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Abstract Under the expected utility hypothesis a costless genetic test has, at worst,
zero private value. This happens if it does not affect optimal decisions. If the genetic
test facilitates better decision-making for at least one possible test outcome, then
it has positive private value. This theoretical result seems to contradict the fact
that empirically observed take-up rates for genetic tests are surprisingly low. We
demonstrate that if individuals display ambiguity aversion, a costless genetic test
that does not affect optimal decisions is never taken. Furthermore, there is a trade-
off between aversion against uncertainty of test results and utility gains from better
decision-making if optimal decisions depend on the level of information. The reason
is that, from an ex-ante view, a genetic test introduces uncertainty of probabilities
which diminishes the value of information to an ambiguity-averse decision-maker.
Ambiguity aversion regarding test results thus provides an explanation for low
take-up rates for genetic tests.
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1 Introduction

Genetic tests have the potential to provide information about one’s health and mor-
tality prospects. Such information can in turn be used by individuals to improve their
life planning decisions, including whether to have children, better choosing an opti-
mal savings plan, or deciding on what occupational training to acquire. If insurers are
not allowed access to the information, then one can also improve (opportunistically)
one’s insurance purchase decisions. Moreover, genomic science has advanced to the
stage of being able to identify some so-called “disease genes” or, more appropriately,
“disease alleles” which improve our understanding of how specific sequences of
genes interact with each other and with environmental factors to affect the onset and
influence the treatment of diseases (e.g., see Filipova and Hoy (2014) for a discus-
sion on how such information provides private value with respect to decision-making
about surveillance and prevention for disease). Despite these apparent benefits from
genetic information, the take-up rates for existing genetic tests seem surprisingly
low.1

There are some potential negative implications of genetic tests. If insurers are
allowed access to such information, as for example are life insurance providers in the
United States and Canada, then bad test results can shrink one’s market opportunities
or lead to uninsurability.2 Concern over this possibility, often referred to as genetic
discrimination, has led many countries to restrict insurers’ access to such informa-
tion.3 Take-up rates for genetic tests are surprisingly low even in countries which
restrict the use of genetic information by insurers and employers.

1For example, in various clinical testing environments, when anonymous genetic tests for Huntington’s
disease were offered at zero cost, Meiser and Dunn (2000) found that the percentage at risk who requested
testing varied from 9% to 20% in various centers in UK cities and Vancouver. Lerman et al. (1996) report
that almost 60% of their subjects with a family history of breast and/or ovarian cancer declined to receive
a costless genetic test for the BRCA1 gene. Levy et al. (2011) find that only 30% of newly diagnosed
women with early onset breast cancer choose to receive a genetic test to determine appropriate treatment
options. For further discussion, see also Babul et al. (1993) and Quaid and Morris (1993).
2This general phenomenon has been termed premium risk. See Tabarrok (1994), Doherty and Thistle
(1996) and Strohmenger and Wambach (2000). For a review of the implications of genetic testing for
insurance, see Hoy and Ruse (2005).
3Worldwide, the reaction to the use of genetic testing for life, private health, and long term disability insur-
ance purposes varies from legislation or total moratoria banning any use of genetic test results by insurers
to a status quo approach letting the industry regulate itself. In most of Western Europe the ban is almost
total, falling in line with the UNESCO Declaration on Human Genetic Data 2003. In Belgium, insurers
are prohibited from even accepting favorable genetic test results provided voluntarily by consumers. In the
United Kingdom and the Netherlands, companies can ask for genetic test results only for large policies
(those exceeding £500,000 in Britain and the equivalent of $150,000 U.S. (approx.) in the Netherlands).
Australia, New Zealand and Canada are among those who allow the status quo to remain (i.e., no explicit
restrictions on insurers’ access to genetic test results), relying on existing privacy laws and the insurance
industry’s self-regulation. The United States is a particular case in that, in the absence of socialized medi-
cal insurance, the issue involves both the health and the life insurance industries. As well, the regulations
vary from state to state. Federally, the Genetic Information Nondiscrimination Act (GINA) passed in May
of 2008 addresses the use of genetic testing in health insurance (and is likely to be superseded by the intro-
duction of so-called Obamacare). Only 14 states have introduced some laws to govern the use of genetic
testing in life insurance and these laws make restrictions rather than outright bans.



J Risk Uncertain (2014) 48:111–133 113

All of the above discussion has been cast, implicitly, within the context of expected
utility theory (EUT). If test results do not shrink one’s market opportunities (or more
generally, one’s choice set), then the expected utility generated by a (costless) genetic
test must be at least as great as not taking the test. Moreover, if one’s optimal decision
is changed in light of at least one of the possible test results, then the test has positive
expected value. The empirical evidence quoted above is, therefore, surprising as it
relates to information that is provided costlessly and anonymously.

