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Abstract The experiment reported in this paper identifies the effects of experience
on revealed attitudes toward risk. Subjects in the experiment encountered an uncer-
tain risk of experiencing a negative income shock over multiple periods and were
able to purchase insurance at the start of each period. Subjects engaged in greater risk
taking, insuring less frequently, when faced with the same risk over multiple peri-
ods. Subjects weighted experienced outcomes proportionately, in a manner consistent
with rational Bayesian inference and contrary to the theory that individuals exhibit
recency bias. On the other hand, subjects assigned a greater weight to outcomes that
directly impacted their earnings compared to observed outcomes that had no effect
on income. Unexplained autocorrelation across subjects’ choices suggests that iner-
tia also plays an important role in repeated risk settings. I explore the relevance of
these findings to public policy aimed at influencing market outcomes in the presence
of infrequent environmental hazards.

Keywords Flood risk · Insurance · Bayesian learning · Recency bias · Inertia

JEL Classification C91 · D81 · D03

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s11166-017-9263-1) contains supplementary material, which is available to
authorized users.

� Andrew Royal
royal@rff.org

1 Resources for the Future, 1616 P St. NW, Washington, DC, 20036, USA

https://doi.org/10.1007/s11166-017-9263-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s11166-017-9263-1&domain=pdf
https://doi.org/10.1007/s11166-017-9263-1
mailto:royal@rff.org


42 J Risk Uncertain (2017) 55:41–69

1 Introduction

According to economic theory, insurance markets emerge in response to the will-
ingness of risk-averse consumers to pay a premium to be protected from costly
random events. Low voluntary demand for insurance covering flood (Dixon et al.
2006; Browne and Hoyt 2000) and earthquake (Palm and Hodgson 1992) damages,
often in the presence of discounted premiums, however, brings to question whether
households are insensitive to rare events.

Increasing numbers of homeowners moving to high-risk areas (Kunreuther and
Michel-Kerjan 2009) and a greater frequency of extreme weather events (Pielke and
Downton 2000) have led to increased damages resulting from natural disasters over
the past few decades. This happens as federal and state exposure to disaster risks
rises through subsidized insurance programs and a growing market share of state-
run residual insurance markets in high-risk states such as Florida (Kunreuther and
Michel-Kerjan 2009; Kunreuther and Pauly 2006). A better understanding of how
consumers react to repeated low probability risks can contribute to important pol-
icy discussions about the proper level of government subsidy and relief funding
(Shavell 2014), and the optimal structure of insurance contracts (Michel-Kerjan and
Kunreuther 2011).

Whether market behavior such as low insurance takeup results from households’
perceptions of risks is difficult to judge using only observational data from the field.
Some of the reasons for this include the difficulty in estimating the actual risk faced
by individual households, the confounding effect that regulatory institutions have on
market outcomes, and the difficulty in determining the causal relationships between
risk perceptions and risk mitigation. This paper avoids some of these obstacles by
studying risk-taking behavior in a controlled laboratory experiment that uses real
monetary risks to motivate thoughtful decision-making.

Subjects in the experiment owned multiple digital “properties” for one or more
“decision periods” and were told that the value of one of these properties at the
end of a given decision period would determine their final payment for participat-
ing. Each property had a chance of experiencing a “disaster” that could eliminate
either half or all of a property’s value, resulting in the subject earning a significantly
lower final payment. Given the information they received about each property, sub-
jects chose whether to purchase insurance coverage by paying a premium that was
deducted from their final payment. Subjects in the experiment chose whether to pur-
chase insurance while facing a “one-shot” risk and made a sequence of insurance
decisions while facing a repeated risk. In both settings, subjects learned about the risk
through experience. However, in the repeated choice setting, subjects learned directly
from experience because each experienced outcome had a potential impact on one’s
final income; in the one-shot setting subjects learned indirectly by observing a set of
past outcomes generated by the risk. I use several different modeling approaches to
understand how subjects learned about and respond to risks across different choice
environments.

Economists traditionally use models of rational belief learning in conjunction with
expected utility theory (EUT) to understand consumer behavior in the presence of
uncertainty. An EUT decision-maker responds to hazards by first forming beliefs
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about the probability that the hazard will occur and then weighing the expected bene-
fits of reducing hazard exposure against the cost of taking protective measures. EUT
combines naturally with models of belief formation that fall under headings such as
rational expectations, adaptive expectations, or Bayesian updating. These common
approaches share the assumption that individuals rationally integrate all available
information and act on beliefs that minimize expected prediction error.

Although this is often a reasonable and parsimonious approach to understand-
ing market behavior, its predictions are sometimes at odds with empirical studies of
insurance demand. Browne et al. (2015), for instance, compare the demand for flood
insurance and bicycle theft insurance using data from a German insurer and find
that there is an unexplained preference toward insuring against the higher-frequency,
lower-consequence bike thefts even after conditioning on the expected loss of both
hazards. The preference to insure against higher-frequency hazards runs counter to
EUT, which typically assumes that individuals are risk-averse and therefore should
have greater aversion to low-probability, high-consequence hazards.

There is also evidence that housing markets fail to capitalize flood risks into
prices of properties that reside in 500-year floodplains and that 100-year floodplains
respond disproportionately to recent floods that occurred within the preceding decade
(Atreya et al. 2015; Bin and Landry 2013). Insensitivity to low-probability flood risks
may be a consequence of households being uninformed about the hazard probabilities
and other details that are required to properly identify the costs and benefits of risk
mitigation (Palm and Hodgson 1992; Kunreuther and Slovic 1978). These are just
some of the reasons one might expect households to fail to live up to the predictions
of a rational theory of decision-making.

Prospect theory (PT) is a competing model for decision-making under risk that has
in many cases proven to be more robust than EUT in explaining decisions made by
subjects in laboratory environments. PT emerged out of commonly observed patterns
documented in a series of choice experiments (Kahneman and Tversky 1979; Tversky
and Kahneman 1992). One important finding supported by PT is that subjects in
laboratory experiments tend to overweight low-probability risks. If these findings
generalize, then we would expect insurance takeup for low-probability risks to exceed
insurance takeup for high-probability ones.

More recent laboratory studies, however, show that the pattern of overweight-
ing low probabilities observed in the original PT choice experiments occurs only
if subjects learn about risky prospects from description. In Kahneman and Tversky
(1979) subjects made a series of choices between two risky prospects, prospect A and
prospect B. For every one of these decisions, subjects received a complete descrip-
tion of the risk associated with each prospect (example: “Choose between A: $6,000
with 0.45 probability or B: $3,000 with 0.90 probability). While decisions made
in this setting (from description) produced evidence that subjects overweight low-
probability risks, Hertwig et al. (2004), Barron and Erev (2003), and Hertwig and
Erev (2009) show that this pattern reverses when subjects instead learn about risks
from experience.

