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Abstract Representing ambiguity in the laboratory using a Bingo Blower (which is
transparent and not manipulable) and asking the subjects a series of allocation ques-
tions, we obtain data from which we can estimate by maximum likelihood methods
(with explicit assumptions about the errors made by the subjects) a significant sub-
set of particular parameterisations of the empirically relevant models of behaviour
under ambiguity, and compare their relative explanatory and predictive abilities. Our
results suggest that not all recent models of behaviour represent a major improvement
in explanatory and predictive power, particularly the more theoretically sophisticated
ones.
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This paper compares the descriptive and predictive performance of particular
parameterisations of five non two-stage-probability models of behaviour under
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ambiguity: Subjective Expected Utility, Choquet Expected Utility, Alpha Expected
Utility, Vector Expected Utility and the Contraction Model.

The past decade has seen intense theoretical work in the modelling of behaviour
under ambiguity. Now it is the time for the experimentalists to investigate the empir-
ical validity of these theories. That is the primary purpose of this paper. Specifically,
we complement a growing experimental literature, and, in particular, add to the work
of Abdellaoui et al. (2011), Halevy (2007), Ahn et al. (2010) and Hey et al. (2010),
though our detailed objectives, methods and results differ in various respects from
theirs.

In essence, all these papers (and others) are aimed at the same fundamental
objective: to discover which of the many theories of behaviour under ambiguity are
empirically most appealing. However our work differs from these earlier works in
terms of: (1) the representation of ambiguity (except for Hey et al. 2010); (2) the
experimental design (except for Ahn et al. 2010); (3) the theories being explored; and
(4) the econometric methods (except for part of Hey et al. 2010).

Ambiguity is represented in different ways in the experiments on which these
different papers were based. Ambiguity is understood as a situation in which prob-
abilities do not exist or the decision-maker does not know the actual probabilities.
Both Halevy (2007) and Abdellaoui et al. (2011) use as one of their representations
the traditional ‘Ellsberg Urn’: subjects are told what objects may be in the urn but are
not told the quantities of each object, so that the probability of drawing any particu-
lar object cannot be known by the subject. Abdellaoui et al. (2011), given that their
objective is to examine the impact of different sources of ambiguity, consider various
sources (changes in the French Stock Index, the temperature in Paris, and the temper-
ature at some randomly drawn remote country—all on a particular day). Ahn et al.
(2010)’s representation consists of not telling the subjects what the precise probabil-
ity of two of the three possible outcomes was; this is a sort of continuous ‘Ellsberg
Urn’. In contrast, Hey et al. (2010) used a Bingo Blower. This is also what we used
in the experiment reported on in this paper. The Blower enables us to carry out two
treatments which we feel have different amounts of ambiguity.

The papers by Hey et al. (2010) and Abdellaoui et al. (2011) use the ‘tradi-
tional’ form of experimental question: pairwise choices, while Halevy (2007) uses
reservation price questions. In contrast, Ahn et al. (2010) use the allocation type of
question pioneered originally by Loomes (1991), revived by Andreoni and Miller
(2002) in a social choice context, and later by Choi et al. (2007) in a risky choice
context. In this paper we use allocation problems, which are possibly1 more infor-
mative than pairwise choice questions and reservation price questions. In this respect
the comments by Wilcox (2007) as to the informative nature of experimental data in
general, and pairwise choice questions in particular, should be noted. He discusses
the necessity for considering the number and type of questions when designing an
experiment.

1Though we should admit that the issue of the ‘best’ way to elicit preferences (whether by pairwise
choices, Holt-Laury prices lists, the Becker-DeGroot-Marschak mechanism, by allocation questions or by
some other method) is an open one.
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The set of theories of behaviour under ambiguity is now very large. The earlier
theories—such as maximin, which do not incorporate a preference functional—do
not seem to have strong empirical support (see Hey et al. 2010); we do not consider
them here. Of the remaining theories, one can make a broad distinction between
the set of theories that uses second-order probabilities and the set that does not. For
example, if there are I possible events i = 1, 2, ..., I , but the probabilities of them
are not known, those theories that use second-order probabilities assume that the
decision-maker works on the basis that there is a set of J possible values for these
probabilities, with the j th set taking values p1j , p2j , ..., pIj with the probability of
the j th set being true given by πj , j = 1, 2, ..., J . In contrast, the set of theories
that does not use second-order probabilities may assume that the pi may take a range
of values in the decision-maker’s mind, but he or she does not attach probabilities
to these possible values. We restrict attention here to this second set (non two-stage-
probability models). This is for three reasons: the way we represent ambiguity in
the laboratory; the complexity of the resulting models in the two-stage-probability
set; and problems with distinguishability of the underlying preference functionals
(because of the large number of parameters). In contrast, Halevy uses two-stage-
probability models because his experimental design effectively makes such models
appropriate. One could also argue that the same applies to the Ahn et al. experiment:
there they have three possible outcomes 1, 2 and 3. Subjects are told p2 but they are
not told anything about p1 and p3 (except that they obey the usual probability rules).
However, if subjects had read footnote 4 of their paper2 then a two-stage-probability
representation would have been natural.

Ahn et al. (2010) make an important distinction amongst the various specifica-
tions of behaviour under ambiguity: between those specifications which are smooth
and those that are kinked.3 Essentially this distinction consists of whether prefer-
ence depends upon the ordering of the outcomes: in Expected Utility theory this is
not the case and hence this is a smooth specification; in contrast, Choquet Expected
Utility and, as one can tell from its name, Rank Dependent Expected Utility, are
kinked. Ahn et al. (2010) do not estimate particular preference functionals but rather
two general specifications—one smooth and one kinked. They note that the smooth
specification “can be derived from” Recursive Expected Utility (REU, which is a
two-stage-probability model—see Segal 1987), while the kinked specification “... can
be derived as a special case of a variety of utility models: MEU, CEU, Contraction
Expected Utility, and α-MEU”.4 We note two things: first that the smooth specifica-
tion does not come only from REU (indeed it comes from several other models, such
as the Variational model of Maccheroni et al. 2006); and secondly, but perhaps more
importantly, Ahn et al. (2010) do not estimate any preference functionals that come

2Which reads “In practice, the probability of one of the ‘ambiguous’ states was drawn from the uniform
distribution over [0,2/3]. This distribution was not announced to the subjects.”
3One way of thinking about this distinction is through indifference curves in outcome space. With the
smooth models indifference curves are smoothly continuous, in contrast with kinked models, where there
is a kink (a change in the slope) in the indifference curves along the certainty line.
4(Our note) MEU, CEU and α-MEU are respectively MaxMin Expected Utility, Choquet Expected Utility,
and Alpha Expected Utility (all of which we consider specifically later).
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specifically from the models that they mention. So they do not test directly any of the
recent theories of behaviour under ambiguity.

Abdellaoui et al. (2011) effectively investigate only one model—essentially Rank
Dependent Expected Utility (RDEU) theory. This has two key elements, a util-
ity function, which they take to be CRRA (Constant Relative Risk Averse), and a
(probability) weighting function, which they take, in the ‘Ellsberg Urn’ part of the
experiment, to be of the Prelec form: w(p) = (exp(−(− ln(p))α))β . It may seem a
bit odd using probabilities in a study of ambiguity, but these probabilities are the true
probabilities, which, of course, the experimenters know even if the subjects don’t.
Using these functional specifications, RDEU is a special case5 of Choquet Expected
Utility, which we estimate. In the ‘Natural Uncertainties’ part of the experiment
they do not assume any particular form for the weighting function, so RDEU in this
context is precisely Choquet—which we estimate.

