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Abstract The performance of rank dependent preference functionals under risk is
comprehensively evaluated using Bayesian model averaging. Model comparisons are
made at three levels of heterogeneity plus three ways of linking deterministic and
stochastic models: differences in utilities, differences in certainty equivalents and
contextual utility. Overall, the “best model”, which is conditional on the form of het-
erogeneity, is a form of Rank Dependent Utility or Prospect Theory that captures
most behaviour at the representative agent and individual level. However, the cur-
vature of the probability weighting function for many individuals is S-shaped, or
ostensibly concave or convex rather than the inverse S-shape commonly employed.
Also contextual utility is broadly supported across all levels of heterogeneity. Finally,
the Priority Heuristic model is estimated within a stochastic framework, and allow-
ing for endogenous thresholds does improve model performance although it does not
compete well with the other specifications considered.
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1 Introduction

There is a long history of research questioning the validity of Expected Utility Theory
(EUT), with many economists wishing to apply non-EUT theories to problems relat-
ing to decisions under risk. Within the literature some degree of consensus appears
to have emerged that probability weighting models such as Prospect Theory (PT)
or Rank Dependent Utility (RDU) offer the best alternative to EUT (Wakker 2010;
Fehr-Duda and Epper 2012). Yet, while the scope for applications of PT and RDU is
increasing (see Barberis 2013, and Shleifer 2012), the growth of empirical applica-
tions is arguably less than one might expect given their theoretical prominence. One
potential reason is that the range of parametric variants of these theories can itself
be baffling, and perhaps may inhibit their adoption. Therefore, this paper reconsiders
the appropriate selection of parametric specifications of choice under risk within the
gain domain.

While there is plenty of evidence that most economic agents do not seem to
unerringly use probabilities as summative linear weights to utilities of outcomes,
what they actually do remains the subject of debate. Leading critics of EUT include
Kahneman and Tversky (1979) and more recently Rabin (2000) and Rabin and Thaler
(2001), who consider the weight of evidence against EUT sufficient to label it an ‘ex-
hypothesis’. In contrast, Birnbaum (2006) argues a case against probability weighting
of the PT form, and more recently, the unfavourable implications for EUT from the
concavity-calibration argument of Rabin (2000) have been challenged by Cox and
Sadiraj (2006) and Cox et al. (2013) on the grounds that calibration arguments lead to
equally problematic implications for nonlinear probability weighting. Furthermore,
models in which outcomes are weighted by functions of probabilities have also been
challenged at the process level (Fiedler and Glöckner 2012).

The understanding that emerges from the literature is further muddied by the fact
that individuals may use different (and multiple) strategies. For example, Bruhin et al.
(2010) report results that indicate that at least 20% of respondents in their experi-
ments can be classified as EUT types, while Harless and Camerer (1994), and Hey
and Orme (1994) have presented analysis of a range of theories and models suggest-
ing that no one theory clearly outperformed all others. There is also the important
question about how best to nest what are ostensibly deterministic theories within a
stochastic setting. As Hey and Orme (1994) observed, while the issue of “noise”
has often been treated as an ancillary one, it deserves greater attention such as the
research presented by Wilcox (2011).

In practice, for applied researchers examining decision making under risk the
implications of the above for conducting research come down to a choice of appro-
priate functional forms. Thus, the choice of functional forms to be employed to
operationalise the theory is key and even if researchers narrow the range of candidate
models to within the PT or RDU class,1 they face an enormous set of potential mod-
els. Furthermore, the literature is still unable to give definitive advice in this regard
mainly because there are so many potential combinations of functional forms that

1We use PT to mean its cumulative variant which is sometimes termed Cumulative Prospect Theory.
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are used to model the different aspects such as value (utility), probability transfor-
mations and those linking the deterministic models to stochastic outcomes. Each of
these model aspects interacts with others to determine overall model performance and
there is a need to understand how different model aspects perform in combination.

The data employed here is from Stott (2006), which to date provides one of the
most comprehensive studies of the performance of a range of functionals charac-
terising PT in the gain domain.The results reported in Stott are frequently cited for
the choice of functionals employed in PT/RDU research (e.g., Bruhin et al. 2010).
Unlike Stott (2006) we employ a Bayesian approach to the analysis of this data. The
analysis in Stott (2006) and Booij et al. (2010) are typical in that they have been
conducted from a classical perspective using maximum likelihood as the estima-
tion method. However, serious issues emerge in deciding on an optimal combination
of functional forms when there are so many combinations of competing specifica-
tions. Also, as noted by Booij et al. (2010) the wrong choice of a functional form
can result in contamination and bias of other estimates of parameters. In this paper,
we exploit the advantages of Bayesian Model Averaging (BMA) which provides an
internally consistent and coherent approach to this type of modeling problem. Like
Stott (2006), we examine a large number of functional forms at the individual as well
as the aggregate level. Furtermore, we examine and compare specifications based on
the Contextual Utility approach developed in Wilcox (2011), a generalisation of the
Priority Heuristic (PH) developed in Brandstätter et al. (2006), and the Transfer of
Attention Exchange (TAX) weighting function of Birnbaum and Chavez (1997). The
TAX and PH models are examined as they are viewed as alternatives to PT/RDU and
in both cases positive experimental evidence has been presented.

The difficulty in deciding on an optimal specification for this type of problem
stems from the very large model space. Classical pairwise comparison of nested mod-
els can be made using a range of standard tests (e.g., Likelihood Ratio, F, Wald)
providing appropriate adjustment is made for cases where parameters lie on the edge
of the parameter space or alternatives are restricted to a subset of possible values
(e.g. Andrews 1998). Classical non-nested models can also be tested using the meth-
ods developed by Vuong (1989) and others.2 However, when the number of potential
models is very large, pairwise testing implies an extremely large number of tests,3

whereby the transitivity of these tests is not assured in finite samples (Findley 1990).
This means that an unambiguous ranking of models is difficult. Information criteria
(IC) offer an alternative way to evaluate models. However, while IC are additive over
individuals (when models are estimated at the individual level), the formal basis for
using them as model weights is through their asymptotic approximation of logged
marginal likelihoods. The use of IC in Bayesian Analysis of Classical Estimates has
been motivated by the desire to avoid informative priors (e.g., Sala-i-Martin et al.
2004). Yet as shown in Fernandez et al. (2001) the choice of alternative g-priors leads
to asymptotically different IC, which rather weakens the claim that using IC means

2See Pesaran and Weeks (2007) for an overview.
3There are (n-1)n/2 combinations, which for the current paper means that the number of pairwise
comparisons are of the order 109.
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that one is less dependent on priors. In contrast, full BMA yields an internally consis-
tent and coherent approach to this problem, if priors can be provided. In the context
of PT, we believe that there is substantive theoretical and previous empirical evidence
that give a basis for setting these priors, and we examine this in detail.

We are also concerned here with explicitly recognising that model selection may
depend on whether one is seeking an overarching model that explains aggregate
behaviour, or whether one is seeking models that allow heterogeneity in behaviour.
As discussed in Andersen et al. (2008), arguments for and against models have
sometimes been implicitly or explicitly based on the idea of a ‘representative agent’
where it is assumed that there exists a common model of behaviour across all
individuals both in the preference functionals and forms and the parameters that char-
acterise those functionals (e.g., Brandstätter et al. 2006). However, what has been
insufficiently recognised is that choosing one specification that best represents all
individuals is a different task from choosing multiple specifications that represent dif-
ferent groups of individuals. Different people may do different things when it comes
to making decisions. For example, it is possible that some may employ a heuristic
like the PH, and others adhere to PT. In this paper, we recognise that optimal model
specification may differ depending on whether the researcher seeks a model that per-
forms best when applied to all individuals, or whether one is interested in explaining
individuals’ behaviour. Importantly, there may be models that do extremely well in
explaining the behaviour of a subgroup of individuals, but do very badly if applied to
all individuals.

