio of probability that B is
chosen to probability that C is chosen in Luce (1959) choice model stays constant at 2/3
for all values U(A)∈[1.25,6], in accordance with the classic choice axiom (2). In
contrast, the ratio of probability that B is not chosen to probability that C is not chosen
in Luce (1959) choice model diminishes from 1.31 to 1.13, in violation of the dual
choice axiom (3).

A comparison of Figs. 1 and 2 shows that model (5) is relatively more sensitive to
differences in utility than classic Luce (1959) choice model. For example, as U(A)
increases from 1.25 to 2, P(A|{A,B,C}) in model (5) increases from 0.02 to 0.25 and
P(B|{A,B,C}) in model (5) decreases from 0.39 to 0.25. In contrast, in Luce (1959)
choice model, PLuce(A|{A,B,C}) increases from 0.2 to 0.29 and PLuce (B|{A,B,C})
decreases from 0.32 only to 0.29.

From another perspective, Fig. 3 shows probability P(A|{A,B,C}) in model (5) as a
function of utility ratio U(A)/U(B), shown on the horizontal axis, and utility ratio U(A)/
U(C), shown on the vertical axis. Note that for a ternary choice bound (8) becomes

U Að Þ
U Bð Þ þ

U Að Þ
U Cð Þ > 1 ð11Þ

which is shown as a solid black line on Fig. 3 corresponding to the case P(A|{A,B,C}) =
0. Similarly, for a ternary choice bound (10) becomes

U Að Þ
U Bð Þ −

U Að Þ
U Cð Þ

����
���� < 1 ð12Þ

which is shown as two parallel dashed black lines on Fig. 3.
For any combination of utility ratios U(A)/U(B) and U(A)/U(C) that are above the

solid black line and between two dashed black lines on Fig. 3 there is a well-defined

Fig. 2 Luce (1959) choice model when U(B) = 2, U(C) = 3 and different values of U(A) as shown on the
horizontal axis
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probability P(A|{A,B,C}) in model (5). Figure 3 illustrates the sets of utility ratiosU(A)/
U(B) and U(A)/U(C) which generate probabilities P(A|{A,B,C}) = p for all
p∈{0.1;0.2;…;0.9}.9 For comparison, Fig. 4 does the same for Luce (1959) choice
model.10 Figures 3 and 4 show that both in model (5) and in the classic Luce (1959)
choice model a decision maker chooses alternative A with a greater probability when
utility ratios U(A)/U(B) and U(A)/U(C) increase. Yet, the same increase in utility ratios
has a greater impact on the choice probability in model (5) compared to Luce (1959)
choice model. For example, increasing utility ratios U(A)/U(B) and U(A)/U(C) from
one to two increases the likelihood of choosing A in model (5) from 1/3 to 0.6 and in
Luce (1959) choice model—from 1/3 to 0.5.

If utility ratio U(A)/U(C) is relatively high so that bound (12) is violated (cf. an area
above the higher dashed black line on Fig. 3) then alternative C is too inferior (in terms
of utility) compared to A and B. In this case C is never chosen with a positive
probability and choice becomes binary. The decision maker chooses either A or B.
Binary choice probability is given by (4), which depends only on ratio U(A)/U(B).
Alternative A is chosen with probability p∈{0.1;0.2;…;0.9} when the ratio U(A)/U(B)
equals p/(1-p). Figure 3 illustrates these binary choice probabilities in an area above the
higher dashed black line. Similarly, if ratio U(A)/U(B) is relatively high, i.e. bound (12)
is violated, then B is too inferior and never chosen with a positive probability. The
decision maker chooses either A or C. Binary choice probability now depends only on
ratio U(A)/U(C). Alternative A is chosen with probability p∈{0.1;0.2;…;0.9} when the
ratio U(A)/U(C) equals p/(1-p). Figure 3 illustrates these binary choice probabilities in
an area below the lower dashed black line.

Fig. 3 Probability P(A|{A,B,C}) in model (5) as a function of utility ratios U(A)/U(B) and U(A)/U(C)

9 These sets are defined by equation U Að Þ
U Bð Þ þ U Að Þ

U Cð Þ ¼ 1þp
1−p subject to bounds (11) and (12).