There are significant econometric differences between these various papers. First,
we (like some others) carried out extensive pre-experimental simulations to ensure
that we had a sufficient number and an appropriate set of problems to ask the sub-
jects; some experiments have rather few problems and thus lack power to discriminate
between the theories. Second, the estimation methods vary. Underlying any particular
chosen estimation method, there is an assumption about the stochastic specification
of the model. Sometimes this is tacit; we feel it should be explicit, particularly as
there is an obvious source for the stochastic component of the data—if one is estimat-
ing subject by subject (which is the case in all these papers) this comes either from
randomness in preferences or from errors made by the subjects. While random pref-
erence models are popular with some theorists, they are difficult to parameterise and
rarely applied to experimental data, so we follow the majority in assuming that the
noise, the stochastic component, comes from errors made by the subjects. We explic-
itly include a story of such mistakes. In the results we report here, we assume a beta
distribution for the error component, which seems the natural conjugate of our CRRA
utility functional specification (though we have also investigated a normal distribu-
tion and a CARA utility function). We estimate the various preference functionals
with the stochastic specification specifically built in to the estimation (like Andersen
et al. 2009).

We also go one step further than some of these papers. Believing that economics
is all about predicting, rather than just explaining, we compare our different models
by seeing how good they are at predicting. For the importance of this, see Wilcox
(2007, 2011).

In summary: we represent ambiguity in the laboratory in an open and non-
manipulable manner; we ask a set of allocation problems to the subjects (obviously
with an appropriate incentive mechanism) chosen after extensive simulations; we use
maximum likelihood estimation, with a carefully-chosen stochastic specification, to
estimate a significant sub-set of the empirically relevant theories of behaviour under

5If they had estimated the weighting function at all points, rather than estimating the parameters of the
particular functional form, it would have been precisely Choquet.
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ambiguity and to compare their relative goodness of fit; finally we compare the
various theories in terms of their predictive ability.

The rest of the paper is organised as follows. In the next section we give a brief
overview of the theories that we are going to fit to our data. The following section
describes the way that our data was generated in our experiment. We then relate what
we do to the literature, a part of which we have discussed in this introduction, and
give more detail about what others have done. A section describing the technicalities
underlying our analysis then follows, after which we present our results. We then
conclude.

1 Theories under investigation

This section discusses the theories of decision-making under ambiguity that we
investigate. We confine our attention to those theories in which there is an explicit
preference functional, and hence we exclude earlier theories which proceed directly
to a decision rule.6 In all the theories under consideration here, the decision maker
is viewed, in any decision problem, as if maximising the value of some preference
functional. The theories differ in the ‘stories’ that they are telling. The familiar (1)
Subjective Expected Utility (SEU) model postulates the decision-maker as being able
to attach subjective probabilities to the various possible events. In contrast, (2) the
Choquet Expected Utility (CEU) model, usually nowadays accredited to Schmeidler
(1989), postulates that the agent’s beliefs cannot be characterised by additive proba-
bilities but by non-additive capacities; (3) the Alpha Expected Utility (AEU) model
of Ghirardato et al. (2004) models the agent as not being able to specify unique
probabilities but instead a set of possible probabilities (though not attaching proba-
bilities to the members of this set); (4) the Vector Expected Utility (VEU) model of
Siniscalchi (2009) sees the decision-maker assessing an uncertain prospect with a
baseline expected utility evaluation and an “adjustment that reflects the individ-
ual’s perception of ambiguity and her attitude toward it” (Siniscalchi 2009, page 1).
Finally (5) the Contraction Model (COM) of Gajdos et al. (2008) is similar to the
AEU model, in terms of specifying a set of possible probabilities, but processes the
expected utilities over this set in a different way. We note that SEU is a ‘smooth’
specification in the sense used above, while all the rest are kinked specifications. We
give an overview of these theories below. We restrict attention in both the overview
and the detail to decision problems with at most three events—which was the case in
our experiment. Call these events E1, E2 and E3. For the decision maker, each event
will be associated with an outcome which consists of an amount of money. For some
of the theories—those with a ‘rank-dependent’ flavouring—the ordering of the out-
comes will be crucial. We denote the various possible utilities of the decision-maker
by u(1), u(2) and u(3) where we assume that u(1) ≥ u(2) ≥ u(3). Denote by E(i) the
event that leads to outcome u(i) (i=1,2,3). So the set {E(1), E(2), E(3)} has the same

6Such as, for example, MaxMin (in which the decision-maker looks at the worst that can happen and makes
that as good as possible) and MaxMax (in which the decision-maker looks at the best that can happen and
makes that as good as possible). See Hey et al. (2010) for the empirical evidence against such theories.
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elements as the set {E1, E2, E3} though not necessarily in the same order. Note cru-
cially the set {E(1), E(2), E(3)} may vary from problem to problem depending upon
the subject’s decisions.

Our method is that of estimation and prediction. We need, therefore, to estimate
parameters. All of the theories we investigate include a utility function; this has to
be specified and parameterised. Of the five theories under investigation, two do not
contain any functions other than the utility function. These are Subjective Expected
Utility theory (which uses subjective probabilities), and Choquet Expected Utility
(which uses capacities). The other three theories, as we shall show, contain functions
and sets each of which needs to be specified—otherwise estimation cannot proceed.
As these three theories are formulated, there is an infinite number of possible param-
eterisations, and the theories do not provide any guidance, except for the properties of
the functions and sets. We adopt what seems to us simple specifications in all cases,
though it is clearly possible that different specifications would give different results.
We do not claim that we provide a general test of the various models.

1.1 Subjective expected utility theory

The preference functional for SEU is given by

SEU =
3∑

i=1

p(i)u(i) (1)

where p(i) is the subjective probability that event E(i) occurs, so that p(i) =
Prob(E(i)) for all i, and, of course p(1) + p(2) + p(3) = 1.

1.2 Choquet expected utility theory

According to Schmeidler (1989), the Choquet Expected Utility of a lottery is given
by

CEU =
3∑

i=1

w̄iu(i) (2)

where the w̄’s are weights that depend on nonadditive capacities w that sat-
isfy the normalisation conditions and monotonicity (with respect to set inclu-
sion). In the context of our experiment, a CEU subject works with six nonaddi-
tive capacities wE1, wE2, wE3, wE2∪E3, wE3∪E1 and wE1∪E2 referring to the three
events and their pairwise unions. From these we can derive the set of capac-
ities relevant to any decision problem {wE(1) , wE(2) , wE(3) , wE(2)∪E(3) , wE(3)∪E(1) ,

wE(1)∪E(2)} which are a permutation of the set {wE1, wE2, wE3, wE2∪E3 ,

wE3∪E1, wE1∪E2}. Crucially, the weights w̄ depend upon the ordering of the
outcomes:

w̄1 = wE(1)

w̄2 = wE(1)∪E(2) −wE(1) (3)

w̄3 = 1 − wE(1)∪E(2)
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We note that the main difference between CEU and SEU consists in the additive prob-
ability measure being replaced by a nonadditive capacity measure. If the capacities
are actually probabilities (that is, if wE2∪E3 = wE2 + wE3 , wE3∪E1 = wE1 + wE3 ,
wE1∪E2 = wE1 + wE2 and wE1 + wE2 + wE3 = 1 ) then Eq. 2 is equivalent to
Eq. 1. We note that CEU is the same as Rank Dependent Expected Utility (see Wakker
2010 for a discussion of how this can be used as a model of decision-making under
ambiguity) under an appropriate interpretation of that latter theory.7 Similarly Cumu-
lative Prospect Theory, with a fixed reference point, can be regarded in the same way
as CEU.