These experiments studied decisions made from experience by observing how
subjects behaved as they learned about risk by sampling random outcomes from
unknown prospects— prospects for which subjects had no prior knowledge of the
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underlying probabilities. Subjects in Barron and Erev’s experiment made repeated
decisions about whether to be paid from one of two unknown prospects. After each
choice, subjects observed the random payment generated by each prospect and used
that information to inform their next choice. Hertwig et al.’s experiment allowed sub-
jects to randomly sample outcomes from each prospect before deciding which one
to select to count for payment. While Barron and Erev’s experiment studied learning
in a repeated choice setting, Hertwig et al. studied learning by observing one-shot
decisions. In both settings, subjects underweighted low-probability risks compared
with high-probability ones. The contrast between these findings and the overweight-
ing of low probabilities observed in the PT experiments is commonly referred to as
the “experience-description gap.”

The experiment reported in this paper documents only decisions made from expe-
rience: subjects made insurance choices based on an observed sequence of disasters.
Because subjects did not make comparable decisions from description and they
faced only relatively low-probability risks, the experiment is not a proper test of
the experience-description gap. It instead focuses on identifying specific features
of the learning process that uniquely influence decisions from experience and, per-
haps, explain why individuals underweight low probability risks in this setting. The
features I examine most closely are (1) attention to the recency of outcomes, (2) dif-
ferences in interpretation of direct versus indirect experience, (3) misinterpretation
of random outcomes using the representative heuristic, and (4) the tendency to repeat
prior choices.

Table 1 classifies three environments in which researchers typically study
decision-making under risk; it also shows which of these are included in the current
study and the responses to low-probability risks observed in prior studies pertain-
ing to each environment. The experiment reported here does include some element
of description (in addition to experience) in that subjects received some informa-
tion about the risk before observing a random sample of outcomes. This feature is
shared by an experiment reported by Jessup et al. (2008), who find that presenting
prior information to subjects makes them more sensitive to low-probability risks in

Table 1 How people respond to low-probability (LP) risk in different environments

Current study

I II III

Learning environment

Description X

Random sample X X

Choice environment

One-Shot X X

Repeated X

Examples from prior Kahneman and Tversky (1979) Hertwig et al. (2004) Barron and Erev (2003)

literature

LP-risk response Overweight Underweight Underweight



J Risk Uncertain (2017) 55:41–69 45

early decision periods, though underweighting nevertheless persists in later decision
periods.

There are some existing studies that draw a similar comparison between one-
shot and repeated choices. Erev et al. (2010) and Hertwig and Erev (2009) both
document consistent underweighting of low-probability risks across one-shot and
repeated choice environments. Erev et al. (2010) present results from a competition
to determine which model offers the best out of sample predictions of behavior in an
experiment where subjects chose among risky prospects in all three of the environ-
ments outlined in Table 1. They discover that a stochastic version of PT offers the
best predictions for decisions made from description and a weighted combination of
several different heuristic decision rules gives the best predictions for decisions made
from experience. In a similar study, Hau et al. (2008) compare model predictions for
decisions made from experience, giving special attention to heuristics subjects may
use for responding to repeated risks. They find that the most successful predictions
come from a two-stage version of PT and a maximax decision heuristic in which the
decision-maker simply selects the risky prospect with the most favorable experienced
outcome.

The current study focuses primarily on models that fit into the Bayesian expected
utility framework because these sorts of models serve as the foundation for the major-
ity of economic analysis used to inform policy. I combine Bayesian learning models
with a constant-relative-risk-aversion (CRRA) utility function to predict subjects’
choices. I propose several modifications of the Bayesian model that are motivated
by either empirical regularities or potentially fruitful theoretical hypotheses. Each
modification nests the standard Bayesian model as a special case. Beyond simply
determining which decision model provides the best statistical fit to subjects’ behav-
ior, I use the models to interpret how decisions and risk preferences are affected by
the choice environment.

The focus on modeling risk taking in a repeated exposure setting is what distin-
guishes this study from most previous experiments on insurance takeup. Examples of
studies that examine insurance choice in descriptive settings are Slovic et al. (1977)
and Laury et al. (2009). Interestingly, Laury et al. (2009) find that subjects in their
experiment preferred to insure against low-probability risks. This is perhaps a man-
ifestation of the experience-description gap, as participants in an experienced risk
insurance experiment reported in Ganderton et al. (2000) did the opposite by insur-
ing more against high-probability risks. Other experiments that examine insurance
choices in an experienced risk setting include Shafran (2011) and Meyer (2012). The
study by Meyer finds that recent losses are responsible for reductions in risk taking,
particularly if losses were unprotected. Subjects in Shafran’s experiment engaged
in greater risk taking for low-probability, high-consequence hazards than for high-
probability, low-consequence hazards with the same expected outcome. Shafran also
finds that recent losses were negatively correlated with subjects’ risk taking in sub-
sequent periods even though prior losses did not convey any information about the
underlying risk.

Subjects in the current study reduced their risk taking by purchasing insurance
more often following disasters, though model estimates show that subjects weighted
observed outcomes proportionately whether or not they occurred recently. There is no
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evidence that subjects exhibited recency bias, holding an irrational belief that more
recent events were more informative; increases in insurance takeup immediately fol-
lowing a loss were proportional to the increase one would expect from a Bayesian
expected utility maximizer. There is some evidence, however, that subjects weighted
directly experienced outcomes more heavily than those experienced indirectly. Unex-
plained autocorrelation in subjects’ choices, called inertia, also predicted decisions
in the repeated choice environment. Subjects were risk-averse on average, though
they appear to have been less risk-averse in the repeated choice environment than in
the one-shot setting. In Section 3.2.7 I discuss how the lower revealed risk aversion
in the repeated choice portion of the experiment could be a consequence of inertia
across choices. I conclude by discussing insights for public policy in Section 6.

2 Experiment design

The experiment took place in a computer lab, where subjects interacted with a
web-based interface that was designed using Qualtrics. Subjects made a total of 39
decisions about whether to buy insurance, reported their beliefs about the probability
of a disaster before each decision, and also made a series of choices used to deter-
mine their individual risk preferences. At the start of the experiment, subjects learned
that their final payment would be calculated based on one of three tasks: the Decision
Task, the Guess Task, or the Lottery Task. The Decision Task payment was based on
a randomly generated disaster outcome for a randomly selected decision period and
the subject’s choice of insurance coverage. The Guess Task rewarded subjects for the
accuracy of their reported beliefs that a disaster would occur during a given decision
period. The Lottery Task generated a random or fixed payment based on a subject’s
stated preference for a risky payment versus fixed payment.

The experiment was divided into three segments. The first two segments, the One-
shot round and the Repeat round, each contained a series of decision periods in which
subjects decided whether to buy insurance and predicted the likelihood of a disaster
occurring. The insurance premium varied across subjects: subjects faced either a low
premium of $2.25 (actuarially fair), a medium premium of $4.50, or a high premium
of $7.50. In the One-shot round, subjects made decisions and predictions without
receiving feedback so that there was no possibility of learning from past choices. In
the Repeat round, subjects received feedback about past outcomes associated with
each choice. The third segment of the experiment, the Lottery round, had subjects
make a series of decisions about whether to accept a lottery or a fixed payment. The
results from the Lottery round do not apply directly to research questions posed in
this article and will instead be discussed in a companion paper.