As noted by Gollier (2001), in non-expected utility models agents might dislike
information. In this paper, we consider the possibility that the behavioral model of
ambiguity aversion, as formulated by Klibanoff et al. (2005)—KMM hereafter—can
offer an explanation for the observed low take-up rates of genetic tests. This approach
is suitable due to the fact that taking a genetic test can be interpreted as a situation
where an individual faces second-order probabilities. According to the beliefs of the
individual, which may reflect the prevalence of the disease in the population or be
based on family medical history, a genetic test with a given test technology leads
to a positive test result for a genetic mutation with a certain probability and to a
negative test result with the complementary probability. Now each test result itself
leads to a specific change in the beliefs of the individual, as individuals receiving
“bad” news necessarily revise their priors towards being high risk, whereas people
receiving “good” news from a test revise their priors in the other direction. In this
sense, a genetic test corresponds ex-ante to a lottery between a deterioration and an
improvement in beliefs. By not taking the test, however, the individual avoids this
uncertainty and is free to stick to her individual priors over the disease risk. Let us
give an example.

A mutation of the genes BRCA1 and BRCA2 is known to be associated with a
higher risk for breast or ovarian cancer (see Thompson et al. 2002). If women do
not take a test for whether they have such a mutation, they recognize that they might
or might not have it. Hence, the risk for breast or ovarian cancer may be viewed as
a compound lottery in the first place and the woman is likely to think of her risk
exposure in terms of priors over the risk type she may be, especially given the vast
amount of information that has been disseminated regarding the role of the BRCA1
and BRCA2 mutations. Someone who chooses not to take a genetic test presumably
bases her priors over these probabilities on the relevant subpopulation based on fam-
ily medical history. Individuals can receive counsel on such likelihoods from medical
professionals.4 If, however, she takes a test, she could either obtain a positive or neg-
ative result. The perceived probability of testing positive depends on two factors,
individual priors and test technology (or accuracy). If a woman now finds out that
she carries a mutation of the respective genes, she will, of course adjust her priors to
reflect the new information. In the extreme case where test technology is such that
there are no false positives, she will even believe that she is a high-risk type with

4See, for example, Table 1, p. 531, in Hoy and Witt (2007) who report that, based on women in the age
group 35 to 39, a woman with no first degree relatives has a probability of carrying one of the BRCA genes
of 0.001 while if her mother and a sister had ovarian cancer before the age of 50, then the probability rises
to 0.065. The relevant (unconditional) probabilities for incurring breast cancer over the next ten years for
these two cases are (approximately) 0.013 and 0.30, respectively.
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certainty. Naturally, in the case of a negative test result she will think of her breast
and ovarian cancer risk more in terms of her being a low risk. Again, she believes
being a low risk with certainty if the test has a rate of false negatives of zero. Before
taking the test, however, there is still the uncertainty of test results to be resolved.
Lastly, the value of genetic information also depends on the opportunities at hand
given a specific test result. Since the 1970s strong medical progress has been made
regarding therapies available for breast cancer especially when detected early (see
Goldhirsch et al. 2007). Hence, individuals would probably adjust their surveillance
behavior once they test positive. It becomes apparent that the interaction of decision-
making value created by new information and the attitude towards changes in priors
together determine the attractiveness of genetic information.

Following the definition given by Camerer and Weber (1992), “ambiguity is uncer-
tainty about probability created by missing information that is relevant and could be
known.” If individuals consider taking a genetic test, they realize that information
regarding disease alleles is missing, but can be obtained, possibly imperfectly, from
the test. If they fear ambiguity, the uncertainty of test results might be detrimental in
terms of welfare. While a person choosing not to submit to a genetic test also recog-
nizes the potential to be a high- or low-risk type, by choosing not to find out, there
is no ex-ante prospect that she will experience the resolution of this uncertainty. In
other words, a person submitting to a genetic test “lives through” the ambiguity while
a person who remains ignorant does not. Ellsberg (1961) was the first to demonstrate
that people might fear uncertainty about probabilities, a phenomenon which has been
coined ambiguity aversion. The prevalence of ambiguity aversion has been docu-
mented in laboratory experiments (see Einhorn and Hogarth 1986; Chow and Sarin
2001), in market set-ups with educated individuals (see Sarin and Weber 1993), and
in surveys of business owners and managers (see Viscusi and Chesson 1999; Chesson
and Viscusi 2003). This paper demonstrates that ambiguity aversion over genetic test
results may provide a simple and straightforward explanation of empirically observed
low take-up rates for genetic tests.