1.3 Alpha expected utility theory

Alpha Expected Utility theory (AEU) was proposed by Ghirardato et al. (2004) as a
generalization of the theory proposed in Gilboa and Schmeidler (1989). Ghirardato
et al. (2004)’s model implies that, although the decision maker does not know the
true probabilities, he or she acts as if he or she believes that the true probabilities lie
within a continuous set D of probabilities of different events. We can refer to each
prior p ∈ D as a “possible scenario” that the decision maker envisions. According to
Ghirardato et al, the set D of probabilities represents formally the ambiguity that the
decision maker feels in the decision problem (they introduce the concept of “revealed
ambiguity”). In other words, the size of the set D measures the perception of ambi-
guity. The larger D is, the more ambiguity the decision maker appears to perceive in
the decision problem. In particular, no decision maker perceives less ambiguity than
one who reveals a singleton set D = {p1, p2, p3}. In this case the decision maker is
a SEU maximiser with subjective probabilities p1, p2 and p3.

According to Alpha Expected Utility Theory, decisions are made on the basis of
a weighted average of the minimum expected utility over the set D of probabilities
and the maximum expected utility over this set:

AEU = α min
p∈D

3∑

i=1

piui + (1 − α)max
p∈D

3∑

i=1

piui (4)

The parameter α can be interpreted as an index of the ambiguity aversion of the
decision maker. The larger α is, the larger is the weight the decision maker gives to

the pessimistic evaluation given by min
p∈D

3∑
i=1

piui .

In order to proceed to estimation we need to characterise the set D. The theory
merely states some general characteristics (convexity and continuity) but no specific

7In the context of our experiment, where there are three outcomes and hence six capacities, then the rela-
tionship between the two theories is given by the following, where p1, p2, p3 are the objective probabilities
and w(.) is the weighting function, and the capacities for CEU are as denoted above:

wEi
= w(pi) for i = 1, 2, 3 and

wEj∪Ek
= w(pj + pk) for j �= k ∈ 1, 2, 3
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set. We have to parameterise this set and we chose one of the simplest: that the set
is defined by three lower bounds p

1
, p

2
and p

3
(where p

1
+ p

2
+ p

3
≤ 1) plus

the condition that every element in the set has p1 ≥ p
1
, p2 ≥ p

2
and p3 ≥ p

3
. In

addition, of course p1 + p2 + p3 = 1 for each element in the set. These conditions
imply that the set D is a triangle properly within the Marschak-Machina Triangle. It
reduces to a single point, and hence AEU reduces to SEU, if p

1
+p

2
+ p

3
= 1. There

are obviously other specifications of the set D that we could adopt—indeed there
is an infinite number; for example, the set could be a circle within the Marschak-
Machina triangle. Our results may well be sensitive to our specification, but without
making such a specification, the theory is unestimatable.

1.4 Vector expected utility

Vector Expected Utility (VEU) theory has been recently proposed by Siniscalchi
(2009). In this model, an uncertain prospect is assessed according to a baseline
expected utility evaluation and an adjustment that reflects the individual’s perception
of ambiguity and his or her attitude toward it. This adjustment is itself a function of
the exposure to distinct sources of ambiguity, and its variability.

The key elements of the VEU model are a baseline probability and a collection
of random variables, or adjustment factors, which represent acts exposed to distinct
ambiguity sources and also reflect complementarity between ambiguous events.

The VEU model can be formally defined as follows:

VEU =
3∑

i=1

piui + A

⎛

⎝
(

3∑

i=1

piζjiui

)

j=1,2,3

⎞

⎠ (5)

Here p = (p1, p2, p3) is the baseline prior; for 1 ≤ j < 3, each ζj = (ζj1, .., ζj3) is

an adjustment factor that satisfies Ep[ζj ] =
3∑

i=1
piζji = 0; and A: Rn → R satisfies

A(0) = 0 and A(φ) = A(−φ). The function A is an adjustment function that reflects
attitudes towards ambiguity. We need to specify the function A(.) and also the values
of the ζ .

We made the following assumptions.8 For the baseline prior we have two
parameters, p1 and p2 (because probabilities must sum up to one, thus p3 =
1 − p1 − p2).

Now let us consider the adjustment factors. Since they have to integrate up to zero
according to the theory, we take:

ζ01 = ζ0(ω1) = 1

p1
ζ02 = ζ0(ω2) = − 1

p2
ζ03 = ζ0(ω3) = 0 (6)

8These assumptions were made after private communication with Marciano Siniscalchi, though we do not
imply that our modelling of the VEU model has his approval.
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and similarly

ζ11 = ζ1(ω1) = 0ζ12 = ζ1(ω2) = 1

p2
ζ13 = ζ13(ω3) = − 1

p3
(7)

This parsimonious specification does not restrict preferences in any ex ante way. The
first factor captures ambiguity about the relative number of colour 1 balls and colour
2 balls, and the second reflects ambiguity about colour 2 versus colour 3 balls. The
vectors ζ0 and ζ1 are linearly independent and satisfy p · ζ0 = p · ζ1 = 0.

Adopting this specification we find that the VEU functional is given by:

VEU =
3∑

i=1

piui + A(u1 − u2, u2 − u3) (8)

We now need to choose a suitable function A : R2 → R. A(0, 0) = 0 and
A(φ0, φ1) = A(−φ0,−φ1).

A relatively flexible specification is the following:

A(φ0, φ1) = α[1 − (1 + |φ0|)ρ ] + β[1 − (1 + |φ1|)ρ ] (9)

Plugging the specification of A Eq. (9) in Eq. 8 we get the following objective
function

VEU =
3∑

i=1

piui + α[1 − (1 + |φ0|)ρ] + β[1 − (1 + |φ1|)ρ] (10)

Since in our experiment, |φ0| = |u1−u2| and |φ1| = |u2−u3|, Eq. 10 is equivalent
to

VEU =
3∑

i=1

piui + α[1 − (1 + |u1 − u2|)ρ] + β[1 − (1 + |u2 − u3|)ρ ]

The parameter α and β are likely to be the same since there is no reason why the
ambiguity about the relative number of colour 1 balls and colour 2 balls should be
different from the ambiguity about colour 2 versus colour 3. Therefore let us set α =
β = δ. Assuming also that ρ = 1, the VEU objective function becomes

VEU =
3∑

i=1

piui − δ(|u1 − u2| + |u2 − u3|) (11)

This has intuitive appeal: decisions are made on the basis of expected utility ‘cor-
rected’ for differences between the utilities of the various outcomes, weighted by
a parameter δ that reflects the decision-maker’s attitude toward ambiguity and the
amount of ambiguity. We should note that the most general version of VEU (as spec-
ified in Eq. 5) has an infinite number of implementable forms, depending upon the
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specification of the function A(.) and ζ , since the restrictions on A(.) and ζ do not
enable us to specify it precisely. It follows that Eq. 11 is just one of an infinite num-
ber of possible specifications of the VEU preference functional. When we refer to
“estimating the VEU model” this restriction should be taken into account. But, as
we noted above with AEU, we need to adopt a particular specification in order to
proceed with estimation.

Finally, if the utilities are ordered (so that u1 ≥ u2 ≥ u3) then this reduces to

VEU = (p1 − δ)u1 + p2u2 + (p3 + δ)u3 (12)

In order for the preference function to be increasing in the outcomes this requires
that δ is sufficiently small, so that p1 − δ > 0. Our estimates always satisfied this
condition.

1.5 The contraction model

Gajdos et al. (2008) proposed a model (the “Contraction Model” or COM) in
which it is possible to compare acts under different objective information structures.
According to this theory, preferences are given by

COM = λ min
p∈D

3∑

i=1

piui + (1 − λ)

3∑

i=1

Piui (13)

where λ measures imprecision aversion and P1, P2, P3 is a particular probability dis-
tribution in the set D of possible distributions. It is what is called the ‘Steiner Point’
of the set—which is, in a particular sense, the ‘centre’ of the set. If we take the set D
of possible distributions as all points (p1, p2, p3) such that p1 + p2 + p3 = 1 and
p1 ≥ p

1
, p2 ≥ p

2
, p3 ≥ p

3
then the Steiner point is the point (P1, P2, P3)where

Pi = p
i
+

(
1 − p

1
− p

2
− p

3

)
/3 for i = 1, 2, 3. We note that we have charac-

terised this set D (of possible probabilities) in the same way as we have done for the
Alpha Expected Utility model—as a triangle properly within the Marschak-Machina
Triangle—but there is no reason that the estimates of these lower bounds on the
probabilities should be the same as the estimates of the lower bounds for the Alpha
Expected Utility model. Nor is there any reason why the estimate of the parameter
λ in the Contraction Model should be the same as the estimate of α in the Alpha
Expected Utility model.