When parametric models are being estimated, there are three levels of heterogene-
ity that are commonly applied. Level 0 is where individuals share functional forms
and have the same parameters values (i.e., the representative agents). Level 1 is where
individuals share functional forms but with potentially heterogenous parameter val-
ues. And Level 2 is where individuals need not share functional forms or parameter
values.

Heterogeneity in parameters can be introduced, in a limited sense, by allowing the
parameters to be conditioned on covariates, but more general models include those
that are either a latent class model (or finite mixture of distributions) or a random
parameter (or Hierarchical Bayes) approach (e.g., Nilsson et al. 2011). Heterogene-
ity in models can be introduced using the weighted likelihood approach outlined in
Harrison and Rutström (2009) and related approaches in Bruhin et al. (2010) and
Conte et al. (2011). In contrast, a number of papers, (e.g., Hey and Orme 1994;
Birnbaum and Chavez 1997; and Stott 2006) have estimated multiple models at the
individual level. This approach is flexible in terms of model estimation, but also
requires large amounts of information to be collected at the individual level. Studies
that have pursued this approach typically offer a very large number of choices (e.g.,
100 or more) to each person. While an individual specific approach is flexible, it is
clearly less than optimal if there is an overarching framework that is able to allow
heterogeneity on one hand, but allows the pooling of information across individuals
to estimate parameters that are common to all.

In this paper, we consider the model performance at all three levels which involves
estimating models at the representative agent level (Level 0) and the individual level
(Level 2). Inference about Level 1 specifications can be examined by using the
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Level 2 models, and calculating the log marginal likelihoods with the common model
restrictions imposed. That is, there is no additional estimation required for Level 1
models, once all Level 2 models have been estimated.

The paper proceeds by describing general framework and specific models in
Section 2. Section 3 discusses our approach to model comparison and model
estimation. Our results are presented and discussed in Section 4 and Section 5
concludes.

2 Model descriptions

The choices under risk that are evaluated within this paper were elicited using a
gamble format with a discrete number of payoffs (see Stott 2006, for specific details).
The prospect (g) is of the form

gi =
(
{pik}Ki

k=1 , {xik}Ki

k=1

)
(1)

where {pik} are the probabilities and {xik} are the monetary payoffs where, without
loss of generality, it is assumed that they have been ordered xi1 ≥ xi2, .... ≥ xiKi

.
In the empirical part of the paper Ki = 2 for all prospects, but we shall discuss the
theory more generally.

Common to all economic models used to examine this type of data is the idea that
there is, to some degree, compensatory behaviour (i.e., respondents make trade-offs)
with regard to both the payoffs in the prospects and the probabilities of obtaining
those payoffs. As such we refer to this general class of models as compensatory. In
this sense PT/RDU and TAX are compensatory models.

In contrast, within the psychology literature the idea that people apply heuristics
(i.e., a decision process) that do not necessarily imply such trade-offs is common-
place. A popular example of a heuristic is the PH introduced by Brandstätter et al.
(2006). Although the PH has proven very popular within the literature it has been the
subject of criticism as well (see Birnbaum 2008, and Brandstätter et al. 2008).

Note we will refer to the non-TAX, non-linear compensatory models as being PT
models. Also as we are dealing with models in only the gain domain, there is nothing
really to distinguish PT models from RDU models, subject to the fact that payoffs
are not be evaluated relative to wealth, but around a reference point of zero. However,
for simplicity we shall use the term PT only.

2.1 Compensatory specifications

The compensatory models specified in this paper are defined by four key com-
ponents. We refer to these as ‘aspects’ of the model and they are: i) Value v; ii)
Probability weighting (P-weight) w; iii) Inner Link λ̃; and, iv) Outer Link λ̄.

Each aspect may take a number of specific functional ‘forms’ from a defined set:
v ∈ V , w ∈ W ; λ̃ ∈ �̃ and λ̄ ∈ �̄.4 Each form of each aspect has a particular

4Note that in this paper we employ the term “Link” in a different manner than that used in Stott (2006)
who refers to the “choice” function, which corresponds to what we call the outer link.



166 J Risk Uncertain (2015) 50:161–187

parameter space except for the Inner Link which does not contain any free parameters
(i.e., they cannot be defined differently by setting parameter values).

In this paper we will (as we outline below) combine six v with seven w, three λ̃

and five λ̄. Therefore, the number of combinations is 6× 7× 3× 5 = 630. However,
because the constant probability λ̄ is dependent only on the sign (not magnitude)
of the signal from the deterministic component, models with this λ̄ are invariant to
the nature of the λ̃, so the actual number of models we estimate is slightly smaller,
549 once the three PH models are taken into account. These 549 models need to be
estimated at the representative agent level, and for every individual in our sample for
Level 2 models, thus requiring approximately 50,000 models to be estimated in total.

2.1.1 Value forms (v-forms)

The v aspect evaluates the preference for a monetary amount that will be given with
certainty. We employ six forms commonly encountered in the literature:

POWER-I : v (x) = xα1 : α1 > 0 (2)

EXPO-I : v (x) = 1 − e−α2x : α2 > 0

LOG : v (x) = ln (1 + α3x) : α3 > 0

QUAD : v (x) = x − α4x
2

2
: α4 > 0, α4 <

2

xmax

POWER-II v (x) = (α5 + x)α6 : α5 > 0, α6 > 0

EXPO-II : v (x) = 1 − e−α7x
α8 : α7 > 0, 0.5 < α8 < 1.5

For all of our v-forms, the set of parameter restrictions ensures that the value
function is always monotonically increasing. This is obvious for POWER-I, EXPO-
I and LOG. For the functional form QUAD, xmax is the largest payoff out of all the
prospects, and the parameter restrictions ensure that the function is monotonically
increasing in value over the range of the data. Also, in our analysis x is normalised by
dividing through by xmax prior to estimation such that x only varies between 0 and 1.

We also note that some of the v-forms appear in the literature with different names.
For example, the POWER-II is also referred to as the Hyperbolic Absolute Risk Aver-
sion function, and the EXPO-II is the Power-Expo-Utility function. However, since
our set of restrictions on these value forms are somewhat more restrictive than those
applied in the literature, we use the terms above to signal that they are generalisations
of the POWER-I and EXPO-I.

2.1.2 P-weight forms (w-forms)

The w aspect transforms the probability of obtaining the monetary amount into some
other measure that lies between 0 and 1. All the w-forms operate on the cumulative
probability function except the TAX model of Birnbaum and Chavez (1997) which
operates on the probabilities of the ranked outcomes. Assuming the prospects have
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been ordered as xi1 ≥ xi2, ..., ≥ xiKi
then the probability weights are constructed

directly on the probabilities (rather than the cumulative distribution)

TAX:
w (pi) = p

β3
i − 1

n+1

∑n
j=i+1p

β3
i + 1

n+1

∑i−1
j=1p

β3
j∑

j p
β3
j

: 0 < β3 < 2
(3)

For PT w-forms yield the weighting based on the cumulative or decumulative
distributions and take the form

w1 = w (p1)

and (4)

wj = w

⎛
⎝

j∑
i=1

pi

⎞
⎠ − w

⎛
⎝

j−1∑
i=1

pi

⎞
⎠ for j = 2, ....Ki

where

PRELEC-I : w (p) = e
(−(− ln(p))β1

)
: 0 < β1 < 2 (5)

K&T : w (p) = pβ2

(
pβ2 + (1 − p)β2

) 1
β2

: 0.27 < β2 < 1

LINEAR : w (p) = p

POWER : pβ4 : 0 < β4 < 2

PRELEC-II : e
(−β5(− ln(p))β6

)
: 0 < β5 < 2, 0 < β6 < 2

G&E : β8p
β7

(
β8pβ7 + (1 − p)β7

) : 0 < β7 < 2, 0 < β8 < 2

The LINEAR probability form is included in our analysis because of its signifi-
cance in terms of corresponding to the EUTmodel. We wish to assess its performance
relative to the other models that have proven popular in the literature.