2.1 One-shot round

At the start of the One-shot round, subjects received instruction that they would own
eight different “digital properties,” each of which was worth $30. Each property had
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either a high (15%) or a low (5%) risk of experiencing a disaster each year. Each year
was equivalent to a single decision period. Subjects owned each property for only one
year, so they made a total of eight decisions in the One-shot round. Subjects knew
that each property could either be high-risk or low-risk, but did not know for certain
the risk associated with each. If a disaster occurred, subjects were told that the value
of the property would be reduced to either $15 or $0 with equal probability. For each
of the eight properties, subjects viewed a 19-year disaster history generated by the
risk associated with that property. These histories were randomly determined prior to
the experiment (see Table 5 in the Appendix for a complete list).

Given the uncertainty about risk, subjects could use the information conveyed by
the disaster history to infer the probability of a disaster in the current year—year
20. They used a slider bar to indicate their approximation of the probability that a
disaster would occur in year 20 and could receive as much as $4 and as little as $0
reward depending on the accuracy of their approximation. Instructions for guessing
rewards are available in the Online Appendix and were adopted from the quadratic
scoring rule described in Offerman and Sonnemans (2001). These guesses served as
a measure of subjects’ risk perceptions.

Each period’s Decision Task income was calculated as the value of the property at
the end of the current year, subject to a randomly generated disaster outcome based on
the property’s risk. Subjects had the option to buy insurance that would fully refund
any losses incurred from a potential disaster. The premium payment for insurance
would be deducted from the $30 income generated by the property. Figure 3 in the
Appendix shows an example of the decision screen displayed in the One-shot round.

Subjects received no immediate feedback about outcomes associated with their
properties during the One-shot round. If one of the properties of this round was
selected to count for final payment, subjects would learn the outcome only at the very
end of the session, prior to receiving payment.

2.2 Repeat round

During the Repeat round, subjects owned a single property, labeled their “Matched
Property,” for a total of 50 years.1 Subjects earned $30 in rental income each year
from their Matched Property. A disaster had the same effect, insurance had the same
price, and correct risk approximations were rewarded the same as in the One-shot
round. Each year corresponded to a decision period; however, subjects could not
purchase insurance until after year 19. The first 19 years followed one of the pre-
determined sequences listed in Table 5.2 The outcome for each subsequent year

1The term “Matched Property” was used to emphasize the fact that subjects would be matched with
the same property for 50 decision periods, in contrast with the One-shot round, where the property, and
associated risk, changed for each decision period.
2Which sequence the subject encountered in the Repeat round was varied between subjects, so that no
subject encountered the same sequence in both One-shot and Repeat rounds.
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was determined immediately following the subject’s decision, generated randomly
according to the Matched Property’s underlying risk. The Matched Property had the
same risk for all 50 years, and as in the One-shot round, this risk was either high
(15%) or low (5%).

The reason for removing the option to insure for the first 19 periods was to
generate a direct comparison of period 20 decisions between rounds. While in the
One-shot round the first 19 outcomes were merely observed as a sampled history,
subjects directly experienced these 19 outcomes during the Repeat round as each dis-
aster affected the income generated by their Matched Properties. This comparison is
important for identifying differences in the effect of direct versus indirect experience,
which I discuss in Section 3.2.3.

Figure 4 in the Appendix gives an example of a decision screen subjects encoun-
tered in the Repeat round. Each year the history table updated to include a log of past
disaster outcomes and income earned. There was also a dynamic bar chart indicating
the cumulative losses from past disasters and insurance payments. A key feature of
the Repeat round is that it provided subjects feedback regarding their past decisions
and random disaster outcomes. Subjects were instructed that each of these experi-
enced outcomes had a chance to be selected to count for their final payment and that
the probability of their property experiencing a disaster in a given year was indepen-
dent from outcomes in previous years. From a Bayesian perspective, the frequency
of previous disasters conveyed information about the future expected value of buying
insurance.

2.3 Subject comprehension

At the start of each session, subjects completed a series of tasks to ensure that
they each had a concrete understanding of the experimental environment. First,
the experiment began by asking three separate comprehension questions designed
to test the participant’s understanding of probabilities (questions are listed in the
Online Appendix). The experiment platform prevented subjects from starting the
experiment until they answered all three comprehension questions correctly. All
subjects successfully completed the test without issue. Subjects also received two
handouts, each containing tables and charts illustrating how their payments would
be calculated for the Decision Task and Guess Task. This information was also dis-
played on the web-based platform at the beginning of the experiment; the handouts
served as a supplemental reference. Before beginning the One-shot round, subjects
completed a practice round where the relationship among their insurance choices,
their approximations, and their final payment was explained in detail.

2.4 Survey

At the end of the experiment subjects answered a three-question cognitive reflection
test (CRT), a measure found to be correlated with IQ and intertemporal preferences
(Toplak et al. 2011). They also reported sex and college major.
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3 Theory

3.1 Insurance choice

Each period in the experiment a participant earns income of size W and faces a
chance of experiencing a wealth-destroying disaster with probability p. A partici-
pant’s future income is defined over a two-state vector (W, W −L), where L denotes
the losses incurred by a disaster. The subject can insure by paying a premium r to
fully indemnify against any losses caused by a disaster. An insured subject’s future
income is W − r in both states.

According to EUT, people make insurance choices that maximize their expected
utility U—a value representing one’s level of satisfaction. People receive posi-
tive utility from income so that dU/dW > 0; and they are risk-averse under the
assumption that d2U/dW 2 < 0. The expected utility from choosing not to insure is
E[U(W ; θ)|c = 0] = (1 − p̂)U(W ; θ) + p̂U(W − L; θ), where p̂ denotes one’s
belief about the probability a disaster will occur, θ denotes one’s risk preferences,
and c : c ∈ {0, 1} represents the decision of whether or not to insure. Expected util-
ity from choosing to insure is E[U(W ; θ)|c = 1] = U(W − r; θ). A subject in the
experiment maximizes utility by choosing to insure whenever

U(W − r; θ) ≥ E[U(W ; θ)|c = 0].
To allow for some unobserved variation in subjects’ preferences, this model can

be modified by applying an i.i.d. error term ε to each decision, so that the probability
that a subject insures is q : q = Pr(U(W − r; θ) − E[U(W ; θ |c = 0] ≥ ε). The
probability that a subject i insures at time t is then expressed by

qit =
∫

I [U(W − r; θ) − Eit [U(W ; θ)|cit = 0] ≥ ε] dG(ε),

where I [·] is an indicator equaling 1 when its argument is true and G(·) is the random
distribution of unobserved utility.