In summary, each of our models (SEU, CEU, AEU, VEU and COM) implies
a particular preference functional under our functional specifications, respectively
Eqs. 1, 2, 4, 11 and 13. It is clear that these are different, except insofar as Eqs. 2,
4, 11 and 13 reduce to (1) (and hence CEU, AEU, VEU and COM reduce to SEU)
when respectively, the CEU capacities are additive, the set D of probabilities in AEU
consists of a single element, the parameter δ is zero, and the set D of probabilities
in COM consists of a single element. Given that Eqs. 2, 4, 11 and 13 are different it
follows that the models are observationally distinguishable: different models imply
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different preference functionals and hence different decisions. However this is not to
deny that the function A(.) and the ζ in VEU and the sets D in AEU and COM could
be such that they lead to the same preference functionals. But the crucial point is that
our specifications of the different models imply different preference functionals and
hence in principle are observationally distinguishable.

2 Our experimental design

As we have already noted, in our experiment ambiguity was implemented with a
Bingo Blower and subjects were presented with a set of allocation problems, which
were determined after a number of Monte Carlo simulations. We implemented two
separate treatments, which we describe below. Different sets of subjects did the
different treatments.

Subjects completed the experiment individually at screened computer terminals.
They were given written instructions and then shown a PowerPoint presentation of
the instructions. There was a Bingo Blower in action at the front of the laboratory
throughout the experiment. The Bingo Blower is a rectangular-shaped, glass-sided,
object some 3 feet high and 2 feet by 2 feet in horizontal section. Inside the glass
walls are a set of balls in continuous motion being moved about by a jet of wind from
a fan in the base. In addition, images of the Blower in action were projected via a
video camera onto two big screens in the laboratory. Subjects were free at any stage to
go close to the Blower to examine it as much as they wanted. All the balls inside the
Blower can at all times be seen by people outside, but, unless the number of balls in
the Blower is low, the number of balls of differing colours cannot be counted because
they are continually moving around. Hence the information available is not sufficient
to calculate objective probabilities. This ensures that, while objective probabilities
do exist, the decision-makers cannot know them. In this way, we have created a sit-
uation of genuine ambiguity which eliminates the problem of possible suspicion,9

the problem of directly using a second-order probability distribution, and does not
necessitate the use of real events, therefore keeping the problem more similar to the
original Ellsberg problem (Ellsberg 1961), though clearly we do not create a situa-
tion of ‘total’ or ‘complete’ ambiguity as Ellsberg tried to do. We note that a further
advantage of this way of creating ambiguity in the laboratory is the fact that the infor-
mation available is the same for all subjects. Hence there is no role for the so called
‘comparative ignorance’ (Fox and Tvesky 1995), and hence we can exclude such a
factor as a possible explanation of behaviour.10

9We do not deny that some subjects could suspect that different coloured balls had different weights, but
that could have been checked after the experiment. No subject asked for such a check.
10One criticism concerning the implementation of ambiguity in the lab using the Bingo Blower comes from
Morone and Ozdemir (2012). The criticism consists of the observation that the ability of getting the right
probabilities is subject specific; that is, subjects have different counting skills, or might have problems in
the perception of colours. This criticism may be true but it is not clear how this could affect the validity
of the Bingo Blower in generating ambiguity in the lab. Moreover since we analyse the data subject-by-
subject, it is unimportant if different subjects have different perceptions of the amount of ambiguity.
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This Bingo Blower played an important role in representing ambiguity and in
providing incentives. Inside the Bingo Blower were balls of three different colours:
pink, yellow and blue. The number of each colour depended on the treatment:

Treatment 1 Treatment 2

pink 2 8
yellow 3 12
blue 5 20

In Treatment 1 the pink and yellow balls could almost certainly be counted, though
one might not be sure of the number of blue balls; this was the least ambiguous
treatment. In Treatment 2 the balls of each colour could not be counted; this was the
most ambiguous treatment. Note that in this latter treatment subjects could get some
idea of the relative numbers of balls of the different colours but not count the numbers
precisely. It was reasonably clear that there were more blue balls than yellow, and
more yellow than pink, though precise counting was difficult.

Sixty-six subjects completed Treatment 1 and sixty-three completed Treatment 2.
In both treatments, subjects were presented with a total of 76 problems. Each of these
asked them to allocate a given quantity of tokens between the colours. There were
two types of problem. Type 1 asked them to allocate the tokens between two of the
colours (with an explicit allocation of zero tokens to the third colour); Type 2 asked
them to allocate the tokens between one of the three colours and the other two. In
each problem subjects were told the exchange rate between tokens and money for
each of the colours in the problem. Thus an allocation of tokens implied an allocation
of money to two or three of the colours.

We provided an incentive for carefully choosing the allocations with the follow-
ing payment scheme. We told subjects that, after answering all 76 problems, one of
the problems would be chosen at random, and the subject’s allocation to the two or
three colours for that problem retrieved from the computer. At that point the sub-
ject and the experimenter went over to the Bingo Blower, and the subject tilted the
tube to expel one ball. The colour of the ball, the problem picked at random and
their answer to that problem determined their payment. To be precise: if the prob-
lem chosen was one of Type 1, then they would be paid the money implied by their
allocation to the colour of the ball expelled; if it was the colour not mentioned in
that problem they would be paid nothing; if the problem chosen was one of Type 2,
then they would be paid the money implied by their allocation to the colour of the
ball expelled. In addition they received a show-up fee of £5. The average total pay-
ment was £24.60. They filled in a brief questionnaire, were paid, signed a receipt and
were free to go. A total of 129 subjects participated in the experiments, 40 of them at
CESARE at LUISS in Rome (Italy) and the remaining 89 at EXEC at the University
of York (UK), with the software and the instructions in Italian and English respec-
tively. There were no differences in the behaviour of the two subject pools. In both
York and Rome, subjects were recruited using the ORSEE (Greiner 2004) software
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and the experiment was run using a purpose-written software written in Visual
Basic 6.

3 Related experimental literature

Having described our experimental implementation and motivation we are now in a
position to survey the relevant experimental literature in more detail. We confine our-
selves mainly to recent contributions to the literature; earlier literature is surveyed in
Camerer and Weber (1992) and Camerer (1995) while more recent mainly theoretical
literature is surveyed by Etner et al. (2012).

Hey et al. (2010), using the same implementation of ambiguity in the labora-
tory as we use here, also with three possible outcomes, but asking a large number
(162) of pairwise choice questions, examined the descriptive and predictive ability of
twelve theories of behaviour under ambiguity: some old and not using a preference
functional (proceeding directly to a decision rule) such as the original MaxMin and
MaxMax; and some recent, such as the Alpha Expected Utility model. The findings
were that the old simple models (those without a preference function) did not com-
mand empirical support, and that more modern models (such as Choquet) performed
rather marginally better than simpler theories such as Subjective Expected Utility
theory. Estimation of the preference functions was done using maximum likelihood
techniques with the stochastic specification determined by a model of how subjects
made errors in their pairwise choices.