Our K&T specification could have an extended parameter space, but its lower
bound ensures that the weight is monotonically increasing in p (Ingersoll 2008) and
the upper bound imposes the inverse-S (IS) behavior restriction (with linearity at
the edge of parameter space). We imposed this restriction so we can specifically
investigate a w-form with the IS condition imposed. This type of transformation
was supported by Tversky and Kahneman (1992), as being the predominant form of
behaviour, but has been challenged by others (e.g., Birnbaum and Chavez 1997, and
Harrison et al. 2010) who provide evidence of S-shaped behaviour. A comprehensive
overview of the empirical evidence supporting IS probability weighting is provided
by Wakker (2010).

The IS condition is not imposed on the other w-forms (e.g., PRELEC-I, II, G&E5

and POWER), although the former two can be either IS or S-shaped. The lower
bounds for these forms are required so that the weights are monotonically increasing
in probability, and upper bounds for these forms are not particularly restrictive in the

5We take this nomenclature from Stott (2006). G&E is an abbreviation of Goldstein and Einhom (1987).
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sense that they allow for a wide variety of behaviour, but are still useful in ensuring
that our estimates are convergent.

2.1.3 Inner and outer links

The purpose of the links are to determine the probability that one prospect (gi) will
be preferred to another

(
gj

)
. We also adopt this approach, but explore some alterna-

tive specifications. The literature generally only refers to having one link (or choice)
function, but we consider it useful to think of it as being a composite function com-
posed of an Inner and Outer link. The link aspects take the signal determined by the
v-form and w-form aspects to yield a probability that an individual will choose a
given prospect.6

Given common forms of (v, w) these may be combined in various ways to enter
the link in different ways. Therefore,

(
v, w, gi, gj

)
combine to give, ui = hv,w (gi)

and uj = hv,w

(
gj

)
, which we shall term the ‘utilities’ of the prospects (as distinct

from the values or ‘utilities’ of the payoffs within the prospects). If one adopts a
particular PROBIT or LOGIT link form, there is still a choice as to how to com-
bine the utilities within the ‘Outer Links’. Thus, the link is a composite function,

λ
(
v, w, gi, gj

) = λ̄
(
λ̃

(
ui, uj

))
, composed of the Inner Link (λ̃) and Outer Link (λ̄).

Inner link forms (λ̃-forms) The majority of studies to date have used the difference
between utilities as the Inner Link (i.e. λ̃

(
ui, uj

) = ui − uj ). We investigate this
approach as well as the difference in certainty equivalents and the contextual utility
approach of Wilcox (2011). Wilcox introduced the contextual utility approach for a
number of reasons. First, is the observation that affine transformations of the same
Value form do not necessarily lead to the same utility differences. Second, utility dif-
ferences are not monotonically related to the degree of risk aversion perhaps casting
doubt on how well a given model will be identified. Third, if one seeks a stochas-
tic generalisation of the idea that one individual is more risk averse than another,
then utility differences do not lead to such a definition, whereas under the conditions
outlined in Wilcox (2011) such a definition can be obtained, though this definition
requires individuals to have the same w-forms and parameters. Wilcox (2011) pro-
vides further evidence that the contextual approach is superior to the difference in
utilities, but we are not aware that there has been any study that has compared it to
the difference in certainty equivalents also.

We define the Inner Link to be a latent variable representing one of three quantities
where each is calculated as:

• UTILITY: �u = ui − uj are the differences in utility across the two prospects
• C-UTILITY: �c = (

ui − uj

)
ϕ−1

ij where ϕij = v
(
xupper,ij

) − v
(
xlower,ij

)
and

xupper,ij and xlower,ij are the highest and lowest payoffs over prospects i and j

6In the case of PT v and w take different forms in the gain and loss domains (and more generally may be
asymmetric around a given reference point). In this study we only consider the gain domain.
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• C-EQUIV: �e = ei − ej are the differences in certainty equivalents where
ei = v−1 (ui) and ej = v−1

(
uj

)

Outer link forms (λ̄-forms) If we take y = 1 as the indicator function that an
individual selects the prospect with the higher UTILITY, C-UTILITY, or C-EQUIV,
then the Outer Link is a function F (y = 1|ψ, �) = Pr (y = 1|ψ, �) which can take
several forms.

LOGIT : F (y = 1|ψ1, �) =
(

eψ1�

1 + eψ1�

)
: ψ1 ≥ 0 (6)

PROBIT : F (y = 1|ψ2, �) = 1 − 	(ψ2�) : ψ2 ≥ 0

where 	 is a standard normal cdf

CONSTANT : F (y = 1|ψ3, �) = ψ3 if � > 0 and 1 − ψ3

if � ≤ 0 where 0.5 ≤ ψ3 ≤ 1

BETA-I + (BETA-II) : F (y = 1|ψ4, �) = 1 − Cbeta∗ (
y = 1|ψ4, �, ū, l̄

)

(where Cbeta∗ is a cumulative beta distribution)

The LOGIT, PROBIT and CONSTANT λ̄-forms have been commonly used as
stochastic links in the literature, but the BETA link has not been investigated, at least
in the way that is being used within this paper. The BETA link has two forms with
BETA-II being a generalisation of BETA-I. The motivation for these two Outer Links
is derived from the fact that the utilities from gambles can, under one rationalisation,
be viewed as bounded from above and below. But, being bounded need not matter
depending on interpretation. For example, in a pure ‘trembles’ setting, the individual
may nearly always report their non-stochastic preference, except for occasions where
they lapse. However, if one views the choices as arising from a subjective distribu-
tion of utilities or certainty equivalents, then the subjective distributions of these are
bounded by the upper and lower levels in the prospects.

2.2 The priority heuristic

The PH can be described as follows. A respondent compares the lowest payoffs
between two prospects. If the difference between these is greater than ((ϕ1 ×100)%)

of the highest payoff over the two prospects, they choose the one with the highest
minimum payoff. Otherwise, they compare the probabilities of the two lowest pay-
offs. If the higher of these probabilities is ϕ2 more than the lower, they choose the
prospect with the lower probability. Otherwise, they compare the highest payoffs
between the two prospects and choose the one with the higher payoff. If they have
not made a decision, they choose randomly. The choice of ϕ1 and ϕ2 in Brandstätter
et al. (2006) was ϕ1 = 0.1 (i.e. 10%) and ϕ2 = 0.1. These thresholds were set on the
basis of what respondents were used to dealing with in a decimal system.

The PH is typically employed in a deterministic setting. However, it can also be
used in a stochastic setting by estimating the probability p that the choice indicated
by the PH is chosen by the individual (p > 0.5). That is, it has a constant probability
link as outlined above. Once this has been assigned then the likelihood function for
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the individual is defined. Additionally, the thresholds used in the standard PH, ϕ1 and
ϕ2, can be treated as estimable parameters.

As well as offering a number of criticisms of the PH, Andersen et al. (2010) argue
that such an approach is ‘ad hoc’ and that restrictions would need to be placed on
the model to allow estimation of the likelihood. However, we found no problems
in estimation providing bounds are set relatively narrow for the parameters, which
nonetheless represented a considerably more flexible parameterisation than the non-
stochastic version.

In this paper, we implement three versions of the PH model. The first (PH-0) is
with the thresholds ϕ1 and ϕ2 being set exogenously at 0.1, the second (PH-I) where
both are allowed to vary according to ϕ1 = ϕ2 = ϕ where ϕ is estimated, and the
third (PH-II) where ϕ1 and ϕ2 are estimated and not constrained to be equal, thus
nesting both PH-0 and PH-I. ϕ1 and/or ϕ2 were constrained to lie within the interval
(0.01 and 0.20) in the generalised models.