Subjects who are risk-averse buy insurance to reduce their exposure to negative
income shocks L, and may choose to do so even if premiums exceed the expected
payout of the policy. However, the fact that U is increasing in income implies that
subjects are less likely to insure when it is priced with a higher premium. EUT
also predicts that subjects insure more frequently as p̂ increases because this (1)
increases the variance of income when uninsured and (2) raises the expected pay-
out of the insurance. The effect of increased income variance applies only to persons
who are risk-averse, though the increase in expected payout acts as an incentive to
buy insurance regardless of risk preferences.

3.2 Dynamics in risk taking

Choosing whether to insure is essentially making a choice between a risky prospect
and a safe one. When subjects make insurance decisions from description, they



50 J Risk Uncertain (2017) 55:41–69

possess full information about the distribution of the risk, implying that p̂ = p.3

By assuming an EUT framework, one can therefore infer subjects’ underlying risk
preferences by observing the insurance choices they make from description. Insur-
ance choices made from experience, however, may be influenced by incomplete
knowledge of the probabilities associated with a risky prospect: p̂ �= p. When epis-
temological concerns arise, choices are likely to reflect variation in the interpretation
of experiences as well as variation in risk-preferences.

3.2.1 Bayesian beliefs - p̂B

If subjects are perfectly rational then they consider the set of experienced outcomes
and calculate p̂ using Bayes’ rule. Bayes’ rule states that for two random events A

and B, Pr(A) ·Pr(A|B) = Pr(B) ·Pr(B|A). The Bayesian posterior probability of
a disaster D occurring at period t is p̂B(t) = p̂H

B (t)·Hp+(1−p̂H
B (t))·Lp, whereHp

and Lp represent the high and low probability risks of disaster. These probabilities
are weighted by the Bayesian belief at period t that one is either high-risk p̂H

B (t)

or low-risk 1 − p̂H
B (t). Each period these beliefs update by applying Bayes’ rule to

calculate the probability of existing in the high-risk state conditional on the observed
history of experienced outcomes. After some simplification, this yields the following
rule for calculating the probability of disaster:

p̂B(t) = Lp + (Hp − Lp)

1 + (Lp/Hp)y1t ((1 − Lp)/(1 − Hp))y0t
. (1)

The observed or experienced outcomes in period t are represented by a variable
Dt , which equals one if a disaster occurs at period t and zero otherwise. These out-
comes enter into the Bayesian updating function through the variables y1t and y0t ,
which are calculated as follows:

y1t =
t−1∑
τ=1

Dτ , (2)

y0t = t − 1 − y1t . (3)

In the experiment the values for Lp and Hp are 0.05 and 0.15 and both states are
equally likely prior to any experience. The Bayesian probability therefore begins at
p̂B(0) = 0.1 and subsequently updates for each of the 50 periods of the Repeat round,
or it is applied to the 19 sampled outcomes revealed prior to decisions during the One-

3There is, however, substantial evidence that people weight probabilities idiosyncratically (Tversky and
Kahneman 1992) and behave differently when risk is ambiguously described (Ellsberg 1961). Neverthe-
less, these tendencies are better understood as manifestations of preference or perception rather than a
reflection of incomplete information.
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shot round. Though this particular updating rule is tailored to the simple environment
encountered by subjects in the experiment where one may be either high-risk or low-
risk, the Bayesian framework applies analogously under more realistic conditions in
which risk types are more numerous or even continuous.

It is optimal for subjects to apply Bayes’ rule when updating beliefs based on
experienced outcomes because p̂B minimizes the expected squared error between
one’s perceived risk and one’s true risk: p̂B ∈ minp̂ E[(p̂ − p)2]. Subjects may,
however, make systematic errors when applying Bayes’ rule to update beliefs based
on experience. In the remainder of this section I consider three different modifications
of the Bayesian updating function that account for possible errors in belief updating.
I also discuss a modification to the utility function that yields novel predictions for
decisions made from experience.

3.2.2 Memory - p̂M

Individuals evaluating risky prospects from experience may choose to interpret an
event differently depending on how recently it occurred. One possibility is that people
place a greater weight on more recent events. The effect of biased attention toward
recent events on risk mitigation is explored by Volkman-Wise (2015), who presents
a model of demand for catastrophe insurance in which buyers overweight posterior
probabilities that are representative of recent catastrophic outcomes. Buyers in the
model tend to overvalue insurance immediately following a rare catastrophic event
but tend to undervalue it before the event occurs. For rarely occurring events such
as severe floods or earthquakes, disproportionately weighting more recent outcomes
therefore has the overall effect of diminishing risk mitigation efforts and insurance
takeup.

There is some empirical evidence that households overweight recent events when
deciding whether to buy flood insurance. Using annual market data from the National
Flood Insurance Program (NFIP), Gallagher (2014) reports that flood insurance
penetration within a given county increases 8 to 9% in response to a recent Presi-
dential Disaster Declaration for a flood affecting that county. The impact of these
floods on demand, however, quickly diminishes over time and disappears completely
after about 10 years. By comparing this observed behavior with predictions from
a Bayesian learning model, Gallagher concludes that the transient nature of these
demand shocks makes sense only if homeowners disproportionately place a greater
weight on more recent events. Lack of hazard experience over a prolonged period
may conversely reduce insurance coverage. NFIP records from Florida show that of
the 985,000 flood insurance policies-in-force in the year 2000, only about 370,000
were still in force by 2005, as homeowners allowed their policies to lapse (Michel-
Kerjan and Kousky 2010). These empirical findings lend some credence to the idea
that recency bias is responsible for an underweighting of low-probability risks.

To accommodate the possibility that subjects weight a disaster event differently
depending on its recency, I modify the Bayesian learning function to include a behav-
ioral parameter φ, representing a subject’s memory of past events. The memory
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parameter φ enters into the calculation of y1t and y0t to generate the belief p̂M(t).
Let the modified values of y be denoted ỹt1 and ỹt0, such that

ỹ1t =
t−1∑
τ=1

φt−τ−1Dτ , (4)

ỹ0t =
t−1∑
τ=1

φt−τ−1 − ỹ1t . (5)

If φ = 1, subjects weight all periods equally so that p̂M = p̂B . A value of φ less
than one means that subjects apply disproportionately more weight to recent events,
whereas a value greater than one means they apply less weight to recent events.4

3.2.3 Direct experience - p̂X

Proximity or degree of direct exposure may also affect how one interprets one’s past
experience with a risk. In contrast with the 8 to 9% takeup in flood insurance Gal-
lagher observes for counties directly affected by a major flood, neighboring counties
experienced only a 2 to 3% increase. The disparity in takeup for those not directly hit
by floods is consistent with results from surveys in which households report higher
perceptions of flood risks given closer proximity to recent flooding events (Kellens
et al. 2013). The gap in perceptions may reflect a tendency for people to place a
higher weight on information gathered through personal experience (Anderson and
Holt 1997) or to simply pay less attention to events that only affect others (Van Boven
and Loewenstein 2005). In a similar vein, Viscusi and Zeckhauser (2015) find that
perception of morbidity risks associated with tap water is influenced more by con-
tracting an illness oneself than it is by learning about illnesses contracted by one’s
friends. They conclude that direct experience has a greater impact on risk perception
than indirect experience.