Prior models of information transmission in doctor-patient relations choose differ-
ent avenues through which to incorporate negative attitudes towards “bad news”. In
the context of HIV testing, Caplin and Eliaz (2003) introduce an anxiety cost func-
tion that captures both the anxiety an agent experiences when diagnosed with HIV
for sure and how this relates to the accuracy of tests. They employ these preferences
to design a mechanism that encourages testing and slows down the transmission of
disease. Kőszegi (2003) models patients’ fears as arising from expectations about
future health conditions by formulating a utility function of beliefs about physical
outcomes. This can explain why agents avoid visiting doctors or obtaining readily
available information. Also Caplin and Leahy (2004) incorporate patients’ anxiety
into a model of information revelation by policy makers. In their models, individu-
als are heterogeneous regarding the source of anxiety: For some individuals anxiety
results from uncertainty about future conditions, whereas for others the extent of cer-
tainty of specific future health states constitutes anxiety. The problem of information
revelation between two parties where the information has decision-making value,
but potentially adverse emotional consequences for one party and the other reacts
strategically to those fears, is studied in a general set-up by Kőszegi (2006).
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Oster et al. (2013) study the decision to undergo a genetic test for Huntington’s
disease and find low take-up rates of 10%. They demonstrate that the behavior of
tested and untested individuals is consistent with a model of optimal expectations.
Schweizer and Szech (2012) study attitudes towards genetic testing in a framework of
anticipatory utility and derive implications for test design. The models so far incorpo-
rate fear of information in rather ad hoc manners by modeling preferences in various
ways that reflect this anxiety. We demonstrate that the information structure implied
by a genetic test in combination with ambiguity-averse preferences alone are suf-
ficient to generate low take-up rates and to diminish the decision-making value of
genetic information.

We suggest that health information derived from genetic tests is different from
other diagnostic or predictive information obtained through traditional medical test-
ing such as determining one’s blood sugar level. Even though both types of tests
could imply, for example, a revised and higher perceived predisposition towards
future onset of type 2 diabetes, a genetic test is viewed as having broader and more
profound implications for future lives of individuals. The extent to which this is an
appropriate distinction in how these different types of information are perceived by
individuals may indeed vary across genetic and other medical tests and we would not
claim that all other types of medical testing are immune to the effects of ambiguity
aversion. However, much attention has been given to the special character of genetic
tests—a phenomenon which has been termed genetic essentialism.5

Given the likely future of genetic research and technological developments, it is
important to understand the surprising reticence of people to opt for potentially useful
genetic tests. With the prospect of the so-called $1000 genome close to reality (see
Davies 2010), whole genome sequencing may soon become the norm for developed
countries. Even now, according to the web site of the Centers for Disease Control
and Prevention, there are over 3000 diseases for which genetic tests have been devel-
oped and about 2000 are in use in clinical settings.6 The information that can be
gleaned from an individual’s whole genome has the potential to revolutionize the
practice of medicine with population wide genome sequencing forming the basis of
so-called P4 medicine (i.e., medicine that is Predictive, Preventive, Personalized and
Participatory).7 However, we must understand how individuals assess the value of
this information if it is indeed to provide substantial benefits to society.

2 A simple model

In this section we develop a simple model to analyze the decision to undertake a
genetic test. We assume that individuals are homogeneous with respect to preferences

5See, for example, Nelkin and Lindee (1995), Wolpe (1997), Nordgren and Juengst (2009), and Durnin
et al. (2012) for discussion on the “perceived special importance” of genetic information.
6See http://www.cdc.gov/genomics/gtesting/, accessed February 27, 2014.
7The potential for P4 medicine to improve life outcomes has many proponents, not least of whom is Leroy
Hood through his P4 Medicine Institute (p4mi.org). Even more modest use of genetic information should
provide substantial benefits (see Filipova and Hoy 2014).

http://www.cdc.gov/genomics/gtesting/
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Fig. 1 Information structure before taking a test

across states of nature. Individuals in our model face the risk of becoming ill.
In the good state of nature, which we denote by “h” for “healthy”, individuals derive
utility uh from consumption.8 In the bad state of nature, which we denote by “s” for
“sick”, individuals derive utility us from consumption. In this sense, preferences over
outcomes are state-dependent and it is natural to assume that uh(c) ≥ us(c), i.e.,
consumption utility when healthy is larger than when sick.9

The sick state of the world occurs with probability ρ, and the healthy state of the
world with probability 1 − ρ. Individuals differ in the probability of onset of dis-
ease; i.e., we distinguish high-risk and low-risk individuals. This reflects the fact
that decision-makers are heterogeneous with respect to their genetic make-up and
therefore there are those who suffer from a genetic mutation which entails a higher
likelihood ρH of becoming ill, and those who do not and who therefore enjoy a
lower likelihood ρL of becoming ill, ρL < ρH . The probabilities of illness might be
objective or subjective. Individuals do not know ex-ante whether they have a genetic
mutation and hence form beliefs about their likelihood of being either type. Let πH

denote their belief that they belong to the high-risk group and πL = 1 − πH their
belief of belonging to the low-risk group. Figure 1 illustrates the information structure
in the absence of information from a genetic test. Again, individuals might differ in
their prior beliefs for instance due to different information regarding family medical
history. As an example, for the BRCA genes discussed above, the relevant parame-
ter values are {πH = 0.001, πL = 0.999, ρH = 0.14, ρL = 0.0125, ρ = 0.013}
for a woman with no family history of breast cancer, and {πH = 0.065, πL =
0.935, ρH = 0.295, ρL = 0.0111, ρ = 0.03} for a woman if her mother and a sister
had ovarian cancer before the age of 50 (see Hoy and Witt 2007).