Ahn et al. (2010) used allocation questions, like we do here, but implemented
ambiguity by not telling the subjects the true objective probabilities of two of the
three possible outcomes of the experiment. They did not look at the predictive abil-
ity of any models; neither did they examine the descriptive performance of any
specific theory. Instead they examined two broad classes of functionals, smooth
and kinked, which are special cases of various theoretical models that we specifi-
cally estimate. Econometrically they estimated, subject by subject, the risk-aversion
parameter of an assumed Constant Absolute Risk Aversion utility function, and a
second parameter measuring ambiguity aversion, using Non Linear Least Squares
(NLLS), that is by minimising the sum of squared differences between actual alloca-
tions and the theoretically optimal allocations for those risk and ambiguity aversion
coefficients.

Halevy (2007) implemented ambiguity in the laboratory using traditional Ellsberg
Urns and asked reservation price questions. Because of the way that his ‘Ellsberg
Urns’ were implemented, his set of models includes some models that we do not con-
sider here, particularly two-stage-probability models such as Recursive Nonexpected
Utility and Recursive Expected Utility. But we include some that he does not, mak-
ing the two papers complementary. He used reservation price questions; we should
describe and discuss these as they are an alternative to pairwise choice questions and
to allocation questions. Essentially he wanted to know how much subjects value bets
on various events. Let us consider a particular Ellsberg Urn and a particular colour.
The subject is asked to imagine that he or she owns a bet which pays a certain amount
of money ($2) if that coloured ball is drawn from that particular urn. Halevy wanted
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to elicit the subject’s reservation price for this bet; this reservation price tells us about
the subject’s preferences. Halevy used the Becker-DeGroot-Marschak mechanism:
“the subject was asked to state a minimal price at which she was willing to sell the
bet... The subject set the selling price by moving a lever on a scale between $0 and $2.
Then a random number between $0 and $2 was generated by the computer. The ran-
dom number was the “buying price” for the bet. If the buying price was higher than
the reservation price that the subject stated, she was paid the buying price (and her
payoff did not depend on the outcome of her bet). However, if the buying price was
lower than the minimal selling price, the actual payment depended on the outcome
of her bet”. This BDM technique is well-known in the literature. However there are
well-known problems11 (see Karni and Safra 1987) with using this technique when
preferences are not expected utility preferences—which, of course, is precisely the
concern of that paper. Halevy did not use his data to estimate preference functionals
and hence did not compare their descriptive and predictive power; instead he car-
ried out an extensive set of tests of the various theories. This econometric procedure
does not help to draw unique conclusions about the ‘best’ preference functional, even
for individual subjects. Indeed Halevy concludes that his “...findings indicate that
currently there is no unique theoretical model that universally captures ambiguity
preferences”.

Abdellaoui et al. (2011) investigated only Rank Dependent Expected Utility the-
ory. They did not explicitly examine its descriptive (nor predictive) ability, being
more concerned with the effect on the estimated utility and weighting functions of
different sources of ambiguity. As we have already noted, they implemented ambi-
guity in the laboratory in two ways: in one part of the experiment using 8-colour
‘Ellsberg Urns’; and in the other part using ‘natural’ events. They elicited certainty
equivalents (or reservation prices) in order to infer preferences, not using the BDM
mechanism, but instead using Holt-Laury price lists.12 This mechanism might be a
better way of eliciting certainty equivalents, even though the outcome does appear to
be sensitive to the elements in the list—the number of them and their range.13 The
resulting certainty equivalents are a valuation, just like Halevy’s reservation prices,
even though they come from a set of pairwise choice questions. However economet-
rically it must be the case that the valuation resulting from a list with n elements is
less informative than n independent pairwise choice questions. They estimated utility
functions (assumed to be power or CRRA) “using nonlinear least squares estima-
tion with the certainty equivalent as dependent variable”; similarly they estimated the
weighting function by “minimising the quadratic distance”.

Andersen et al. (2009) use a technique similar to that used by Ahn et al. (2010) in
estimating two parameters (one a measure of risk aversion and the other a measure of

11There are also problems, though of a different nature, involved with using our Random Lottery Incentive
mechanism. But see http://people.few.eur.nl/wakker/miscella/debates/randomlinc.htm
12In the Holt-Laury price lists subjects are presented with a set of pairwise choices arranged in a list. In
each pair subjects are asked to choose between some ambiguous lottery and some certain amount of money.
As one goes down the list, the certain amount increases. The subject’s certainty equivalent is revealed by
the point at which the subject switches from choosing the lottery to choosing the certain amount. See Holt
and Laury (2002).
13See Andersen et al. (2006).

http://people.few.eur.nl/wakker/miscella/debates/randomlinc.htm
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ambiguity) in a minimalist non-EU model. They comment that this minimalist model
comes either from the Source-Dependent Risk Attitude model or the Uncertain Priors
model; in our terminology it is a two-stage-probability model14 that looks exactly like
Recursive Expected Utility. The bottom line is the following: suppose that there are
I possible outcomes i = 1, 2, ..., I with unknown probabilities. The decision-maker
has a set of J possible values for these probabilities; we denote the j ’th possible
value p1j , p2j , ..., pIj and the decision-maker considers that the probability that this
is the correct set is πj . The preference function is the maximisation of

J∑

j=1

πjv

[
I∑

i=1

piju(xi)

]

Note that there are two functions here: u(.) which can be considered as a normal
utility function, capturing attitude to risk, and v(.) which can be considered as an
ambiguity function. Note that if v(y) = y then this model reduces to Expected Utility
theory. It is the non-linearity of v(.) which captures aversion to ambiguity. Ander-
sen et al. (2009) assumed that both these functions are power functions—so that
u(x) = xα (a CRRA utility function) and v(y) = yβ . They estimated the two param-
eters α and β using maximum likelihood techniques (with careful attention paid to
the stochastic specification) and assumptions15 about the π’s and p’s.

Before we conclude this section we should make some comments about a key
methodological point: some papers test theories; some, like ours, estimate preference
functionals. Both approaches investigate the empirical plausibility of theories. They
are complements to each other. With the testing approach, one can isolate different
components (axioms) of the theories, and determine which are valid and which are
not. With the estimation approach, one can see how well models as a whole fit the
data, and how well they predict. The latter is useful if one wants to explain and pre-
dict; the former is useful, particularly to theorists, in helping to decide how theories
should be modified and adapted in light of empirical evidence.

4 Technical assumptions

Before proceeding to our estimates we need to make some technical assumptions. In
particular we need to decide on our stochastic specification and the form of the utility
function. These are interrelated decisions. Both are important, as Wilcox (2007, 2008
and 2011) makes clear, though our context is different from his as the experimental
task in our experiment requires subjects to make a series of allocations, rather than to
make a series of pairwise choices. This has implications for the stochastic structure,

14Chambers et al. (2010) also investigate a generic Multiple Priors model.
15It should be noted that the authors admit that the assumptions were quite strong and that they discuss the
serious identification problems with two-stage-probability models.
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but this, in turn, depends upon the assumed utility function: the two issues are inter-
related.

We tried three different combinations of the form of the utility function and the
stochastic specification, but we report just one here as the other two seemed to be
empirically inferior. The combination that we report starts with a Constant Relative
Risk Aversion (CRRA) utility function (like Abdellaoui et al. 2011 and Andersen
et al. 2009), written in the form:

u(x) = x1−r − 1

1 − r
if r �= 1 (14)

ln(x) if r = 1

For all the models we can write the objective of the subject in both types of problems
as the maximisation of some function

w1u(e1x1)+ w2u(e2x2)

subject to x1 + x2 = m,where the w’s and the e’s are defined appropriately. The
solution, if u(.) takes the form above, is:

x∗1 = e
1
r
−1

1 w
1
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1
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1
r −1
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1
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1
r −1
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r −1
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m

In this case, the optimal allocations are bounded between 0 and m. Hence the
proportions x∗1/m and x∗2/m, are bounded between 0 and 1. This suggests a conju-
gate stochastic specification, which fits in naturally with the boundedness of these
optimal proportions, namely a Beta distribution. Specifically we take the actual pro-
portional allocation x1/m to have a beta distribution with parameters x∗1 (s − 1)/m
and x∗2 (s−1)/m. This guarantees that the mean of x1 is x∗1 and its variance is x∗1x

∗
2/s.