Motivated by these empirical findings, I estimate the following modification on the
Bayesian model to identify potential differences in the effects of disasters observed
from direct versus indirect experience:

ỹ1t =
t−1∑
τ=1

φt−τ−1Dτ + α

t−1∑
τ=1

φt−τ−1DX
τ , (6)

ỹ0t =
t−1∑
τ=1

φt−τ−1 + α

t−1∑
τ=1

φt−τ−1xt − ỹ1t . (7)

The variables xt and DX
τ take on values 1 when outcomes and disasters are experi-

enced directly and 0 when they are not. In the experiment, direct experience happens
whenever the outcome of a period has a potential impact on a subject’s final income,

4Shafran estimates a similar model using subjects’ decisions in a repeated risk task. A key difference in
his model is that the memory parameter weights the effects of both prior outcomes and prior choices,
whereas the memory parameter expressed in Eqs. 4 and 5 weights only prior outcomes. The weighting of
prior choices represents the persistence of choice inertia effects, which I model in Section 3.2.6.
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as is the case in the Repeat round. Outcomes observed in the One-shot round, in
contrast, do not affect subjects’ earnings and are therefore classified as indirect expe-
riences. The parameter α is the additional weight applied to direct experience. If α

equals zero, then direct and indirect experiences are perceived equally; if α is greater
(less) than zero, direct experiences are weighted more (less) than indirect ones. The
model also includes the φ parameter so that it nests the memory model discussed in
the previous section.

3.2.4 Representative heuristic - p̂N

A person using the representative heuristic may overestimate the extent to which the
distribution of a small sample of outcomes should be representative of the underlying
distribution. For example, upon observing the outcome of six consecutive coin flips
returning either heads (H) or tails (T), people regard the sequence H-T-H-T-T-H to
be more likely than the sequence H-H-H-T-T-T (Tversky and Kahneman 1974). The
presence of streaks in outcomes violates people’s notion that small sets of outcomes
should “locally” represent the 50–50 chance of either heads or tails. The gambler’s
fallacy is one important manifestation of this type of thinking. Using the coin-flip
example, the gambler’s fallacy is defined as the tendency to falsely believe an H
outcome is more likely after observing a streak of T outcomes even though all flips
are statistically independent. The hot-hand fallacy can also emerge from the flawed
perception of local representativeness. The hot-hand fallacy, deriving its name from
its prevalence in perceptions of basketball free throws (Gilovich et al. 1985), refers
to the overreliance on small samples to draw conclusions about future outcomes.
Because streaks are deemed unlikely to result from random chance from the locally
representative point of view, the hot-hand fallacy can lead people to make improper
inferences about the underlying distribution of outcomes, such as concluding that the
coin producing a streak of T outcomes is unfairly weighted to favor the T side.

To account for the influence of local representativeness and its associated heuris-
tics on subjects’ decisions in the experiment, I adopt a model of such behavior
outlined in Rabin (2002). Rabin’s model simulates local representativeness by assum-
ing decision-makers perceive random outcomes as though they were drawn without
replacement from a finite urn of size N . For example, in the experiment subjects who
perceived themselves to be high risk would view disasters as if they were drawn from
an urn containing 0.15N disaster outcomes and 0.85N safe outcomes. The urn peri-
odically “refreshes” its finite set of outcomes after a certain number of periods. In
the experiment, I denote the last refresh period at period t as t0. The representative
heuristic therefore implies the following modification to the updating rule:

ỹ1t =
t−1∑
τ=t0

Dτ , (8)

ỹ0t = t − t0 − ỹ1t . (9)

I assume that the size of the urn is 20 and that it refreshes once every 9 periods.
These parameters correspond to estimates of Rabin’s model using experimental data
reported in Asparouhova et al. (2009). The model applies in a straightforward manner
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to the experiment reported here. For instance, at periods t = 21 and t = 30, the
values for t0 are 18 and 27.

3.2.5 Beta-Bernoulli - p̂E

In the experiment p is distributed according to a simple binomial distribution so that
it takes on the values 0.05 or 0.15 with equal chance. However, for decisions made
in more complex natural hazard environments, the distribution of p is not always so
straightforward to discern and, even if it is, people may ignore or fail to properly inte-
grate descriptive information about the distribution of p into their beliefs. Often in
empirical applications where the distribution of a hazard probability p is unknown,
researchers assume that risk perceptions follow a Beta-Bernoulli process. One can
find examples of this modeling approach applied in research on perceptions of flood
risks (Gallagher 2014), health risks (Viscusi and O’Connor 1984; Davis 2004), envi-
ronmental risks (Viscusi and Zeckhauser 2015), and driving risks (Andersson 2011),
to name a few.

In a Beta-Bernoulli model, the posterior of p is governed by a Beta distribution
and the expected value of p given this distribution is

p̂E = y1t + a

t + a + b
. (10)

The parameters a and b represent the prior belief about the risk before subjects
observe any outcomes. Because subjects are told that the prior risk is 0.1, it must be
true that a/(a+b) = 0.1, implying b = 9a. Therefore, a is the only free parameter in
the model. It represents the strength of the prior: a greater (lower) value of a implies
that beliefs update with lower (greater) magnitude following observation of outcomes
generated by p. The purpose of estimating the Beta-Bernoulli model is to determine
how well it fits the choice data compared with the properly specified Bayesian model,
p̂B . The results of this comparison could be relevant to field research that assumes
the adequacy of the Beta-Bernoulli model in describing risk perceptions, although
the “true” Bayesian specification remains unknown.

3.2.6 Inertia - I

Nevo and Erev (2012) propose a model of behavior in which decision-makers fac-
ing a repeated choice among unknown risky prospects engage in three activities:
exploration, exploitation, and inertia. In exploration mode a decision-maker selects
alternatives randomly and in exploitation mode one selects the alternative with the
highest subjectively estimated payout. Inertia describes the tendency for decision-
makers to simply repeat previous decisions without considering changes in the
expected payoffs. Whereas exploration and exploitation describe a process compati-
ble with belief updating and utility maximization, inertia seems to represent more of
an anomaly.

The tendency to repeat recent choices may arise from several different behavioral
motivations. Subjects may fail to update beliefs properly in repeated risk environ-
ments and thereby fail to update choices accordingly. If this is the case, then inertia
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may be understood through modifications to the belief-updating process, such as
those discussed in the previous sections. Inertia may also result from a decision-
maker simply choosing not to revise decisions based on newly acquired information.
This may happen if the cognitive costs of revising the decision outweigh the expected
benefits, or it may also reflect a bias toward the status quo (Kahneman et al. 1991).
In either case, these behaviors motivate an extension of the EUT framework.