8The consumption good might consist of several attributes. The analysis below does not require us to
model this explicitly.
9The question of how changes in health status affect marginal utility of consumption is still not completely
resolved. Viscusi and Evans (1990) use job injuries to infer that marginal utility drops due to decreased
health, whereas Evans and Viscusi (1991) find that decreased health corresponds to a drop in income and
does not affect the structural form of consumption utility. Important determinants of whether changes in
health increase or decrease marginal utility of consumption seem to be the severity and the permanence of
the health condition under consideration.
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Fig. 2 Test technology

Now consider that a genetic test is available that classifies individuals into high
and low risks. We assume test technology to be exogenous. However, a test might
not classify individuals perfectly meaning that the rate of false positives and false
negatives might be strictly positive. The scientific reliability of a genetic test may be
affected by a number of factors including sample contamination, incorrect labora-
tory testing procedures, mislabeling, misreporting, and transcription errors.10 In the
following we denote by pij the proportion of type j individuals (j ∈ {H,L}) who
receive a positive or negative test result (i ∈ {p, n}). Hence, ppH , which is referred
to as the sensitivity of the test, is the proportion of correctly classified high-risk indi-
viduals who possess the genetic mutation; pnL, which is referred to as the specificity
of the test, is the proportion of correctly classified low-risk individuals who do not
possess the genetic mutation; ppL is the rate of false positives (i.e., the proportion of
low-risk individuals who erroneously test positive); and pnH is the fraction of false
negatives (i.e., the proportion of high-risk individuals who erroneously test negative).
Naturally, ppH + pnH = 1 and ppL + pnL = 1, which means that individuals of
each type must test either positive or negative. Figure 2 summarizes the features of
test technology.

Next, we are interested in how individuals perceive ex-ante the information struc-
ture induced by a genetic test. First, they should realize that they could test positive
or negative. The perceived probability of receiving a specific test result depends,
however, on the priors over

{
ρL, ρH

}
. More precisely, the perceived probability of

testing positive is given by λp ≡ πHppH +πLppL, whereas the perceived probabil-
ity of testing negative is λn ≡ πHpnH + πLpnL. Second, once a specific test result
has been obtained the beliefs will be subject to updating. We use Bayes’ rule to infer
the new set of beliefs after testing. If individuals test positive, the perceived proba-

bility of belonging to the high-risk group should change to
πHppH

λp
, which we denote

by pHp. Thereby, the numerator represents the probability of being a high-risk type
and receiving a positive test result and the denominator represents the probability of
receiving a positive test result. Note that the new prior for ρH is larger than πH if

10See “Essentially Yours: The Protection of Human Genetic Information in Australia” (ALRC Report 96),
available at http://www.alrc.gov.au/publications/10-genetic-testing/reliability-genetic-testing, accessed
February 25, 2014.

http://www.alrc.gov.au/publications/10-genetic-testing/reliability-genetic-testing
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and only if ppH > ppL, i.e., if and only if test technology is such that high-risk types
have a higher likelihood of receiving a positive test result than low-risk types. If this
condition does not hold, then the test has zero information value. This is a minimum
requirement on the discriminatory power of the test and can therefore be assumed to
hold. Furthermore, if individuals test positive, the perceived probability of belonging

to the low-risk group should change to
πLppL
λp

≡ pLp which is strictly less than πL.
Looking at the distribution functions over {ρL, ρH } it is easy to see that receiving a
positive test result corresponds to a first-order stochastic improvement in the priors,
i.e., it is now less likely that one is a low-risk individual. If individuals test negative,
there will be a first-order stochastic deterioration in beliefs, i.e., it is now more likely
that one is a low-risk individual. Conditional on receiving a negative result for the
genetic test, the perceived probabilities of belonging to the high-risk group and to the

low-risk group are given by πHpnH
λn

≡ pHn and πLpnL
λn

≡ pLn, respectively. Hence, a
positive or negative test result does not change the expected utility of either type, but
the beliefs that one belongs to a specific risk group. The new information structure
induced by the genetic test is illustrated in Fig. 3.