2.3 Model reparameterisations and prior distributions

Within the Bayesian approach prior distributions need to be specified for all param-
eters in a model. For a model using the marginal likelihood, these priors need to be
proper, and to some extent informative. In general, the prior distributions should have
mass in regions in a way that reflects prior knowledge and beliefs. However, since
prior knowledge and beliefs differ between people, these priors are usually set in a
relatively diffuse way. With relatively diffuse priors, the data will quickly dominate
the prior, providing the data is itself informative. Here we parameterise our models
by populating them with parameters ϑ with normal priors, where the parameters of
interest (θ) are transformations of ϑ (see Appendix A1).

2.3.1 v-form parameter priors

In setting the priors for the v-form parameters, we need to emphasise the way in
which the parameter changes the curvature of the v-form. Simply imposing equal
prior probability values for the parameters could lead to priors giving high weight to
regions that we consider unlikely. Therefore, before considering the priors for each
of the v-forms it is useful to examine the Pratt risk coefficient (henceforth pc) (see
Appendix A2).

Recalling we normalise x so that it lies within the unit interval, then based on the
pc, the curvature at any given point is related to the various coefficients in Eq. 2
in very different ways. For example, since the utility forms must be monotonically
increasing functions in x, which follows from the various constraints we impose on
αi, then for the POWER-I form, pc is bounded from above (at 1

x
) but not from below.

The greatest curvature for any given value of α2 is found for low values of x, but
must be less than one at the largest value of x (x = 1) . The LOG form has a pc that
is bounded between 0 and 1

x
, thus, it shares the same upper limit as the POWER-I

form, whereas the EXPO-I form pc does not vary with x. The QUAD on the other
hand has a lower bound at −1

1+x
and upper bound at 1

1−x
. Thus, it has the greatest

convexity at low levels of x, but the highest possible concavity at the upper end of x.
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With regard to the parameters α1, α2, and α3 each of these are bounded by zero
but have no upper limit. For these parameters, we set the prior distributions with the
majority of the mass over regions that we consider plausible, but are relatively diffuse
so as not to dominate the influence of the data. In doing so, we set an upper and
lower bound for which a specified percentage of the mass that lies above and below
these values. The parameters α2 and α3 are positively related to concavity, while α1
is negatively related to concavity. However, with log-normal priors, we can just as
easily think in terms of the reciprocals of α2 and α3 since these are also log-normal.
That is, in setting the distributions for α2 and α3 we can immediately deduce the
distributions of their reciprocals or vice versa.

The POWER-I form offers a useful starting point because previous studies can be
used to infer a prior distribution for α1 without reference to the scaling of x. Gener-
ally, previous studies have commonly found values of α1 (see Stott 2006, Table 5) as
low as 0.225 and as high as 0.89. However, these are aggregate estimates, whereas for
individuals there is likely to be a greater degree of variability. At the individual level
there must be scope for some individuals to display convexity. Therefore, we set our
prior to have Pr (α1 < 0.1) = .10 and Pr (α1 < 2) = .90. This equates to having
75% of the prior mass in the concave region. Thus, the POWER-I form displays sig-
nificant concavity, but only at relatively low values of x (e.g. α1 = 0.1, x = 0.1 has
pc = 9). This distribution also has relatively cumulative high density at points close
to zero (representing approximate risk neutrality).7

The prior for EXPO-I requires concavity like the POWER-I form at lower values
of x. Thus, the distribution for α2 needed to be more diffuse than for α1. On the other
hand, no finite level of variance for α2 can make it as concave for sufficiently small
values of x. Thus, we set the prior distribution to have Pr (α2 < 0.1) = .10 and
Pr (α2 < 10) = .90.

For the QUAD, the parameters must lie between the boundaries -1 and 1 with
coefficients having a lower bound at −1

1+x
and an upper bound at 1

1−x
. Thus, it has

greatest convexity at low levels of x, but the highest possible concavity at the upper
end of x. The prior we adopted here assigned 75% mass on the concave region with
an approximately linearly decreasing mass as we move from concavity to convexity.

For the two parameter v-forms (POWER-II and EXPO-II) the same priors were
adopted for α5 and α7 as for α2 and α3 respectively. Then, for α6, we note that the
POWER-II form increase in curvature decreases rapidly, particularly at lower levels
of x. Therefore, for α6, we specified a log-normal with 50% of the mass below 0.5
and 10% of the mass above 1. For the EXPO-II form the parameter α8 was specified
a bounded prior between 0.5 and 1.5 but with the highest density at 1.

7For the LOG and EXPO-I functions if the parameters are to be equal (α2 = α3) and to achieve the same
level of concavity (if α2 < 1

x
) α3 needs to be higher. In effect, the prior for α3 should be more diffuse with

a higher mean unless the aim was to construct a prior supporting risk neutrality. However, we see that for
values of α3 equal to 100, we have a value at r that exceeds 99% of its possible value whereas at 10 it is
at least equal to 90% of its possible value. We therefore placed 1% of the mass above 100 and 10% below
0.1, resulting in a relatively small shift in the mass above 10, at 13% rather than the 10% for the EXPO-I
function.
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2.3.2 w-form parameter priors

All parameters for thew-forms were parameterised using the bounded transformation
being set to conform to the inequalities presented in Appendix A1. The mean and
variance were set so that the implied priors were for the transformed normals and
were approximately uniform.

2.3.3 λ̄-form parameter priors

For the λ̄-form priors, the parameters ψi (i = 1, 2) were given log-normal priors so
that 0.01 percent of the prior mass was below 0.0001 and 99% of the prior mass was
below 100. The prior for ψ4,1 was also set in this manner and ψ4,2 was specified to
be approximately uniform on the interval (0,1) and for the constant probability, the
prior was set so that it was uniform between 0.5 and 1.8

3 Bayesian model comparison and model estimation

3.1 What do we mean by the word “Model”?

In this paper, the word ‘model’ refers to the quadriplet mr =
(
vr , wr, λ̃r , λ̄r

)
(where

vr ∈ V , wr ∈ W and λ̃r ∈ �̃, λ̄r ∈ �̄) unless it is the PH (of which there are three
variants) and where r is a specific model. Therefore, models are indexed by r with the
set of all models being contained in the set R = (1, ....., #R). However, the model
spaces may be limited to subsets ofR which we call R, which contain #R elements.
Therefore, a model is defined when it is populated by a set of aspect forms, but where
the parameters need not be set. For each model, there is a set of parameters specific
to the model with different parameter supports. We shall denote the collection of
all these parameters for a given model as the vector θr (or θn,r where applied to
individual n) where each model generates a parameter support 	r . The probability of
choosing one prospect relative to another is dependent on the pair (mr, θr ). The term
‘model’ can be ambiguous, since it can sometimes be used to refer to mr alone, and
sometimes to the pair (mr, θr ). Here we refer to mr as the model, since it is useful to
be able to say that two individuals have the same model even though they may differ
in their parameters.

3.2 Marginal likelihoods, Bayes ratios and model probabilities

The Marginal Likelihood (ML) is a distinctly Bayesian quantity, the calculation of
which provides the basis for model comparison (through Bayes Ratios) and model

8Some expost sensitivity analysis was performed on these priors. For example, the two parameter proba-
bility weightings were re-estimated by doubling and halving the prior variances. These had no substantive
impact on the results herein.
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averaging. The calculation of the ML is common practice in Bayesian economet-
rics, with a considerable literature devoted to its calculation and use. However, as the
purpose of this paper is not to introduce unfamiliar readers to this approach, we rel-
egate a fuller discussion of the construction of the MLs and associated statistics to
Appendix A3.