I determine the effect of inertia on choices made by subjects in the experiment by
estimating the following model:

U(Wit , cit ) = u(Wit ) + δ

t−1∑
τ=1

φt−τ−1ciτ . (11)

The function u(·) represents the CRRA consumption utility the subject receives
from income W . The introduction of the second term means that the subject’s deci-
sion utility also depends on choices made in previous periods. If δ = 0 then past
choices have no effect on current choices and there is no inertia. If δ is greater (less)
than zero, then there is positive (negative) inertia across repeated choices. That is,
a positive δ means that (not) insuring in the previous period makes one more (less)
likely to insure in the subsequent period regardless of risk preferences or possible
changes in risk perceptions. The inertia effect of previous choices decays according
to the parameter φ.

3.2.7 Inertia and underweighting of low-probability risks

Although commonly observed in studies of repeated choice under risk (Erev and
Haruvy 2013), inertia has received little attention as a possible explanation for
underweighting low-probability risks. In theory, however, inertia can indeed bias
decision-makers toward selecting low-probability risky prospects in repeated risk
environments.

To understand the connection between inertia and underweighting of low-
probability risks, consider the following illustration. A representative agent encoun-
ters a hazard that occurs with fixed probability p at times t = 0, 1 and 2 and decides
whether to purchase insurance to protect against the hazard at times t = 1 and 2. Sup-
pose the agent uses a simple decision rule for buying insurance such that if the hazard
occurred at time t − 1 the agent insures at time t with probability q : q ∈ (0, 1], and
if no hazard occurred at t − 1 the agent never insures at t . Therefore, the probability
that the agent insures at each time t = 1 and 2 is given by pq. Now suppose that
at time t = 2 the agent experiences inertia from his previous choice such that the
probability he insures at time 2 is given by pq − δ(1 − c1), where ct : ct ∈ {0, 1}
represents the agent’s choice to insure at time t and δ : δ > 0 represents the degree of
inertia, assuming that choices are positively autocorrelated. The expected probability
that the agent insures at time 2 is therefore given by

pq − δ(1 − pq).

Notice that the term in the expression representing the influence of inertia, −δ(1−
pq), is both negative and increasing in the value of p. This implies that inertia reduces
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the agent’s likelihood to insure at time 2 and its negative impact is greater for low-
probability risks. A low-probability risk implies a greater likelihood that the agent
will experience a negative inertia effect from choosing not to insure at t = 1.5 In a
repeated risk environment, therefore, inertia is more likely to increase risk taking for
low-probability risks than it is for more frequent ones.

4 Data

UC Irvine’s Experimental Social Science Laboratory (ESSL) and Claremont’s Center
for Neuroeconomics Studies (CNS) both served as locations for the experiment. Par-
ticipants were recruited from email databases of volunteers who expressed interest
in participating in experiments. All participants were students at UC Irvine and the
Claremont Colleges. Subjects received a $7 minimum payment for participation and
additional earnings ranging from $0 to $30. The total sample consisted of 156 sub-
jects who participated over eight different sessions. Subjects took 35 to 45 minutes
to complete the experiment and on average earned $17.25.

A total of 23 subjects participated in the low premium treatment, 9 in the medium
premium treatment, and 124 in the high premium treatment.6 I sampled the high pre-
mium at a disproportionate rate because preliminary pilot results suggested that this
treatment induced the greatest within-subject variation in choices. Sufficient within-
subject variation in insurance choices is needed to identify which factors influence
changes in risk taking in a repeated choice setting.

5 Results

Insurance takeup rates were 46%, 50% and 78% among the high, medium, and low
premium groups. Takeup among subjects was positively affected by the number of
disasters they experienced or observed. Columns (1), (2), (4) and (5) of Table 2 report
marginal effect estimates for a logit regression with insurance choice as the depen-
dent variable. The estimates show the effect of an increased Bayesian posterior belief
(p̂B ) in the likelihood of a disaster, which is calculated by applying Bayes’ rule to the
experienced outcomes for a given subject in a given period. A one percentage point
increase in the Bayesian posterior corresponded to a two to four percent increase
in probability of insuring (p < .01). An increase in the premium between subjects
reduces takeup by about 4.6 percentage points for each dollar increase (p < .01),
implying that subjects had a negatively sloped demand curve for insurance.

5One can also reframe the example so that choosing to insure at t = 1 imparts a positive inertia effect on
the probability of insuring at t = 2. The probability of insuring at t = 2 would then be pq(1 + δ). The
same comparison with respect to p still obtains because lower probability risks now imply diminished
chances of receiving positive inertia from insuring at time 1.
6Subjects in the low premium treatment completed only 45 periods in the dynamic round and did not
complete a post-experiment survey.
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The choice environment appears to have influenced subjects’ risk-taking behav-
ior. Insurance takeup conditional on experience was 8 to 10 percentage points higher
in the One-shot round than in the Repeat round (p < .05). Column (3) uses a linear
probability model to estimate the effect of lagged choices on the current insurance
choice during the Repeat round while controlling for subject fixed effects and expe-
rience as measured by p̂B . Choices were indeed positively autocorrelated even after
controlling for experience (p < .01), suggesting that inertia predicted risk taking in
the Repeat round.

Columns (4) to (6) of Table 2 repeat the regressions reported in the first three
columns, replacing the Bayesian posterior with subjects’ stated beliefs, or guesses,
represented by the symbol p̂SB . On average, a 1 percentage point increase in stated

Table 2 Determinants of insurance purchase

(1) (2) (3) (4) (5) (6)

p̂B 3.590*** 3.758*** 2.516***

(0.375) (0.406) (0.362)

Premium −0.046*** −0.049***

(0.013) (0.017)

One-shot 0.087** 0.097** 0.080** 0.097***

(0.035) (0.039) (0.032) (0.035)

CRT −0.004 −0.021

(0.024) (0.037)

Female 0.122** 0.086

(0.048) (0.060)

ct−1 0.119*** 0.103***

(0.015) (0.014)

ct−2 0.051*** 0.043***

(0.015) (0.014)

ct−3 0.015 0.009

(0.015) (0.014)

ct−4 0.003 −0.010

(0.015) (0.014)

ct−5 −0.008 −0.017

(0.015) (0.014)

p̂SB 1.018*** 0.990*** 0.972***

(0.071) (0.071) (0.036)

N 5,969 5,187 4,721 5,969 5,187 4,721

* p < 0.1; ** p < 0.05; *** p < 0.01

All regressions include period fixed effects. Standard errors are clustered at the subject level for logit
regressions (1), (2), (4), and (5). Columns (3) and (6) report coefficients for a linear probability model
with subject fixed effects. The linear model allows for more simple interpretation of marginal effects while
controlling for subject fixed effects
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Table 3 Determinants of stated
belief (1) (2)

p̂B 1.227*** 1.214***

(0.186) (0.213)

Premium 0.017***

(0.006)

One-shot 0.058*** 0.063***

(0.013) (0.015)

CRT 0.008

(0.012)

Female 0.052*

(0.028)

N 5,969 5,187

* p < 0.1; ** p < 0.05; ***
p < 0.01

All regressions include period
fixed effects and random effects
across subjects. Standard errors
are clustered at the subject level

belief corresponded with a 1% increased likelihood of insuring (p < .01). Coeffi-
cients on other covariates remain roughly the same when using p̂SB rather than p̂B .
This is because p̂SB is significantly correlated with p̂B (p < .01), as is reported in
Table 3. Table 3 shows the estimates of a linear regression with p̂SB as the depen-
dent variable. Subjects stated higher perceived risk in the One-shot round than in the
Repeat round (p < .01). Interestingly, subjects also stated higher perceived risk in the
higher-premium treatments (p < .01), suggesting that they may have understood the
premium as a signal for the underlying risk. Subjects nevertheless purchased insur-
ance less frequently at higher premiums, implying that price sensitivity dominated
any potential signaling effects.