Comparing the information structure induced by a genetic test to the informa-
tion structure without a test we see that a genetic test introduces another stage, the
stage of possible test results. On each branch the (ex-ante perception of) ambiguity is
changed by shifting priors towards the better scenario in case of a negative test result
or towards the worse scenario in case of a positive test result. In this way, a genetic
test introduces ambiguity through the uncertainty of test results. This is due to the
fact that from an ex-ante perspective the individual does not know whether she will
test positive or negative and hence a genetic test can be viewed as a lottery between
an improvement in beliefs or a deterioration of beliefs. Although a person who does
not submit to a genetic test may also be a high- or low-risk type (i.e., she may or may
not have the disease gene), since this person does not have to face the chance of find-
ing out whether her prospects are better or worse than she initially thinks, we treat
this person as not experiencing ambiguity over test results. So a person can choose
to stick with her (known) perceived distribution of illness types because she does

Fig. 3 Information structure induced by a genetic test
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not want that perception to be challenged by a genetic test. Otherwise, if she sub-
mits to the test, she must experience the anticipation of receiving either good or bad
news. Therefore, a genetic test represents a mean-preserving spread in ambiguous
beliefs as defined by Snow (2010, p. 137). For the case of unproductive informa-
tion accompanied by a change in the general informativeness of a test (see our
Definition 1 in Section 3.2), our results represent a direct application of the theory
and results developed by Snow (2010). Details are provided in the following sections.

In this paper we want to distinguish between individuals who are not affected
by such uncertainty in the space of probabilities and those who care about uncer-
tainty of probabilities. To operationalize this notion we follow Snow (2010) and
apply the by now standard model (KMM) developed by Klibanoff et al. (2005).11

Here, individuals form second-order probabilities to judge the likelihood of compet-
ing probabilistic scenarios. Given the information structure explained in Fig. 3, we
incorporate individuals’ fear of uncertain test results by utilizing λp and λn as second-
order probabilities. Employing the Savage axioms in expected utility theory, these
second-order or subjective probabilities would be treated as any other probabilities
in a compound lottery and appear linearly in the expected utility formulation. The
KMM formulation of ambiguity, on the other hand, treats these second-order prob-
abilities differently with decision-makers forming a φ-weighted average about their
prospects from a positive or negative test result. φ is typically assumed to be increas-
ing because scenarios providing larger expected utility are better. Since individuals
are uncertain about the probability of being on one or the other of these branches
of the compound lottery, a mean-preserving spread in the expected utility values on
these branches reduces utility for an individual who is averse to ambiguity. Thus,
concavity of the φ-functional would reflect ambiguity aversion regarding uncertain
test results, a linear φ represents ambiguity neutrality, and convexity of φ indicates
ambiguity loving preferences.

3 Take-up under the expected utility hypothesis

3.1 Unproductive information

Having developed the outline of the model in the previous section we analyze the
decision to undertake a genetic test from the perspective of an expected utility maxi-
mizer who is not affected by the potential presence of ambiguity and is, in this sense,
ambiguity-neutral. We first analyze a scenario where decisions do not depend upon
the information acquired and call information in this case unproductive, as it does not
affect the actions taken by the decision-maker. Let individual endowment be state-
dependent, i.e., the net present value generated by human capital might be different
in the sick state than in the healthy state. We denote by ch consumption in the healthy

11In the literature there is a variety of competing models to incorporate ambiguity-averse preferences, e.g.,
Gilboa and Schmeidler (1989) and Schmeidler (1989). We use the Klibanoff et al. (2005) specification due
to its analytical appeal but briefly address robustness of our results to other specifications in the conclusion.



120 J Risk Uncertain (2014) 48:111–133

state and by cs consumption in the sick state of nature.12 Therefore, if individuals are
uninformed their expected utility will be given by

πHEU(ρH )+ πLEU(ρL), (1)

where EU(ρi) denotes expected utility when being type i, i.e., EU(ρi) = ρius(cs)+
(1 − ρi)uh(ch). If now individuals consider taking a genetic test, the ex-ante infor-
mation structure is given by Fig. 3, i.e., individuals face a perceived chance of λp of
receiving bad news and a chance of λn of receiving good news and conditional on
test results the priors shift as described above. Hence, from an ex-ante perspective
the expected utility from taking the test is

λp
(
pHpEU(ρH )+ pLpEU(ρL)

)
+ λn

(
pHnEU(ρH )+ pLnEU(ρL)

)
.

Since expected utility is linear in probabilities and a genetic test simply represents a
mean-preserving spread in the probability of being either type H or L, this resolves
to (1) and is therefore identical to the expected utility of not taking the test.

Note that this holds irrespective of the test technology. This is due to the fact
that the upward and downward shift in the priors induced by positive and negative
test results are such that the average belief of belonging to a specific risk type are
unaltered, formally λppHp + λnpHn = πH and likewise for πL. This is because
high specificity of the test is “bad” in case of a positive test result, as your belief of
belonging to the high-risk group has to be increased, whereas it is “good” in case of
a negative test result, because the chance of being a high-risk type that has simply
been misclassified is very low, so your belief of belonging to the high-risk group
drops. Those two effects are just offsetting each other and the same holds true for the
sensitivity of the test. We collect the above results in the following proposition.

Proposition 1 Under EUT the value of unproductive genetic information is zero,
independent of sensitivity and specificity of the test.