In general, MLs can be defined at Levels 0, 1 and 2, and can be constructed to
compare singular models or classes of models. In our model comparisons, we cal-
culate and employ the quantities lj (N , R) which represents the logged Marginal
Likelihood (LML) for all individuals (N ) for a given model space R at Level j

(j = 0, 1, 2). Within the paper the set R will usually be a model class defined by a
particular aspect form (the model class is, therefore, a limited subset of R called R).
For example, RA could refer to all the models with the POWER-I v-form and RB

the set of models with the QUADRATIC v-form. Alternatively, RA and RB can be
defined by the absence of these forms. A comparison of lj (N , RA) with lj (N , RB)

enables a comparison between these two sets of models (with the larger being pre-
ferred) where there has been averaging over the other model aspects (w-forms and
links). For example, we can make a determination about how the POWER-I v-form
compares to the QUADRATIC v-form, which is not conditional on a specific w-form
or link.

The Bayes Ratio supportingRA overRB at level j is exp(lj (N , RA)−lj (N , RB))

So, for example, a Bayes Ratio of 10 would, under uniform model priors, indicate
that the model space with the higher LML was relatively 10 times as likely compared
to the model with the lesser LML.

In our empirical section, we report Logged Bayes Ratios (LBR) since the raw
Bayes Ratios can be very large. The reported LBRs are the difference between the
LML where a given aspect form has either been solely included or excluded and the
LML is where all combinations of aspect forms are allowed (the unrestricted model
space MR).

We also calculate and present the individual model probabilities (πn,R). These
can be interpreted as the probability that a model class R should be applied to an
individual n, and we present πn,R in the form of histograms for key model classes.
These probabilities are also used to produce model averaged estimates of “quantities
of interests” such as �, which we use to estimate an individual’s probability for the
w-form.

3.3 Model estimation

Adaptive Monte Carlo Markov Chains (MCMC) (see Andrieu and Thoms 2008)
were used to estimate all models. This followed from an investigation of a subset
of models estimated on a subset of individuals, which initially used a random walk
Metropolis Hastings algorithm (see Koop 2003). While this algorithm converged
quickly for most model-individual combinations, the mixing of the sampler was slow
for a small proportion of models. While the parameters of interest are non-normal,
each of the parameters is expressed as a function of a parameter with a normal prior,
which suggested that a multivariate normal proposal density would be an appropri-
ate choice for an MCMC independence chain. Investigation of the output from the
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randomwalk samplers also confirmed that the posterior distributions (for the untrans-
formed parameters) could be approximated by normals. Therefore, our approach to
estimation used an initial phase to finding proposal densities, followed by another to
estimate the parameters (see Appendix A4 for details).

3.4 Model comparison strategy

Our approach to model comparison takes account of the three different levels of
heterogeneity (j = 0, 1, 2) discussed in the Introduction. The results reported in
Tables 1 and 2 are LBR for the model sets defined by the sole inclusion (in Table 1)
or exclusion (in Table 2) of a given aspect form at Levels 0, 1 and 2. Sole inclusion
means that all forms within a given aspect have been excluded from the model space
other than the one listed in the label column. Exclusion means that a particular aspect
form is no longer part of the model space. We have taken this approach to model
comparison as the sole inclusion and exclusion comparisons address slightly different
questions in relation to model comparison:

• The inclusion approach asks whether a particular aspect form can adequately
replace all the forms within that aspect; and,

• The exclusion approach asks whether a particular aspect form can be replaced
by the collection of other forms within the aspect.

As part of the model comparison exercise we report the LML values for the unre-
stricted model space (MR) for each heterogeneity level at the bottom of Tables 1
and 2. These estimates are l0 (N,R) = −4206.09, l1 (N,R) = −3531.26 and
l2 (N,R) = −3633.92, and they can be used in conjunction with the LBRs within
the Tables (at the same respective levels) to obtain the “top” or “best” model LMLs
for each MR defined by the inclusion or exclusion of an aspect form. Notably, the
models with the highest LML at Levels 0 and 1 would be the same as if we were to
assemble models by choosing each of the highest performing aspect forms based on
their model averaged LMLs.9

So for example, if we consider Level 0 in Table 1, and then we take the LBR for
the best aspect forms, add the LBRs together and then take this value away from
l0 (N,R) we arrive at the estimate of the LML for the “Top Model”. Thus, a positive
LBR in Table 1 means that by imposing a particular aspect form on all individuals
has resulted in an improvement of the performance of the model space relative to
the unrestricted model space MR . In contrast, a negative LBR in Table 2 indicates
that the exclusion of this model aspect reduces the explanatory power of the model
space. However, one important difference in terms of model comparison is that the
PH specification is a separate model and it is not combined with other aspects. Also,
for the PH specifications there is no distinction between Level 1 and Level 2 for
‘sole inclusion’ in Table 1, although there is a distinction between Levels 1 and 2 for
exclusion in Table 1.

9We note that while this makes complete sense, it is not a formal requirement that the two should equate.
A particular aspect form could perform well when averaged across the other aspect forms, yet not actually
be part of the model with the very highest LML.
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Table 1 Log Bayes ratios by sole inclusion of aspect forms

(Elimination of alternative aspect forms other than that listed)

Pr Heuristic Level 0 Level 1+2

PH-0 −976.49 −1559.71

PH-I −538.14 −882.41

PH-II −502.89 −856.51

Value P-weight

(v-form) Level 0 Level 1 Level 2 (w-form) Level 0 Level 1 Level 2

POWER-I 1.71 1.80 66.04 TAX −156.27 −399.31 −289.05

EXPO-I −106.33 −142.90 −81.54 LINEAR −11.33 −199.05 −140.65

LOG −0.65 −82.60 5.31 PRELEC-I −7.94 −30.71 −22.34

QUAD −375.02 −445.26 −500.24 K&T −8.34 −162.74 −110.31

POWER-II −22.33 −395.41 −390.41 POWER −5.29 −130.99 −54.15

EXPO-II −91.07 −128.07 −61.60 PRELEC-II 1.95 −5.75 13.61

G&E −9.31 1.95 9.04

Outer Link Inner Link

(λ̄-form) Level 0 Level 1 Level 2 (λ̃-form) Level 0 Level 1 Level 2

LOGIT 1.60 −74.30 −90.65 UTILITY −5.85 −2.93 10.88

PROBIT −8.73 −23.38 −47.49 C-UTILITY 1.10 1.09 13.57

CONSTANT −334.48 −208.73 −144.15 E-EQUIV −77.76 −209.44 −145.74

BETA-I −10.22 −1.73 −2.81

BETA-II −2.78 1.58 −7.86

Values are differences of the form lj (N,R) − lj (N,R) where j denotes level l0 (N,R) = −4206.09,
l1 (N,R) = −3531.26, l2 (N,R) = −3633.92

Top Model (Level 0) POWER-I, PRELEC-II, LOGIT, C-UTILITY: -4199.75

Top Model (Level 1): POWER-I, G&E, BETA-II, C-UTILITY: -3524.85

Top Model Space (Level 2) POWER-I, G&E+PRELEC-II,

BETA-I+BETA-II+CONST, C-UTILITY: -3518.49

A Positive LBR supports the inclusion of an aspect form

Although not a formal requirement, at Levels 0 and 1, we would generally expect
a positive LBR in Table 1 to be associated with a negative LBR in Table 2. However,
for Level 2, this is not necessarily to be expected. For example, a particular aspect
form may do well in explaining a subset of individuals, yet do badly when applied
to everybody. In this case we might obtain a negative LBR in Table 2 and positive
LBR in Table 1 associated with this aspect form. Indeed, it can be observed within
Table 2, that the LBRs for a number of aspect forms are the same for Levels 0 and
1. This is because these aspects are associated with models with very low LMLs.
However, since the model space continues to include the highly performing models,
the reduction in the LML is ostensibly due to the relatively small penalty incurred by