So the variance of x1 is not constant but is zero at 0 and m and reaches a maximum
when x∗1 = m/2. It also follows (since x∗1 + x∗2 = 1) that x2 has a beta distri-
bution with parameters x∗1 (s − 1) and x∗2 (s − 1). Of course we may still observe
actual proportional allocations equal to 0 and 1 because of the rounding of subjects’
choices.

For the record, we note that we tried two other combinations: a CARA (Con-
stant Absolute Risk Aversion) utility function, for which optimal allocations are not
bounded, combined with a Normal distribution (centred on the optimal) of the actual
allocations, and a CRRA utility function also combined with a Normal distribution
centred on the optimal allocations. As we noted above, the empirical results suggest
that these combinations are empirically inferior to the combination that we report;
detailed results are available on request.
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Table 1 Average fitted log-likelihoods (standard deviation is in parentheses)

Uncorrected log-likelihoods

SEU CEU AEU VEU COM Obs.

All −157.29 −154.68 −155.82 −154.20 −156.73 129

(58.31) (57.49) (57.23) (57.44) (57.70)

Treatment 1 −159.55 −157.48 −158.29 −156.83 −159.26 66

(50.55) (49.68) (49.37) (49.86) (49.74)

Treatment 2 −154.93 −151.73 −153.23 −151.45 −154.08 63

(65.80) (64.95) (64.75) (64.74) (65.31)

t-stat diff. −0.448 −0.566 −0.501 −0.531 −0.509

5 Results

We estimated each of the 5 preference functionals for each of the 129 subjects on
a subset of the data—namely a randomly chosen 60 of the 76 problems16—using
the constrained maximum likelihood procedure in GAUSS. We thus have, for each
preference functional, for each subject, estimates of the parameters of the functional,
of s (the precision) and of r (the risk aversion parameter). In addition, we have the
maximised log-likelihood.17 We then used, for each subject and each preference the
estimated parameters to predict behaviour on the remaining 16 problems. This gives
us a prediction log-likelihood for each functional and for each subject—this is, of
course, a measure of the predictive ability of the theory. In the tables that follow we
break down some of the summary information by Treatment; recall that Treatment 1
(66 subjects) was the less ambiguous treatment while Treatment 2 (63 subjects) was
the more ambiguous treatment.

We start with Table 1 which shows the mean and standard deviation (across all sub-
jects in each Treatment and in both Treatments) of the fitted log-likelihoods. However
this table does not allow us to compare the goodness of fit across preference func-
tionals, for the simple reason that they have different degrees of freedom (SEU has 4
estimated parameters, CEU 8, AEU 6, VEU 5 and COM 6). If we correct the fitted
log-likelihoods for the degrees of freedom by calculating the Bayesian Information
Criterion (BIC),18 we get Table 2; recall that the lower the BIC the better. It seems

16Because the subjects received the 76 questions in different orders (and with the colours on the left and
the colours on the right randomly selected) this means that the position of the 60 estimation questions (and
hence the 16 prediction questions) varied from subject to subject, but for each subject they were randomly
positioned.
17Note that with our combination since the variables to be explained are the proportions of the endowment
allocated the various colours, in order to make the log-likelihoods comparable with those from other
specifications, we need to subtract from the maximised log-likelihoods the sum of the natural logarithms
of the amounts to be allocated in the relevant problems.
18This is given by k ln(n) − 2LL, where k is the number of estimated parameters, n the number of
observations and LL the maximised log-likelihood.
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Table 2 Bayesian Information Criterion (standard deviation is in parentheses)

Bayesian Information Criterion

SEU CEU AEU VEU COM Obs.

All 330.97 342.11 336.21 328.88 338.03 129

(116.62) (114.99) (114.45) (114.89) (115.40)

Treatment 1 335.47 347.72 341.15 334.14 343.09 66

(101.10) (99.37) (98.74) (99.72) (99.48)

Treatment 2 326.24 336.22 331.02 323.37 332.72 63

(131.60) (129.91) (129.50) (129.48) (130.62)

t-stat diff. 0.448 0.566 0.501 0.531 0.509

that, on average, VEU is the best, followed by SEU and then AEU, COM and CEU.
Note that CEU is penalised by its large number of parameters.

In order to demonstrate that the means shown in Tables 1 and 2 hide rather
large variations across subjects, we present histograms of the BIC across subjects in
Fig. 1. We note that the shapes of the distributions of the subjects across pref-
erence functionals are very similar, and there are high correlations between the
log-likelihoods across subjects over preference functionals.
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Fig. 1 Histograms BIC by preference functionals
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Table 3 Rankings based on the Bayesian Information Criterion (all values represent cumulative percent-
ages - last column shows the average ranking)

Model 1st 1–2 1–3 1–4 1–5 Aver. Rank

Treatment 1

SEU 52 61 92 100 100 1.95

CEU 0 6 23 33 100 4.38

AEU 6 41 68 92 100 2.92

VEU 38 77 88 94 100 2.03

COM 5 15 29 80 100 3.71

Treatment 2

SEU 49 67 95 100 100 1.89

CEU 2 6 17 29 100 4.46

AEU 8 33 70 92 100 2.97

VEU 37 83 89 89 100 2.03

COM 5 11 29 90 100 3.65

Tables 1 and 2 relate to averages. We now look at individual subjects. If we rank
the various preference functionals using the BIC, we get Table 3. Here we report
the cumulative percentage in each ranking position: so for example, in Treatment 1,
SEU is ranked first for 52% of our subjects; is ranked first or second for 61% of our
subjects; and so on. It is clear from this table that SEU and VEU are the ‘best’, then
comes AEU and finally COM and CEU.

We now ask about statistical significance of our estimates. Because of the rela-
tionships between the preference functionals, we need to carry out two kinds of tests:
nested tests and non-nested tests. We note that SEU is nested within all the other
four preference functionals, but none of them (in the way that we have implemented

Table 4 Significance test for superiority of preference functionals - five percent level

Model SEU CEU AEU VEU COM

Treatment 1

CEU 26 n.a. 6 3 6

AEU 38 0 n.a. 2 3

VEU 38 0 6 n.a. 3

COM 14 0 9 3 n.a.

Treatment 2

CEU 21 n.a. 6 2 5

AEU 38 0 n.a. 2 3

VEU 38 0 13 n.a. 5

COM 13 0 6 2 n.a.
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Table 5 Significance test for superiority of preference functionals - one percent level

Model SEU CEU AEU VEU COM

Treatment 1

CEU 14 n.a. 6 2 6

AEU 36 0 n.a. 2 3

VEU 30 0 5 n.a. 3

COM 11 0 5 3 n.a.

Treatment 2

CEU 13 n.a. 5 2 3

AEU 32 0 n.a. 2 3

VEU 33 0 6 n.a 3

COM 10 0 5 2 n.a

them here) are nested inside any of the others. Hence for each of CEU, AEU, VEU
and COM relative to SEU a likelihood ratio test is appropriate; for each of CEU,
AEU, VEU and COM against the others a Clarke test is appropriate (Clarke 2007).
The results are reported in Table 4 (5% significance) and Table 5 (1% significance),
where the entries are the percentage of the subjects in the two treatments (66 and
63 in total respectively). Looking at the first column of Table 4, we note that CEU
and COM do relatively poorly. Indeed, they are significantly better than SEU only
for 26% and 14% of the subjects, respectively, in Treatment 1 and only for 21% and
13% of the subjects, respectively, in Treatment 2 at the 5% level. Table 5 shows the

Table 6 Average prediction log-likelihoods (standard deviation is in parentheses)

Prediction Log-Likelihoods

SEU CEU AEU VEU COM Obs.