Incorporating survey results shows that female participants were more risk-averse:
takeup among females was 8 to 12 percentage points higher conditional on experi-
ence (p < .05).7 Females also reported higher risk perceptions on average than males
(p < .1). Scores on the cognitive reflection test were not correlated with insuring
behavior or risk perceptions.

Figure 1 depicts the evolution of insurance takeup rates and perceived risk for
both the high- and low-risk groups during the Repeat round. At period 20 the high-
risk group started at 57% takeup while the low-risk group started at 44%. As one
would expect, takeup between groups diverged as each group learned more about
their true risk: by period 50 the high-risk group had 64% takeup while the low-risk
group takeup was only 27%.

It is also noteworthy that the median perceived risk typically stayed within the
correct bounds for rational Bayesian inference and even approached the true risk
(0.05 and 0.15) in later rounds for both the low- and high-risk groups. In contrast,
mean stated beliefs for the low- and high-risk groups were 0.18 and 0.22, well above

7Note that the regression including the survey variables has fewer observations and does not control for
the insurance premium. The reason for this is that surveys were not added to the experiment until after low
premium treatment was completed, so no survey data are available for the 23 subjects who encountered
the low premium.
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Fig. 1 Changes in insurance takeup and perceived risk across the repeated choice round.
The gray dots represent individual subjects’ stated beliefs for a given period and are jittered to improve
visualization. The black dotted lines show the true probability for the group represented, while the gray
dotted lines show the risk for the other group as a reference
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the rational boundary of 0.15. This apparent overestimation in large part owes to the
fact that guessing “0.50” was the modal response among subjects, an observation that
is visually detectable in panels (b) and (c) of Fig. 1. It is unclear why “0.50” was such
a popular response; it is perhaps a default selection for subjects who chose not to
dedicate cognitive effort toward correctly guessing their risk. As a result, the median
stated belief among subjects performs much better at approximating the true risk or
rational Bayesian beliefs than does the mean stated belief.

5.1 Structural estimates

To gain a deeper understanding of the learning process underlying subjects’ insurance
decisions, I estimate the parameters of the models described in Section 3.2. I assume
that the unobserved utility affecting subjects’ decisions is extreme value distributed
so thatG(ε) is a logistic distribution and the probability of subject i insuring in period
t is

qit = eλU(W−r;θ)

eλU(W−r;θ) + eλEit [U(W ;θ)|cit=0] .
The predicted choice probabilities therefore depend on the values assigned to each

alternative by the utility function, the perceived disaster probability p̂ used to form
expectations, and a weighting parameter, λ. The weighting parameter is inversely pro-
portional to the variance of ε and is estimated simultaneously with the risk aversion
parameter from the utility function and whichever parameters generate p̂. I retrieve
parameter values using a Nelder and Mead maximum likelihood algorithm that finds
the parameters that maximize the joint log likelihood function implied by the model
and subjects’ insurance choices. Standard errors were calculated by taking the square
root of the diagonal elements of the Hessian matrix used in the algorithm.8 The
algorithm is scripted in the mle2 package for R.

The assumed CRRA utility function has a parameter of relative risk aversion θ and
takes income W as its argument. CRRA utility is expressed by the power function
U = u(W) = W 1−θ /(1−θ) for θ �= 1, and u(W) = ln(W) for θ = 1. The parameter
θ is the Arrow-Pratt measure of relative risk aversion, where θ = 0 indicates risk
neutrality, θ > 0 risk aversion, and θ < 0 risk seeking.

The perceived probability of disaster enters into qit by determining the expected
utility given that one is uninsured: Eit [U(W)|cit = 0] = p̂(i, t)U(W − L) + (1 −
p̂(i, t))U(W). The values for W and L are 30 and 22.5 in the experiment (L is
calculated as the expected loss given that a disaster occurs). The parameters and data
used for calculating p̂ are outlined in Section 3.2 and vary depending on the learning
model that one assumes. Table 4 reports the parameter estimates for each model.

Estimates of the CRRA coefficient θ range from 0.7 to 0.89 under various spec-
ifications of the risk learning model. Using stated beliefs as the basis for decisions
during the Repeat round, however, implies a much lower estimate of 0.27, likely
owing to frequent overestimation in stated risk perceptions. All estimates are signif-
icantly greater than zero, demonstrating that subjects were risk-averse on average.

8The details of this method are discussed in Section 8.7 of Train (2009).
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Estimates of θ for the standard Bayesian (p̂B ) and memory (p̂M ) models were both
0.86 in the One-shot round and were 0.76 and 0.77 in the Repeat round. The lower
values of θ in the Repeat round show that subjects revealed lower risk aversion in the
repeated choice setting. This result is consistent with the regression analysis finding that
subjects insured more in the One-shot round conditional on experienced outcomes.

The memory model gives identical predictions to those of the standard Bayesian
model; the estimate for φ is statistically indistinguishable from one in both the One-
shot and Repeat rounds. The result of a log-likelihood test verifies this claim: adding
the φ parameter does not generate a statistically significant increase in the value
of the joint log-likelihood associated with the Bayesian model. Subjects appear to
have acted rationally in this regard, weighting outcomes equally whether or not they
occurred recently.

There is also no evidence that the representative heuristic (p̂N ) offers a bet-
ter explanation of subjects’ choices than the standard Bayesian model. The log-
likelihood ratios (LL-Ratios) for the Bayesian model are 0.16 and 0.07 for the
One-shot and Repeat rounds, whereas the representative heuristic model produces
ratios of 0.09 and 0.02. The LL-Ratio is calculated as one minus the log-likelihood
of the model divided by the log-likelihood implied by random choice in which q is
the unconditional probability of insuring. A higher LL-Ratio results from the model
providing a better statistical fit to the choice data.

Each of the learning models predicted choices better in the One-shot round than in
the Repeat round. Models that appeared in both rounds achieved LL-Ratios ranging
from 0.09 to 0.3 in the One-shot round while having ratios between 0.02 to 0.14 in the
Repeat round.Bayesian risk estimates and subjects’ stated beliefs, therefore, were better
at explaining One-shot insurance choices than repeated choices with the same risk.