176 J Risk Uncertain (2015) 50:161–187

Table 2 Log Bayes ratios under exclusion of aspect forms

(Elimination of the listed aspect form)

PH Level 0 Level 1 Level 2

PH-0 0.0015 0.0027 0.14

PH-I 0.0015 0.0027 −0.04

PH-II 0.0015 0.0027 −0.23

Value P-weight

(v-form) Level 0 Level 1 Level 2 (w-form) Level 0 Level 1 Level 2

POWER-I −2.27 −84.21 −49.71 TAX 0.15 0.16 5.96

EXPO-I 0.18 0.18 5.62 LINEAR 0.15 0.16 .96

LOG 0.09 0.18 −11.50 PRELEC-I 0.15 0.16 −.98

QUAD 0.18 0.18 13.00 K&T 0.15 0.16 2.56

POWER-II 0.18 0.18 12.05 POWER 0.15 0.16 −2.71

EXPO-II 0.18 0.18 4.33 PRELEC-II −6.96 0.16 −7.19

G&E 0.15 −7.55 −6.79

Outer Link Inner Link

(λ̄-form) Level 0 Level 1 Level 2 (λ̃-form) Level 0 Level 1 Level 2

LOGIT −4.17 0.22 10.48 UTILITY 0.40 0.39 −13.22

PROBIT 0.22 0.22 2.22 C-UTILITY −6.55 −3.62 −11.88

CONSTANT 0.22 0.22 −22.10 E-EQUIV 0.41 0.41 14.26

BETA-I 0.22 0.19 −10.19

BETA-II 0.21 −3.12 −5.62

Values are differences of the form lj (N,R) − lj (N,R) where j denotes level l0 (N,R) = −4206.09,
l1 (N,R) = −3531.26, l2 (N,R) = −3633.92

A positive LBR supports the exclusion of an aspect form

increasing the dimension of the model space from a large dimension to an even larger
one.

4 Results

4.1 The representative agent (LEVEL 0)

We see from Tables 1 and 2 that at Level 0, the worst performing specification
(given the most negative values in Table 1, and slight positive value in Table 2) is
the PH, although the most general specification (PH-II) does improve model perfor-
mance with estimates for the thresholds of {E (ϕ1) , stdv (ϕ1)} = {0.0392, 0.00496}
and {E (ϕ2) , stdv (ϕ2)} = {0.1470.0139}. The TAX w-form is the worst perform-
ing model within the compensatory class. Interestingly, the second best w-form is
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Fig. 1 Representative agent w-form function

the POWER w-form, even though ultimately it is not supported in terms of inclu-
sion or exclusion in Tables 1 and 2. This finding is also reflected by the plot of
the w-form for the top performing Level 0 specification, the PRELEC-II, which
is presented in Fig. 1. For the PRELEC-II the resulting parameter estimates are
{E (β5) , stdv (β5)} = {0.629, 0.055} and {E (β6) , stdv (β6)} = {0.829, 0.026}.10

Interestingly, the shape of this w-form shown in Fig. 1 is not really of the classic
IS shaped form favoured in the literature, but more of a concave function over the
entire range. Therefore, our representative agent is estimated to be risk averse in the
sense of having a concave v, but counter to this, w overweights low probability large
payoffs, though is rather optimistic with respect to high payoffs with high probability
also.11

Overall the best combination of aspects incorporates a POWER-I v-form12 and
PRELEC-II w-form, a LOGIT λ̄ -form and C-UTILITY λ̄-form (its LML is reported
at the bottom of Table 1). This conclusion is reached since the sole inclusion of each
of these aspect forms is supported in Table 1, and their exclusion is unsupported in
Table 2. The LBRs for each of these aspect forms in Table 1, while positive, are
moderate or small. The LBRs in Table 2 are somewhat larger in absolute terms. At

10Stott (2006) reports values of exactly 1 for both parameters of the PRELEC-II which is actually Linear,
even though the PRELEC-I estimate is not linear. This seems unlikely, though is technically possible as
the estimates are derived as medians of individuals, rather than using the representative agent model we
are reporting here.
11We note the observation of Wakker (2010) page 228 about the stability of probability weighting
compared to utility curvature.
12Although not explicitly reported the estimated parameter value is E (α1) = 0.197 with a standard devi-
ation of 0.013. This result indicates a strongly concave form, which is consistent with Stott (2006) who
reports 0.19.
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Level 0 there is only one positive LBR within each aspect in terms of inclusion and
only one negative value for the same aspect forms in terms of exclusion.

4.2 Parameter heterogeneity - model homogeneity (LEVEL 1)

Next we consider the heterogeneous parameter specifications (Level 1) with results
again reported in Tables 1 and 2. With a Level 1 specification all respondents are
endowed with a common model, but allowed to have different parameters.

Dealing first with the PH model, our Table 2 results show that there is not much
to be lost or gained by including the PH within the model space with LBRs close
to zero at Level 1. However, as we can see in Table 1, the sole inclusion of the PH
is clearly outperformed by any of the compensatory models given the very negative
values relative to the other LBRs for the compensatory models. The generalisations
of the PH, allowing it to have estimated thresholds, significantly improves its relative
performance. Nonetheless, even with these generalisations there is no basis for argu-
ing that these PH specifications outperform the compensatory models, at least in this
context.

As with Level 0, at Level 1 within each aspect there is only one form with a
positive LBR in Table 1 for each of the non-PH models, and a negative LBR in
Table 2. Thus, the choice of highest performing aspect forms is unambiguous. As in
the Level 0 case, starting with the v-form aspect, we see that the POWER-I v-form
is a clear winner with the highest LBR in Table 1 and a negative LBR in Table 2. It
is larger than the alternative forms by a considerable margin. It is then followed by
the LOG, and EXPO-II in Table 1, though neither are supported by having positive
LBRs in Table 1 or negative in Table 2.

Turning to the w-form aspect, the two top performing w-forms are the more gen-
eral ones (PRELEC-II and G&E) with the G&E being the best performing followed
by the PRELEC-II since it is the only one with a positive LBR in Table 1 and a neg-
ative LBR in Table 2. As with Level 0, the worst performing w-form in Table 1 is
the TAX model. These results are inconsistent with Stott (2006), who concluded that
the PRELEC-I is the better w-form. However, Stott (2006) arrives at this conclusion
by arguing that, after elimination of other poorly performing aspects, the PRELEC-I
performs the best, even though in general the two parameter forms (PRELEC-II and
G&E based on rankings and averages of AICs) are the top ranked forms if there is no
elimination of poorly performing aspect forms.

With respect to the λ̃-form it is evident, as at Level 0, that the C-UTILITY λ̃-
form outperforms both the UTILITY and the C-EQUIV. This result further supports
the idea that contextual utility has both empirical support as well as theoretical moti-
vation. However, we note that the difference between C-UTILITY and UTILITY is
relatively small, whereas the C-EQUIV model does considerably worse than both of
these other forms.

With regard to the λ̄-form, the BETA-II λ̄-form outperforms the other λ̄-forms,
with the next preferred being the BETA-I. Our results suggest that the PROBIT out-
performs the LOGIT specification, a finding that again does not completely accord
with that of Stott (2006). The best performing links have changed as a result of mov-
ing from Level 0 to Level 1. If we were to give this a structural interpretation, it would
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be that the treatment of the λ̄-form in terms of individuals forming a subjective dis-
tribution of outcomes which takes account of the bounded nature of that distribution
is supported. However, the way that people construct that distribution differs across
individuals. The poor performance of the CONSTANT λ̄-form is noteworthy as the
worst link to be imposed on all models.