All −43.97 −45.03 −43.98 −43.66 −43.99 127

(18.57) (19.97) (18.43) (18.77) (18.66)

Treatment 1 −44.77 −45.61 −44.92 −44.63 −44.81 65

(15.67) (16.89) (15.49) (15.67) (15.65)

Treatment 2 −43.14 −44.43 −42.99 −42.64 −43.13 62

(21.29) (22.88) (21.16) (21.63) (21.48)

t-stat diff. −0.493 −0.329 −0.584 −0.595 −0.505

We excluded here from the analysis two outliers (namely subjects number 14 and 22) because their inclu-
sion significantly affects the calculation of the average and of the standard deviation, and gives a distorted
picture of the results
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Table 7 Ranking based on prediction log-likelihoods (all values represent cumulative percentage - last
column shows the average ranking)

Model 1st 1–2 1–3 1–4 1–5 Aver. Rank

Treatment 1

SEU 15 40 51 89 100 3.00

CEU 23 32 49 58 100 3.32

AEU 9 49 71 82 100 2.85

VEU 34 49 63 82 100 2.68

COM 18 29 66 89 100 2.92

Treatment 2

SEU 11 29 56 89 100 3.10

CEU 18 34 40 45 100 3.57

AEU 11 47 73 89 100 2.76

VEU 48 58 71 94 100 2.25

COM 11 32 60 84 100 3.08

We excluded here from the analysis two outliers (namely subjects number 14 and 22) because their inclu-
sion significantly affects the calculation of the average and of the standard deviation, and gives a distorted
picture of the results

same results at 1% level of significance. These statistical tests on the fitting of the
various preference functionals tell us that the best seem to be AEU and VEU. Indeed,
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Fig. 2 Scatter prediction log-likelihoods vs BICs
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Table 8 Correlation between prediction log-likelihoods and BICs

Bayesian Information Criterion

Prediction Log-Likelihoods SEU CEU AEU VEU COM

Treatment 1

SEU −0.823 −0.806 −0.793 −0.807 −0.811

CEU −0.767 −0.770 −0.742 −0.759 −0.767

AEU −0.808 −0.795 −0.817 −0.797 −0.805

VEU −0.811 −0.802 −0.787 −0.808 −0.805

COM −0.809 −0.804 −0.787 −0.799 −0.807

Treatment 2

SEU −0.928 −0.925 −0.923 −0.929 −0.927

CEU −0.896 −0.892 −0.891 −0.896 −0.896

AEU −0.908 −0.904 −0.925 −0.912 −0.910

VEU −0.899 −0.894 −0.897 −0.905 −0.898

COM −0.921 −0.917 −0.918 −0.921 −0.921

We excluded here from the analysis two outliers (namely subjects number 14 and 22) because their inclu-
sion significantly affects the calculation of the average and of the standard deviation, and gives a distorted
picture of the results
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Fig. 4 Scatter BICs SEU vs other preference functionals

these preference functionals are significantly better than SEU for 38% [36%] and
38% [30%] of the subjects, respectively, in Treatment 1, and for 38% [32%] and 38%
[33%] of the subjects, respectively, in Treatment 2 at a 5% [1%] level of significance
(see Table 4 [5]).

If we now turn to the prediction log-likelihoods, things are not so clear cut. From
Table 6 we see that the prediction log-likelihoods have considerable variations across
subjects. Table 7 gives cumulative rankings and is the counterpart of Table 3 for
the fitted log-likelihoods. The findings are less clear here, with the average rankings
closer together. We note that we are using uncorrected log-likelihoods (which seems
appropriate as we are concerned here with predictions). What is particularly striking

Table 9 Average departure from best prediction (standard deviation is in parentheses)

SEU CEU AEU VEU COM

All 7.37 7.63 7.34 7.32 7.34

(4.65) (4.93) (4.58) (4.69) (4.66)

Treatment 1 6.43 6.49 6.51 6.49 6.34

(3.89) (4.04) (4.01) (3.94) (3.88)

Treatment 2 8.36 8.82 8.20 8.18 8.39

(5.18) (5.49) (4.99) (5.25) (5.19)
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Fig. 5 Differences actual vs predicted allocations

is that, while VEU still seems to be particularly good with its ranking better than the
rankings of the others, the average rankings are much closer together than they were
for the BICs. At the same time, there is a very strong correlation between the BICs
(corrected log-likelihoods) and the prediction log-likelihoods, as Fig. 2 makes clear:
this suggests that the best (BIC) fitting preference functional is often also the best pre-
dicting log-likelihood, as Table 8 confirms. At the same time, Fig. 3 emphasises that
there is a very high correlation over preference functionals (for any one subject) and
hence there are very small differences between the goodness of prediction of the var-
ious preference functionals. But this was also the case for the Bayesian Information
Criteria: there is much more variation across subjects than across preference func-
tionals (Fig. 4). This latter point is emphasised by Table 9 and Fig. 5. Table 9 presents
the average prediction error (as measured, for any one subject and preference func-
tional, by the square root of the mean squared difference between the actual allocation
and the predicted allocation using that preference functional). Figure 5 presents
the distribution across subjects of this measure of prediction error. What is notice-
able is the big difference across subjects and the small difference across preference
functionals.

We conclude that in terms of predictions, VEU and (to a lesser extent) AEU
seem to be better than SEU though, in terms of magnitudes, they are not a lot
better than SEU. The loss in predictive power in using SEU is relatively small in
magnitude.
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6 Conclusions

We conclude that VEU and, to a lesser extent, AEU are somewhat better than SEU.
However what appears to be rather odd is that there does not seem to be a treat-
ment effect with respect to preference functionals: relatively the different preference

Table 10 Descriptive statistics average estimated parameters

Theory Parameter All Treatment 1 Treatment 2 t-test diff.

SEU p1 0.231 0.223 0.239 −0.989

p2 0.331 0.317 0.345 −2.912

p3 0.439 0.460 0.416 2.385

r 2.223 2.129 2.322 −0.229

s 20.543 21.978 19.040 0.815

CEU w
E1

0.222 0.210 0.234 −1.241

w
E2

0.301 0.290 0.313 −1.448

w
E3

0.408 0.435 0.380 2.639

w
E2∪E3

0.759 0.770 0.747 0.911

w
E1∪E3

0.613 0.635 0.589 2.490

w
E1∪E2

0.542 0.489 0.597 −3.695

r 1.999 1.969 2.031 −0.072

s 20.897 22.020 19.721 0.649

AEU p
1

0.204 0.194 0.214 −1.315

p
2

0.300 0.286 0.315 −2.465

p
3

0.404 0.424 0.383 1.836

α 0.344 0.399 0.286 1.907

r 2.201 2.088 2.320 −0.281

s 19.359 20.281 18.393 0.575

VEU p1 0.233 0.224 0.241 −1.036

p2 0.330 0.317 0.343 −2.546

p3 0.438 0.459 0.416 2.291

δ −0.020 −0.014 −0.027 1.130

r 2.085 2.027 2.145 −0.156

s 20.251 21.408 19.038 0.687

COM p
1

0.203 0.192 0.213 −1.254

p
2

0.300 0.284 0.316 −2.328

p
3

0.408 0.427 0.388 1.675

λ 0.456 0.474 0.436 0.826

r 1.961 1.854 2.073 −0.345

s 19.666 20.687 18.596 0.625
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functionals perform similarly in the two treatments. In light of the nature of the
results, we can legitimately ask: is there no treatment effect?