10 In Luce (1959) choice model PLuce(A|{A,B,C}) = p is generated by utility ratios U Bð Þ
U Að Þ þ U Cð Þ

U Að Þ ¼ 1−p
p .
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5 Conclusion

Luce (1959) choice model has a comparative advantage over other classic models of
probabilistic choice. Specifically, random utility/preference approach (e.g., Falmagne
1985; Loomes and Sugden 1995) violates weak stochastic transitivity akin to the
Condorcet (1785) paradox in social choice. Yet, decision makers rarely exhibit such
violations (e.g., Rieskamp et al. 2006). Moreover, practical applications of random
utility/preference often require restrictive parametric assumptions characterizing utility/
preference only with one parameter11 to avoid large variance-covariance matrices.
Classic Fechner (1860) model of random errors (strong utility) violates dominance.12

Yet, decision makers rarely violate transparent dominance (for choice under risk e.g.,
Carbone and Hey 1995; Loomes and Sugden 1998, Table 2, p. 591; Hey 2001, Table 2,
p.14; see however, Birnbaum and Navarrete 1998, p. 61; Birnbaum 2005, p.1356).
Moreover, Fechner’s strong utility applies only to binary choice.13

Luce (1959) choice model is derived from an intuitively appealing choice axiom.
This paper presents a dual choice axiom. A new model of probabilistic choice is
derived from this dual choice axiom. For binary choice, the new model coincides with
Luce (1959) choice model. For choice among n > 3 alternatives, the new model is
qualitatively similar to Luce (1959) choice model (a decision maker is more likely to
choose more desirable alternatives) but utility of an alternative is bounded (from above
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Fig. 4 Probability PLuce (A|{A,B,C}) in Luce (1959) choice model as a function of utility ratiosU(A)/U(B) and
U(A)/U(C)

11 So that this approach is also known as a random parameter model. Examples in the context of intertemporal
choice are Coller andWilliams (1999, p. 115, Section 4.2), Warner and Pleeter (2001, p. 38, Section III.A) and
Harrison et al. (2002, p. 1611, Section III.A)).
12 The first-order stochastic dominance in choice under risk, state-wise dominance in choice under
uncertainty/ambiguity or the first-order temporal dominance in choice over time.
13 Blavatskyy (2018) recently proposed its generalization to choice among n > 2 alternatives.
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and below) and choice probabilities are relatively more sensitive to differences in
utility.

Utility function in the new model of probabilistic choice, as in classic Luce (1959)
choice model, maps choice alternatives to positive real numbers. Decision theories
often use real valued utility functions (i.e. mapping choice alternatives to zero or
negative numbers) that are unique up to a positive affine transformation (e.g., von
Neumann and Morgenstern (1947) expected utility function in choice under risk,
Samuelson (1937) discounted utility function in intertemporal choice). The newly
proposed model of probabilistic choice, like Luce (1959) choice model, can be adapted
to such utility functions via transformationU(A) = exp.(V(A)), where V : S→ℝ is utility
function that is unique up to a positive affine transformation. With this transformation,
our proposed model of probabilistic choice becomes

P AjSð Þ ¼ 1−
n−1

∑B∈Seb V Að Þ−V Bð Þ½ � ð13Þ

where b > 0 is the scale parameter of utility function V : S→ℝ. This scale parameter
can be interpreted as the degree of noise/randomness in probabilistic choice. When b is
close to zero, a decision maker chooses every alternative with probability close to 1/n.
Model (13) is a special case of a generalized Fechner’s strong utility recently proposed
by Blavatskyy (2018): P(A| S) = F(V(A) − V(A2),V(A) − V(A3),…, V(A) − V(An)) where
F :ℝn − 1→ [0, 1] denotes a symmetric function14 and A2,…, An ∈ S\{A} denote choice
alternatives other than A.

Debreu (1960, p. 188) criticized Luce (1959) choice model with the following
example. Let A denote the Debussy quartet, B—the 8th symphony of Beethoven and
C—the same symphony with a different conductor. In a direct binary choice a
(presumably French) decision maker is indifferent between B and C, so that P(B,C) =
0.5, but he or she has a slight preference for A over B or C, so that P(A,B) = 0.6 and
P(A,C) = 0.6. Yet, according to Luce (1959) choice model, in a ternary choice among
A, B and C this decision maker chooses A only with probability 3/7, i.e. less than 0.5,
revealing now a slight preference for Beethoven. Debreu’s critique also applies to
model (5) although in a weaker form. According to model (5), the above decision
maker chooses A with probability 0.5, B—with probability ¼ and C—with probability
¼ as well in a ternary choice among A, B and C. The dual choice axiom, as well as the
classic choice axiom, are intuitively appealing in choice situations without any signif-
icant substitution/complementary effects among available alternatives. Debreu’s exam-
ple clearly does not fall into this category as the two versions of Beethoven’s symphony
are highly substitutable.