4.3 Heterogeneity in parameters and models (LEVEL 2)

We now consider our Level 2 results. In this case, in addition to the results in Tables 1
and 2, we report a “best-worst” analysis in Table 3.

Table 3 reports for each model aspect the number of times a particular form occurs
as the top model over all individuals. Particular care needs to be taken in interpreting
the numbers in Table 3, they should not be used as an accurate guide to the overall
performance of a given specification. In addition to Table 3, we also present Fig. 3
that illustrates model probabilities by individuals by general model class: the PH;

Table 3 Occurrences of best-worst performing

Forms over individual at Level 2

PH Best Worst

PH-0 0 12

PH-I 0 0

PH-II 5 0

Value P-weight

(v-form) Best Worst (w-form) Best Worst

POWER-I 44 0 TAX 5 0

EXPO-I 1 1 LINEAR 20 68

LOG 31 1 PRELEC-I 8 3

QUAD 5 76 K&T 10 7

POWER-II 3 0 POWER 17 0

EXPO-II 1 0 PRELEC-II 15 0

G&E 10 0

Outer Link Inner Link

(λ̄-form) Best Worst (λ̃-form) Best Worst

LOGIT 2 0 UTILITY 42 7

PROBIT 21 0 C-UTILITY 23 8

CONSTANT 19 21 E-EQUIV 20 63

BETA-I 29 1

BETA-II 14 56

There are 90 individuals in the sample. 85 out of 90 are best described by a compensatory model. Only 5
are best described by the PH
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TAX; the Linear Probability w-form; and the Non-Linear PT w-forms. In Fig. 2 these
model probabilities have been calculated using a “uniform” 0.5 prior probability on
the models within that class and a collective 0.5 prior probability on all other models
of a different class, where all models within the classes are considered equally likely.
This represents a change in model priors for each case, so there is no reason for
model probabilities across model classes to add to one across individuals. Therefore,
Fig. 3 illustrates the revision of the probability distributed across individuals after
observation of the data, when one starts from the position that they are equally likely
to come from a particular model class and the class of all other models.

Dealing first with the PH, we have already established that the sole inclusion of
the PH performs very poorly at Level 1 or 2. From the top part of Table 3, we can see
that for five of these individuals the PH-II is in fact the top performing model and
that these individuals have very high posterior probabilities of being PH types. These
results highlight the fact that while as a model of collective behaviour (as discussed
in the preceding section) the PH is a poor performer, the PH-II is a good candidate
model for a small number of individuals, which was being reflected in the positive
LBR in Table 2. Turning to Fig. 2, we can also see that very low model probabilities
are assigned to the collective PH models, with 75% or so of individuals having near

Fig. 2 Model probabilities by main model types
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Fig. 3 Probability weighting function plots by individual

zero weight assigned to the PH model class, with the remainder being given non-
negligible weight. Importantly, however, this does not mean that the PH model did
not perform well for some individuals.

If we now consider the compensatory specifications at Level 2, results in Tables 1
and 2 are different from Levels 0 and 1 in that there are several forms within some of
the aspects that are supported. First, the POWER-I v-form enjoys the most support
in terms of both inclusion and exclusion. This support is also reflected in the high
number of individuals who consider POWER-I the best v-form. We also note that
the LOG v-form also has positive LBRs in both Tables 1 and 2 and clear support in
Table 3. Likewise, both the PRELEC-II and G&E w-forms are supported by positive
LBRs in Table 1 and negative LBRs in Table 2. However, the removal of the POWER
and PRELEC-I w-forms are marginally not supported given their negative values.
For the Inner Links both the UTILITY AND C-UTILITY λ̃-forms are both supported
as being components of the best performing model space, since both have positive
values in Table 1 or negative ones in Table 2. The results in Table 1 with regard to the
Outer Link also suggest that one λ̄-form can be adequately substituted for the others,
though the BETA links do best. In Table 2 we observe that the removal of either
BETA λ̄-form reduces the performance of the model space, and of note is the fact
that unlike Levels 0 and 1, the removal of the CONSTANT λ̄-form is not supported
in Table 2. What this suggests is that while the CONSTANT λ̄ -form is a very poor
form to ascribe to everybody (given its large negative value in Table 1), it does very
well at describing some individuals (given its large negative value in Table 2). Also
the last panel of Fig. 2 contains the collective model probabilities for the non-linear
(or rather potentially non-linear) variants of PT. As can be seen this class of model
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has considerably more support than the others, but notably, very little support for a
few individuals and one individual in particular.

Turning to the TAX model even though its removal was supported within Table 2,
an examination of Table 3 indicates that the TAX model is also the top model for
5 individuals. This finding is also observed in Fig. 2 with around 50% of individ-
uals with very small posterior probabilities, with only 15 individuals having prior
mass above 50%. Thus, the TAX model remains a good candidate model for a small
number of individuals, though as a characterisation of behaviour for all or most
individuals it is poor as discussed in the previous section.

Finally, if we consider the LINEAR w-form we observe little support in Tables 1
and 2 but interestingly this is the top model for 20 individuals as reported in Table 3.
Notably, however, it is also in the worst for specification for 68 people. Similarly, in
Fig. 2 there are a considerable number of individuals that have relatively large prior
probabilities of being LINEAR for the w-form. However, a minority of individuals
(36) have more than 50% posterior probability of being LINEAR. So again, there
is evidence that for a minority of individuals the LINEAR w-form remains a good
candidate model, but this is certainly not true for the majority.

4.4 Overall model comparison

The first finding to note is that there has been a large fall in the LML values for all
aspect forms as a result of imposing the representative agent restriction (Level 0) rel-
ative to either Levels 1 or 2 (that is comparing l0 (N,R) , l1 (N,R) and l2 (N,R)).
If we were to treat the representative agent model as a hypothesis, we would reject
this restriction in complete confidence, in favour of agents having different parame-
ters, even if they have the same models (combination of aspect forms) imposed upon
them. Both l1 (N,R) and l2 (N,R) exceed −4199.74, which is the top performing
Level 0 model. Thus, while the notion of a representative agent may be an attrac-
tive assumption, such a construction disguises the true heterogeneous nature of risk
attitudes across individuals, at least for this data set.

Another important observation is that, as l1 (N,R) exceeds l2 (N,R), this in a
sense supports the common model restriction (R) as specified by the set of aspect
forms above. However, by narrowing the model space to a subset of well performing
aspect forms one can achieve LML values that exceed the top performing Level 1
model. In order to explore this further, we conducted a search13 over model spaces.
Our results indicate that the top model space (at Level 2) contained the POWER-I, +
(PRELEC-II and G&E) + (CONSTANT and BETA I and BETA-II) + (C-UTILITY)
aspect forms, with a Level 2 LML equal to −3518.49. This exceeds the top Level

13Our search was not over the entire model space. We started by including all aspect forms for which
elimination was not supported in Table 2. The search was then over all model spaces in which there was
an elimination of one or more of these aspect forms.
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1 model LML (−3524.84). The subtraction or replacement of any aspect form (or
PH model) reduces the LML at Level 2. Therefore, although at Level 2 in the full
model space there is evidence that removal of the POWERw-form, and the UTILITY
Inner Link reduced performance, when seeking an optimal combination of forms
they played no part. Thus, this result further supports the C-UTILITY λ̃-form as the
optimal choice even at Level 2.

Overall, these results support the contention that no single w-form or λ̄-form
was sufficiently flexible to adequately model all individual behaviour. As discussed
above, overall non-linear w-forms, other than the TAX model, do better at explaining
the majority of individual behaviour. However, the nature of the non-linearity has not
been broadly discussed in the literature. This issue is explored in Fig. 3.