On that account, at least there is no reason to see low take-up rates on average.
One could, however, argue that in reality at least a small cost for taking a genetic
test seems plausible which would in this set-up deter testing and would be consistent
with low take-up rates. This might apply to diseases like Huntington’s disease where
there is basically no cure available and little can be done in medical terms once the
information is obtained. We believe, however, that even when medical treatments are
irrelevant other non-medical choices like savings decisions, occupational decisions
or family planning will depend on the information which will be dealt with in the
next subsection.

3.2 Productive information

Let us now consider a situation where individuals are not completely helpless regard-
ing the information received from a genetic test, but can take actions conditional

12As said before, the consumption good might be multidimensional.
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upon the information acquired to increase their expected utility. In this sense infor-
mation is productive, as it affects decisions taken by the individual. Examples would
be diseases where prevention matters or where individuals are likely to adjust their
behavior in terms of surveillance to the information obtained from a genetic test. In
addition, as mentioned in the introduction, in countries where insurance companies
are denied access to genetic information we should likely see opportunistic behav-
ior in terms of insurance purchasing based upon information obtained from testing.
We incorporate this into the model by assuming that X denotes the set of potential
life plans available to the individual and that x ∈ X denotes a particular life plan.
Individuals will choose the life plan which maximizes their expected utility given the
information available. Therefore, we denote by EU(ρi, x) the expected utility of risk
type i if life plan x is selected.13

If no genetic test is undertaken and the individual evaluates her situation according
to the initial priors, then a life plan will be chosen according to

max
x∈X

{
πHEU(ρH , x)+ πLEU(ρL, x)

}
.

Let xu denote the optimal choice of an uninformed individual (i.e., the value of
x that satisfies the preceding maximization problem). If the individual, however,
contemplates whether to undertake a genetic test or not, she will be well aware of
the fact that the information received from the test is likely to impose the neces-
sity (or option) of adjusting her chosen life plan. Technically, the choice of x ∈ X

will be conditional on the information acquired from the test, i.e., the individual
solves

max
x∈X

{
pHiEU(ρH , x)+ pLiEU(ρL, x)

}
,

when receiving test result i ∈ {p, n} yielding optimal decision xi .
Hence, ex-ante utility from undertaking a genetic test will be given by

λp
(
pHpEU(ρH , xp)+ pLpEU(ρL, xp)

)

+ λn
(
pHnEU(ρH , xn)+ pLnEU(ρL, xn)

)
. (2)

From the definition of an optimal choice it is clear that individuals are weakly better
off if they decide to take action xp rather than xu when testing positive and taking xn

rather than xu when testing negative. The inequality is strict for situations where a life
plan conditional on the information acquired from a genetic test is utility-enhancing,
e.g., prevention and/or surveillance are effective. In general, the optimal decision
needs to change only for the case of one of the test results in order that the information

13This modeling is very flexible, as it is comprised of decisions that affect the consumption vector and/or
the illness probabilities. Hence, any sort of prevention or surveillance decision is captured within our
model, as are savings or insurance decisions.
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has positive value ex-ante and increases expected utility. Under such conditions, this
demonstrates that the ex-ante expected utility from a genetic test exceeds

λp
(
pHpEU(ρH , xu)+ pLpEU(ρL, xu)

)

+ λn
(
pHnEU(ρH , xu)+ pLnEU(ρL, xu)

)

= πHEU(ρH , xu)+ πLEU(ρL, xu).

It becomes evident that as soon as information obtained from a genetic test facilitates
better decision-making, the value of costless genetic testing should be strictly positive
meaning that a rational decision-maker would always take a costless genetic test.14

Note that this does not depend on test technology, and therefore level of accuracy of
the test, and hence information, even if it might not be accurate in all cases, is still
valuable to an expected utility maximizer. This is in sharp contrast to low take-up
rates.15

Let us now turn to the question how changes in test technology affect the value of
genetic information in the EUT case. As explained in the Appendix, looking at the
rate of false negatives or looking at the fraction of high risks who test positive (i.e.,
sensitivity of the test) is equivalent. Let the parameters δ and ε represent (marginal)
changes to the sensitivity and specificity of the test (respectively). Let V be shorthand
for (2) and ppH = ppH + δ. Then, utilizing the marginal effects derived in the
Appendix, we obtain16

dV

dδ
= πH

[
EU(ρH , xp)−EU(ρH , xn)

]
+ ∂V

∂δ

∣∣∣∣
ppH fixed

.