In order to explore this question, we present Table 10. This gives the averages of
the estimated parameters for each preference functional for each treatment. Let us
look at SEU, as a similar message emerges (appropriately modified) for the other
functionals.19 The mean estimates of risk aversion are not significantly different in
the two treatments; neither are the mean estimates of the noise (though the noise is
slightly higher in Treatment 2). But examine the estimated probabilities: in Treat-
ment 1 the mean estimates of the three probabilities (pink, yellow and blue) are
0.223, 0.317 and 0.460; in Treatment 2, 0.239, 0.345 and 0.416. The true prob-
abilities are 0.2, 0.3 and 0.5. There are significant differences between the mean
estimates in Treatment 1 and those in Treatment 2. In Treatment 1 the mean esti-
mated probabilities are close to the true ones. In Treatment 2 they are significantly
closer to equal probabilities for the three colours. Subjects were responding to the
ambiguity by working on the basis of almost equal probabilities. So they were not
working with a more sophisticated preference functional in the more complicated
environment of Treatment 2. On the contrary, they responded by simplifying their
decision problem.

A clear possible criticism of our experiment relates to the question of whether or
not our subjects were ambiguity-neutral. If they were, then it rather trivially follows
that SEU has no worse chance of explaining behaviour than the other preference
functionals. Take CEU for example: if a subject were ambiguity-neutral then the esti-
mated capacities would be additive. There are various ways that one can test this (like
testing whether the capacities depart significantly from additivity), but the simplest
is to test whether the CEU model fits significantly better than SEU. Table 4 and 5
give the answer: for 26% (14%) of the subjects in Treatment 1 CEU fits significantly
better than SEU at the 5% (1%) level and for 21% (13%) in Treatment 2. But this
is a relatively weak test because of the large number of parameters in CEU. A much
clearer picture emerges from VEU and AEU. For VEU the corresponding figures are
38% (30%) in Treatment 1 and 38% (33%) in Treatment 2. For AEU the correspond-
ing figures are 38% (36%) in Treatment 1 and 38% (32%) in Treatment 2. So we can
conclude that many of our subjects were not ambiguity-neutral.

Another possible criticism relates to whether the experiment was designed in such
a way so that it was unable to distinguish between the different preference function-
als. It is clear that the preference functionals are different (and thus lead to different

19With the other preference functionals we note the following, as far as the mean parameters are concerned:

(1) with CEU the estimated mean capacities are almost additive, but get slightly less so in Treatment 2;
(2) with AEU, the mean lower bounds on the probabilities are close to the SEU subjective probabilities,

and get closer to equality in Treatment 2;
(3) with VEU the mean δ parameter is close to 0 and similar in the two treatments;
(4) with COM the mean lower bounds on the probabilities are close to the SEU probabilities and the λ

is close to 0.5;
(5) we note that the α parameter in the AEU model is on average lower than the λ parameter in the COM

model. This suggests that the Steiner point is a less important consideration to the subjects than the
maximum expected utility.
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Table 11 Bayesian Information Criterion when the row model is the true one

Bayesian Information Criterion

True Model SEU CEU AEU VEU COM

SEU 471.21 484.64 479.03 474.46 479.40

CEU 529.03 440.82 537.69 449.09 530.93

AEU 561.17 496.39 469.24 514.19 569.83

VEU 487.69 456.30 496.35 446.31 478.52

COM 485.44 471.19 493.40 475.53 465.80

decisions), which implies that the models are distinguishable given our parameteri-
sations: we are simply reinforcing here the theoretical point we have made earlier, at
the end of Section 1. We return to this point since the theory ignores the existence
of noise in subjects’ decisions. However there is noise in subjects’ decisions and
this noise could drown out the distinguishability that clearly exists in the absence of
noise, unless the number of problems posed to the subjects was sufficiently high and
the problems appropriately constructed. So before we implemented the experiment
we carried out a simulation assuming a particular (realistic) level of noise and the
problems that we asked. With our parameterisation of the preference functionals we
can demonstrate with a simple example, shown in Table 11, that the preference func-
tionals under analysis are fully distinguishable. In this example we have assumed a
reasonable set of parameters for each functional, a particular specification and a real-
istic value for the precision s20, and simulated estimation with 100 repetitions. Each
cell reports the mean Bayesian Information Criterion (the lower the better) of the col-
umn model when the row model is the true one. Table 11 shows that the preference
functionals under analysis are fully distinguishable. Indeed, in each row the diagonal
element is always a lot smaller than the off-diagonal elements. This means, for exam-
ple, that if we know that a specific subject has CEU preferences, then CEU best fits
behaviour in the experiment. Obviously this is for subjects who are ‘clearly’ CEU:
if a subject has CEU preferences that are ‘close’ to SEU preferences and there is a
lot of noise in that subject’s behaviour, then distinguishability is more problematic.
But, of course, if that is the case then SEU predictions will also be ‘close’ to CEU
predictions.

This property of the experimental design (distinguishability) was not simply by
chance as we carried out intensive pre-experimental simulations in order to select the
set of problems to ask the subjects. The purpose of these simulations was precisely to
select a number and a set of problems which would enable us to discriminate between
the preference functionals, given the amount of noise in the subjects’ responses.

20We run 100 replications using a coefficient of risk aversion r equal to 0.8 and a coefficient of precision
equal to 12. For each preference functional we set the following parameters’ values: SEU: p1 = 0.2, p2 =
0.3, p3 = 0.5; CEU: wE(1) = 0.10, wE(2) = 0.20, wE(3) = 0.30, wE(2)∪E(3) = 0.85, wE(3)∪E(1) = 0.75,
wE(2) ∪ E(2) = 0.65; AEU: p

1
= 0.10, p

2
= 0.15, p

3
= 0.25, α = 0.5; VEU: p1 = 0.2, p2 = 0.3,

p3 = 0.5, δ = 0.10; COM: p
1
= 0.10, p

2
= 0.20, p

3
= 0.30, λ = 0.75.
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Clearly the greater the noise the more problems are required; this explains the rel-
atively large number of problems in our experiment. We had carried out a pilot
experiment to determine how much noise there was in behaviour, and this informed
the simulation and hence the number and choice of problems.

Before we conclude we should note that the fitting and prediction parts of the
exercise give somewhat different results. In terms of fitting, one of the more general
models (VEU) does seem to fit better than SEU for many of the subjects. However,
when it comes to prediction, as is clearly shown in Table 9, some of this superior-
ity disappears (though AEU and VEU are still marginally better overall than SEU).
Hence one might not lose a lot in predictive power in using SEU rather than one of
the more general functionals. An econometrician might regard this as an inevitable
consequence of over-fitting: as is well-known, if one fits an nth-degree polynomial
to n observations from a truly linear relationship (with noise), the fit is better than a
linear fit, but extrapolative predictions are almost certainly worse. It should be noted,
however, that our prediction problems were a randomly chosen subset of all the prob-
lems, and cannot be considered as extrapolative. Indeed it is not clear in our case
what “extrapolative problems” means.

So the bottom line appears to be that VEU and AEU are better than SEU in terms
of explanation (less so COM and CEU), and that some, but not all, of this superiority
disappears when it comes to prediction. Moreover, when we move from Treatment 1
(almost a case of risk) to Treatment 2 (clearly a situation of ambiguity) subjects do
not respond by moving to a more sophisticated preference functional. Instead they
seem to respond by having subjective probabilities further away from the true prob-
abilities and nearer to equality. In our view, this is a rational response: if a situation
is ambiguous, and hence complicated, why complicate it further by using a more
complicated preference functional? In this respect we note that the best functional,
VEU, in the way that we have parameterised it, is a particularly simple extension of
SEU. If we look at Eq. 12 above we see that it is essentially SEU with the probability
attached to the best outcome decreased by a small amount δ and the probability of the
worst outcome increased by a small amount δ, this δ depending upon the amount of
ambiguity and the subject’s perception and reaction to it. Of course, this δ could be
negative if a person is ambiguity-loving. Indeed for 49 of our subjects the estimated
value of δ was positive and for 80 it was negative. On average, as we see from Table
10, this δ increased slightly in absolute value. At the same time, the average values
of the estimated probabilities moved closer to equality. This seems a rather sensible
way to respond to increased ambiguity.
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