Figure 3 gives the estimates by individual for the five non-linear PT w-forms,
along with the model averaged estimates over all of the six in the top left hand cor-
ner. Each plot has curves for all individuals though it may appear as shading. As
can be seen the model averaged version takes some of the attributes of each of the
components. What is also clear from both the averaged and two parameter w-forms
is that there are individuals who appear to be mainly concave, mainly convex, IS or
S-shaped.

Individuals were also grouped into whether they had an S or IS shape or were
(almost) purely concave or convex. What we can see is that there is a mix of individ-
uals. Five individuals are concave (so purely “optimistic”), but with a larger number
of individuals being convex (so purely “pessimistic”), but with the remainder being
fairly evenly split between being S or IS shaped. This paints quite a different pic-
ture from that of the representative agent model (Level 0). Therefore, the combined
choices of individuals are best modelled by a primarily concavew-form, but an exam-
ination of all individual level results in no way supports the contention that most
people behave in this way.

Finally, it is worth noting that we have found this degree of heterogeneity in spite
of the limited prospect employed to generate the data examined. This of course does
not imply that a different prospect would yield similar results, but it does suggest that
more attention needs to be given to potential heterogeneity present in such data.

5 Conclusions

This paper has reexamined models of choice under risk using a Bayesian approach
to estimation and model selection. We compared a large range of model specifica-
tions including PT models, the TAX model of Birnbaum and Chavez (1997) and a
generalisation of the PH of Brandstätter et al. (2006) for which the thresholds were
estimated. In addition, all models have been examined at different levels of hetero-
geneity so that model performance can be assessed in relation to aggregate as well as
individual behaviour.

In terms of the v-form aspect (value functions), our results are in general accor-
dance with the findings of Stott (2006). The one parameter POWER-I was far
superior to the other forms considered, whether it was applied at the representative
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agent level (Level 0) or at the individual level (Level 2). In addition, our results sup-
port the use of non-linear w-form as suggested by PT, but this conclusion comes with
some caveats. Whereas Stott (2006) preferred the one parameter PRELEC-I speci-
fication, we found that the two parameter w-forms were superior, and our findings
were different depending on the level of heterogeneity that was permitted. For the
representative agent (Level 0) the two parameter PRELEC-II was preferred, whereas
with heterogeneity in parameter values (Level 1) the G&E specification was gener-
ally preferred to the PRELEC-II. However, where heterogeneity in both forms and
parameters was permitted (Level 2), neither of the generalised forms alone seemed
sufficient to explain the behaviour of all individuals. This was also reflected in the
fact that individuals seemed to have a great degree of heterogeneity with respect to
w-form (i.e., probability weightings).

Overall, at the representative agent level (Level 0), there appeared to be the famil-
iar overweighting of small probability high payoffs, but of a more concave form than
the IS form commonly assumed within the literature. While all or nearly all indi-
viduals appeared to have concave v-form (value functions), the individual w-form
(probability weightings) were commonly of IS, S, concave or convex functions, con-
sistent with the observation of Wakker (2010, p.228) that “In general, probability
weighting is a less stable component than outcome utility”. In behavioural terms
what this means is that there are individuals who behave in a purely pessimistic way,
purely optimistic way, as well as having the kind of reversal in probability weightings
dictated by the S or IS forms. This also means that researchers should be careful in
the implementation of the IS approach, as recommended by Tversky and Kahneman
(1992). Researchers should not automatically jump to the conclusion that a form that
ostensibly facilitates IS behaviour should be imposed on all individuals.

Across the different levels of heterogeneity, the contextual utility approach intro-
duced by Wilcox (2011) was found to have the most support relative to the utility
difference or the certainty equivalent difference approaches. The certainty equiva-
lent approach was significantly inferior to the other two. While the contextual utility
approach was supported empirically, some of the theoretical motivation for the con-
textual utility approach is weakened by the fact that individuals have a wide range of
probability weightings meaning that the categorisation of somebody being more or
less stochastically risk averse relative to others will prove impossible.

More generally, the results herein also remind us that for all the classes of models
investigated here, no one model could adequately predict everybody, and the collec-
tive set of models failed to predict the behaviour of all individuals. It is, of course,
possible that such a framework that can explain all behaviour simply does not exist
and individuals employ different strategies when making choices under risk. Indeed,
we found little support for either the TAX or PH model being applied to all indi-
viduals, though these models outperformed others for a small number of individuals.
Furthermore, our generalisations of the PH approach improved its performance, but
not sufficiently for it to outperform compensatory approaches.

This paper also introduced a BETA Outer Link which was found to outperform
those commonly employed in the literature such as the LOGIT, PROBIT or CON-
STANT probability link when applied at the individual level, though the LOGIT
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was preferred at the representative agent level. Notably, the CONSTANT probability
Outer Link performed poorly relative to others if applied to everybody, but seemed a
good descriptor for some individuals. Therefore, in line with our expectations, deter-
ministic compensatory models were more likely to predict choices if there were large
differences in utility (contextual utility or certainty equivalents) rather than small
ones. However, some individuals seemed to be performing in a way that was more
consistent with the ‘trembles’ characterisation.

Looking to the future, we would contend that there is room for further empirical
studies aimed specifically at examining the nature of risk functionals in the loss and
mixed domains, taking a further look at PT propositions such as convexity of the
Value function within the loss domain and loss aversion. These propositions could be
usefully examined under a wide range of specifications using the model averaging
approaches employed in this paper, or perhaps employing a reversible jump approach
(e.g., Green 1995) so that computational burdens of computing thousands of models
can be reduced. Some may take the view that since there are now a number of papers
which estimate preference parameters, this literature is already exhibiting decreasing
returns. We take a different view. On such a fundamental issue there is a significant
need for further work to be done.

Indeed, there are a significant range of estimates in the literature for key preference
parameters that suggest that perhaps behavioural parameters such as those govern-
ing probability weightings may be heavily dependent on the experimental design, or
more generally the context in which decisions are made. If, for example, further stud-
ies find quite different probability weighting patterns we would question whether the
conditions and environment within which the experiment takes place are having a
significant role in shaping attitudes towards risk and use of probabilities, which PT
and RDU theories to do not permit.

Finally, we believe that there is benefit in taking on board some of the “pro-
cess based” approaches used in psychology (e.g., Fiedler and Glockner 2012) to
give further insight into the behaviour of individuals, while combining them with
econometric analyses of the sort conducted here.

Appendix A1: Transformations

The parameters of interest in the models take θ in only one of two forms. That
is, we parameterise our model by using θ = t1(ϑ; δl, δu) = δl + (δu − δl)

eϑ

1+eϑ

or θ = t2 (ϑ) = exp (ϑ) where ϑ ∈ R. In the case of t1 (ϑ; δl, δu) the trans-
formed parameter lies within the interval (δl, δu). We set the values for {δi} a priori
in accordance with the inequality constraints. The priors for parameters of the form
t1 (ϑ; δl, δu) are (ϑ ∼ N (0, ζ )) where they are assigned a variance ζ equal to 9

4 ,
yielding an approximately uniform prior within the specified interval, although there
is less mass at the very extremes. Thus, in a sense we are being ‘non-informative’
about the values except that we have specified the interval over which the parame-
ters lie. For parameters of the form t2 (ϑ) we assume that ϑ is normally distributed
so that the implied prior distribution for the transformed parameter is log-normal.
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Appendix A2: Pratt coefficients

The v-forms in the text are as follows:

POWER-I : pc = (1 − α1)

x
: α1 > 0

EXPO-I : pc = α2 : α2 > 0

LOG : pc = α3

(1 + α3x)
: α3 > 0

QUAD : pc = α4

1 − α4x
: α4 > 0, α4 <

2

xmax

POWER-II : pc = (1 − α5)

α6 + x
: α5 > 0, α6 > 0

EXPO-II : pc =
(
(α7 − 1) x−1 + α7α8x

α8−1
)

: α7 > 0, 0.5 < α8 < 1.5
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