14The weak positivity of the value of information was already noted by Savage (1954), as “the person
is free to ignore the observation. That obvious fact is the theory’s expression of the commonplace that
knowledge is not disadvantageous.” Gollier (2001) provides a comprehensive summary of the theory of
the value of information under the expected utility hypothesis. It should also be acknowledged that in
the context of health decisions, people often appear to choose non-optimal behaviors and so improved
information about disease likelihood may not lead to improved decision-making for reasons outside of our
model.
15Still, people argue that obtaining a bad test result might affect an individual’s expected utility by dete-
riorating the choice set, i.e., XH ⊂ X0. This happens for instance when insurance companies are allowed
to use genetic information for rate-making purposes. Then the rates for health and/or life insurance cov-
erage will be dramatically higher for tested individuals with an unfavorable result and, in this sense, their
market opportunities are worsened. If this is the case, one cannot simply ignore the information as actions
taken when uninformed might no longer be available. However, as outlined in the introduction, we observe
low take-up rates even in countries where the use of genetic information by insurance companies and
employers is banned and therefore we do not focus on this aspect.
16The first component can be obtained easiest by first simplifying (2) and then taking the derivative.
Alternatively, one can first take derivatives to get

πH
(
pHpEU(ρH , xp)+ pLpEU(ρL, xp)

)
− πH

(
pHnEU(ρH , xn)+ pLnEU(ρL, xn)

)

+ λ
p π

HπLppL

(λ
p
)2

[
EU(ρH , xp)− EU(ρL, xp)

]
− λ

n π
HπLpnL

(λ
n
)2

[
EU(ρH , xn)− EU(ρL, xn)

]
,

which simplifies to the first summand.
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The first summand contains the effect of increased sensitivity on the probabilities
of testing positive and negative and on the priors conditional on a given test result.
It is non-negative as long as ppH ≥ pnH due to the fact that there is more weight
on EU(ρH , x) and hence the optimal decision will be closer to the decision maxi-
mizing EU(ρH , x). The second summand reflects the effect of higher sensitivity on
decision-making.17 Note that

πHppHEU(ρH , xp) + πLppLEU(ρL, xp) ≥ πHppHEU(ρH , xp)

+ πLppLEU(ρL, xp),

due to the optimality of xp. This can be rearranged to

πHppH

[
EU(ρH , xp)−EU(ρH , xp)

]
+πLppL

[
EU(ρL, xp)−EU(ρL, xp)

]
≥0.

The same holds true for the case of a negative test result and therefore the second
effect is positive as well. Particularly, dV

dδ

∣∣
δ=0 ≥ 0, so higher sensitivity leads to more

appropriate decision-making and this is what improves expected utility in the case of
illness which is more likely to be indicated by the test. A similar argument holds for
the specificity of the test.

Sensitivity and specificity of genetic tests is one way of measuring accuracy.
However, tests will hardly be comparable in terms of one isolated parameter only.
Therefore, we define another method for comparing genetic tests which will prove to
be useful when looking at the value of genetic information under ambiguity aversion.

Definition 1 A test is generally more informative than another test if the perceived
probability of testing positive or negative is unchanged, but beliefs are shifted more.

It is easy to see that a generally more informative test represents a mean-preserving
spread in the subjective probability distribution over disease probabilities. A change
in one of either the sensitivity or specificity of the test would alter the perceived
probability of testing either positive or negative and so these are distinct definitions
of what one means by a change in the accuracy or informativeness of a test.18

To formalize this notion of generally more informative tests, we can employ
directional derivatives. We assume V to be a function of sensitivity and specificity,
i.e., V = V (ppH , pnL). Then, the value of genetic information for a generally
more informative test can be determined by looking at the directional derivative
along the vector ν ≡ (πL, πH ) in the (ppH , pnL)-plane. Applying this directional

17In the following analysis, we will use the operator ∂
∂δ

to describe the decision-making value due to

marginal increases in sensitivity and the operator ∂
∂ε

for the decision-making value due to marginal
increases in specificity.
18An example for a combined improvement of sensitivity and specificity is given by the move from linkage
analysis to the identification of the DNA sequence associated with a disease gene (see Farrer et al. 1988;
Meiser and Dunn 2000). Initial genetic testing for HD used linkage analysis, which resulted in a sensitivity
of approximately 90 to 95% and a specificity of 90% or more. This is due to the fact that linkage analysis
is based on the presence of markers and therefore not 100% accurate. Modern direct detection methods
typically provide sensitivity and specificity of nearly 100%. Also note that in the context of multifactorial
genetic diseases tests are continually refined because there is ongoing discovery of interacting genes.
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derivative approach yields that the probabilities of testing positive and negative stay
constant; i.e.,

∂vλ
p = ∂vλ

n = 0.

It also follows that an individual receiving a positive (negative) test result believes
“more strongly” to be an H-type (L-type); i.e.,

∂vp
Hp = πHπL

λp
> 0, ∂vp

Lp = −πHπL

λp
< 0,

and

∂vp
Ln = πHπL

λn
> 0, ∂vp

Hn = −πHπL

λn
< 0.

For the value of information this yields

∂vV = πL dV

dppH

+ πH dV

dpnL

=

= πHπL
[
EU(ρH , xp)− EU(ρL, xp)+ EU(ρL, xn)− EU(ρH , xn)

]

+πL ∂V

∂δ
+ πH ∂V

∂ε
,

which is, of course, still positive. Generally more informative tests increase the value
of information. Let us summarize the above discussion in the following proposition.