McKelvey and Palfrey (1995) developed the concept of logit quantal response
equilibrium for solving strategic games based on Luce (1959) choice model. A
promising avenue of future research is to develop an analogous equilibrium solution
concept when players choose among strategies according to model (5). Compared to
Luce (1959) choice model, in model (5) strategies that fall below (greatly exceed) other

14 This function must satisfy restriction F(v1, v2,…, vn − 1) + F(−v1, v2 − v1,…, vn − 1 − v1) + F(−v2, v1 − v2, v3 −
v2,…, vn − 1 − v2) +… +F(−vn − 1, v1 − vn − 1,…, vn − 2 − vn − 1) = 1 for all v1, v2,…, vn − 1 ∈ℝ, which implies inter
alia F(0,…, 0) = 1/n.
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strategies in terms of expected utility are chosen with probabilities close to zero (one),
which can help a decision maker to avoid dominated strategies and to choose dominant
strategies more frequently.

Blavatskyy (2009, 2012) presents an algorithm how to extend a model of binary
probabilistic choice to choice among n > 2 alternatives: 1) pick at random two out of
n > 2 alternatives and choose between them; 2) discard the less preferred alternative
back into the choice set; 3) pick at random one out of n-1 alternatives and choose
between this alternative and the previously chosen (more preferred) alternative; 4)
repeat steps 2–3 ad infinitum. The dual approach proposed in this paper can be also
applied to this algorithm. Such dual algorithm extends binary choice probabilities to
probabilities of choosing the worst among n > 2 alternatives: 1) pick at random
two out of n > 2 alternatives and choose between them; 2) discard the more
preferred alternative back into the choice set; 3) pick at random one out of n-1
alternatives and choose between this alternative and the previously retained
(less preferred) alternative; 4) repeat steps 2–3 ad infinitum. Asymptotic prob-
ability that alternative A∈S is retained as the worst alternative in the choice set
S is then given by

Q AjSð Þ ¼ ∑G∈Γ Sð Þ R Gð Þ¼Aj ∏ B;Cf g∈E Gð ÞP C;Bð Þ
∑G∈Γ Sð Þ∏ B;Cf g∈E Gð ÞP C;Bð Þ

where G denotes an arborescence with the vertex set S, Γ(S) is the set of all
arborescences with the vertex set S, R(G) denotes the root of arborescence G
and E(G) denotes the edge set of arborescence G (probability P(C,B) for any
{B,C}∈E(G) is then the probability that a decision maker chooses the terminal
vertex (head) C over the initial vertex (tail) B).

Funding Pavlo Blavatskyy is a member of the Entrepreneurship and Innovation Chair, which is part of
LabEx Entrepreneurship (University of Montpellier, France) and funded by the French government (Labex
Entreprendre, ANR-10-Labex-11-01).

Appendix

Proof of Proposition 1

For any two alternatives A,B∈S, dual choice axiom implies Eq. (3). Similarly, for any
two alternatives B,C∈S, dual choice axiom implies Eq. (14).

1−P BjSð Þ
1−P CjSð Þ ¼

P C;Bð Þ
P B;Cð Þ ð14Þ

Multiplying Eq. (3) by Eq. (14) yields Eq. (15).

1−P AjSð Þ
1−P CjSð Þ ¼

P B;Að Þ
P A;Bð Þ

P C;Bð Þ
P B;Cð Þ ð15Þ
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According to dual choice axiom the left-hand side of Eq. (15) is equal to P(C, A)/P(A,
C). Using this result we can rewrite Eq. (15) as Eq. (16).

P A;Bð ÞP B;Cð ÞP C;Að Þ ¼ P A;Cð ÞP C;Bð ÞP B;Að Þ ð16Þ

Equation (16) is known as the product rule (e.g., Estes 1960, p. 272; Luce and Suppes
1965, definition 25, p. 341). According to Theorem 48 in Luce and Suppes (1965, p.
350), a binary choice probability function P : S × S→ℝ satisfies the product rule (16) if
and only if it is a binary strict utility (4). Q.E.D.

Proof of Proposition 2

Using the result of proposition 1, for any two alternatives A,B∈S, we can rewrite dual
choice axiom (3) as Eq. (17).

1−P AjSð Þ
1−P BjSð Þ ¼

U Bð Þ
U Að Þ ð17Þ

Equation (17) can be rearranged as Eq. (18).

P BjSð Þ ¼ 1− 1−P AjSð Þ½ � U Að Þ
U Bð Þ ð18Þ

Since Eq. (18) holds for any alternative B∈S, we can sum it over all B∈S to obtain Eq.
(19).

∑B∈SP BjSð Þ ¼ n− 1−P AjSð Þ½ �∑B∈S
U Að Þ
U Bð Þ ð19Þ

The left-hand side of Eq. (19) is equal to one due to (1). Thus, we can rewrite Eq. (19)
as Eq. (20).

1−P AjSð Þ½ �∑B∈S
U Að Þ
U Bð Þ ¼ n−1 ð20Þ

A simple rearranging of Eq. (20) then yields model of probabilistic choice (5). Q.E.D.
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