The poorer performance of the risk learning models in the Repeat round may be a
consequence of unexplained autocorrelation in subjects’ insurance choices. Indeed,
the estimated inertia model (I ) has a value of δ significantly above zero, indicating
that choices were positively autocorrelated. More recent choices had a greater influ-
ence: the estimate of φ is less than one at standard significance levels. There is also
reason to believe that inertia may explain the gap in revealed risk aversion between
the One-shot and Repeat rounds. The risk coefficient θ implied by the inertia model is
0.85, which is statistically indistinguishable from the estimate of 0.86 implied by the
Bayesian model using One-shot choices but greater than the estimate of 0.76 using
the Repeat choices. This result supports the hypothesis that inertia leads to lower
revealed risk aversion: only controlling for inertia closes the estimated risk-aversion
gap between rounds (see Fig. 2).

Estimates from the direct experience model (p̂X) provide additional evidence that
subjects’ insurance decisions were influenced by factors not accounted for in the stan-
dard Bayesian model. I estimate the effect of experience by pooling decisions made
at period 20 in both the One-shot and Repeat rounds. I limit the analysis to period
20 decisions because outcomes after period 19 in the Repeat round are endogenous,
thereby weakening the direct comparison of the effect of random outcomes across
environments. The estimated value of α is 2.88, implying that experienced outcomes
weighed about three to four times more heavily on subjects’ risk perceptions. The
results of a log-likelihood test confirm that the addition of a parameter accounting
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Fig. 2 Estimates of risk aversion - θ .
The whiskers represent 95% confidence intervals for each estimate. The dark horizontal black line
serves as a reference for the estimated value for the Bayesian model using One-shot choices. RH is an
abbreviation for representative heuristic

for direct experience significantly increases the fit of the Bayesian expected utility
model.

The Beta-Bernoulli model performs similarly to the properly specified Bayesian
model, achieving LL-Ratios of 0.16 and 0.07 in the One-shot and Repeat rounds. The
estimate of a is roughly the same across rounds, suggesting that prior beliefs had
equal strength in each choice environment.

6 Discussion

It is noteworthy that subjects’ decisions did not reflect a biased attention toward
more recent outcomes. Experiments reported in Shafran (2011) and Meyer (2012)
suggest the contrary, though these papers provide only reduced form evidence of
so-called recency bias, whereas this study provides more concrete structural estima-
tion of the influence of recency.9 The results also add additional perspective to the
observed tendency of flood insurance takeup and property prices to respond primarily
to recent floods (Gallagher 2014; Atreya et al. 2015; Bin and Landry 2013). Clearly
there are important differences in decisions made in a laboratory environment versus
the decisions faced by actual market participants. However, if the findings from this
experiment do generalize across settings, the priority that markets assign to recent
disasters is perhaps best understood as a consequence of highly diffuse priors over
environmental risks rather than an indication of recency bias.

Alternatively, disproportionate attention to recent events could persist among
property owners directly impacted by disasters. Indeed, survey research suggests that
“affect” based communication of flood risk, which often uses imagery to simulate

9Shafran does report structural estimates for an adaptive learning model, but not for a strictly Bayesian
one.
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direct experience with a disaster, is the most effective way to encourage disaster pre-
paredness (Kellens et al. 2013). In the experiment, the importance of salience and
affect is evidenced by the fact that subjects weighted directly experienced outcomes
more heavily than those that they merely observed. Similarly, property owners are
likely to weight statistical evidence of local flood risks less than personal experi-
ences with floods. There is, however, little evidence supporting the hypothesis that
the behavior of directly impacted individuals drives changes in aggregate demand for
goods such as flood insurance. Kousky (2017) and Gallagher (2014) find that, con-
ditional on the issuing of a disaster declaration, variation in the damages attributed
to a recent disaster has little to no effect on subsequent changes in county-level
flood insurance takeup. To the extent that damages are a proxy of direct experience,
it appears that the effects of direct experience may be insignificant compared to
changes in flood insurance demand caused by standard belief updating. The degree
to which the direct experiences of a subset of market participants influences changes
in aggregate demand would be an interesting topic for future research.

The role of inertia in predicting individuals’ willingness to take risks is another
finding that seems worthy of further investigation. The reasons behind the observed
inertia in subjects’ choices could, admittedly, be quite trivial. For example, sub-
jects may have experienced fatigue and simply repeated previous decisions to save
effort. One would not expect such fatigue to have the same influence on decisions
made in more natural settings, where risk taking involves higher stakes and decisions
are more spread out over time. Nevertheless, there are still other reasons to suspect
inertia to take place outside the laboratory. A household may delay purchase of insur-
ance for reasons related to status quo bias (Johnson et al. 1993; Cai et al. 2016). If
homeowners are present-biased, then the initial costs of engaging risk mitigation or
preparedness could deter them from taking such measures even if they accurately per-
ceive the benefits of risk reduction as outweighing the associated costs (O’Donoghue
and Rabin 1999). Present bias could therefore lead to procrastination in risk-reducing
efforts, which would manifest as inertia in risk-taking behavior.

What policy insights can be gathered from these results? The absence of recency
bias suggests that communication of flood risk should be focused more on convey-
ing to property owners the devastating consequences of flooding rather than trying to
correct perceptions about the probability of experiencing a flood. An example of this
approach is discussed in Kousky and Michel-Kerjan (2015), who suggest improving
flood risk communication by placing a greater emphasis on historical claims data
that illustrate how disastrous floods can be. There are at least two ways to mitigate
possible market distortions caused by inertia. If inertia results from procrastination,
or present bias, then engagement in risk preparedness measures could be increased
by lowering upfront costs households must bear to adopt these measures. Substitut-
ing upfront costs for future costs has, for example, been shown to effectively reduce
procrastination in household savings contributions (Thaler and Benartzi 2004) and
increase charitable giving (Breman 2011). Alternatively, inertia can be exploited
by making enrollment in risk mitigation programs a default option for households.
Michel-Kerjan and Kunreuther (2011) offer a suggestion along these lines, proposing
that annual flood insurance policies offered by the NFIP be substituted for multi-year
contracts so that homeowners are more likely to stay insured year-to-year.
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Appendix A: Additional Tables & Figures

Table 5 Predetermined disaster
sequences Sequence Period(s) Disaster(s) Bayesian Rotated

Occur(s) Posterior between

Rounds

A 3 7.88% X

B 19 7.88% X

C 4 7.88%

D 6, 12, 13 13.20%

E – 6.08%

F 12,13 10.76% X

G 5 7.88%

H 9, 17 10.76% X

I 3, 4, 5, 9, 10 14.81%

Appendix B: Selected screenshots

(See Online Appendix for full instrument.)

Fig. 3 Example of One-shot round decision screen
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Fig. 4 Example of repeated choice round decision screen
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