Proposition 2 Under EUT the value of productive genetic information is positive. It
is larger for tests with higher sensitivity or specificity and is also larger for generally
more informative tests.

In summary, expected utility maximizers should be indifferent about obtaining
unproductive genetic information or not, but always demand productive genetic
information when it is costless. They benefit from increased accuracy of the test,
because the decision-making value is higher for more accurate tests. Hence, in light
of expected utility theory, low take-up rates are not to be expected.

4 Ambiguity aversion and genetic information

4.1 Unproductive information

Let us now turn to a situation where the individual might be negatively affected by the
uncertainty of test results. As outlined before we will utilize ambiguity preferences to
incorporate this sensation and compare the information structures with and without
a genetic test. Remember that Fig. 3 was obtained from Fig. 1 by applying Bayes’
rule to the priors over types to reflect the inflow of new information from test results.
Viscusi and Magat (1992) document that in ambiguous situations where learning
takes place, individuals might depart from Bayesian updating and display so-called
ambiguous belief aversion. Gilboa and Schmeidler (1993) and Pires (2002) study
different updating rules and give axiomatizations of the rule that requires the updating
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of all priors by Bayes’ rule. To achieve comparability across decision-makers, we
assume that under EUT and KMM priors will be updated according to Bayes’ rule
and hence abstract from heterogeneity regarding the updating rule and focus on the
evaluation of the resulting information structure.

Consider the situation where there is no possibility to react to the information
acquired. We now include the possibility of ambiguity preferences, captured by the
ambiguity functional φ as described above. Again consider an individual who is not
tested and does not consider taking a genetic test. Hence, uncertainty of test results
does not matter for this individual and her welfare will be given by

φ
(
πHEU(ρH )+ πLEU(ρL)

)
.

In utility terms this corresponds to φ−1
(
φ

(
πHEU(ρH )+ πLEU(ρL)

))
, but we

will rather work on the φ-scale which preserves rankings due to the fact that φ is
increasing.

If individuals consider taking a genetic test, they face the information structure as
described in Fig. 3. Therefore, the uncertainty of the test result matters for ambiguity-
averse agents. Ex-ante expected welfare from taking the test is given by

λpφ
(
pHpEU(ρH )+ pLpEU(ρL)

)
+ λnφ

(
pHnEU(ρH )+ pLnEU(ρL)

)

< φ
(
λp

(
pHpEU(ρH )+pLpEU(ρL)

)
+λn

(
pHnEU(ρH )+pLnEU(ρL)

))

= φ
(
πHEU(ρH )+ πLEU(ρL)

)
,

due to concavity of the ambiguity function φ. This reflects the fact that ambiguity-
averse decision-makers dislike mean-preserving spreads in the space of probabilities.
Therefore, from an ex-ante perspective, ambiguity aversion discourages genetic test-
ing. Furthermore, this effect is more pronounced with stronger ambiguity aversion,
i.e., for more ambiguity-averse decision-makers the value of unproductive genetic
information is more negative. This is due to the fact that the spread in priors is increas-
ingly painful. In this sense, ambiguity-aversion represents one avenue to explain low
take-up for genetic tests.

Let us again study the effect of test technology on the value of genetic information.
Let V i ≡ pHiEU(ρH )+ pLiEU(ρL), i ∈ {p, n}, then the ex-ante value of testing
is V ≡ λpφ(V p) + λnφ(V n). As above we study marginal variations in sensitivity.
It holds that

dV

dppH

= πH
(
φ(V p)− φ(V n)

) + πHπL
[
EU(ρH )− EU(ρL)

]

×
(

1 − pnL

λp
φ′(V p)− pnL

λn
φ′(V n)

)
.

The first summand is negative due to the fact that the situation with a positive test
result is worse than with a negative one. This reflects the fact that with increased
sensitivity the overall perceived probability of testing positive increases which is
undesirable. The second summand describes the effect of increased sensitivity on
how the priors over risk types will be adjusted. In case of a positive test result, it
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becomes harder to believe that you are low risk due to high sensitivity of the test. This
is bad news and hence this part of the expression is negative. However, with a nega-
tive result you should increase your belief in being low risk which is good news (i.e.,
good news that is even better news if we test negative compared to the less sensitive
test) and makes this part of the expression positive. The overall effect is indetermi-
nate and also depends on the effect on the marginal evaluation of the two outcomes.
Note that for linear φ we are back in the EUT-case and the marginal effect of sensi-
tivity is zero, as the value of unproductive genetic information is uniformly zero. A
similar reasoning holds for the specificity of the test.

Here, the concept of greater general informativeness (Definition 1) proves to be
useful. As before, we can look at the directional derivative of the value of genetic
information into the direction of v = (πL, πH ) in the (ppH , pLn)-plane. It is given
by

∂vV = πL dV

dppH

+ πH dV

dpnL

= πHπL
(
φ(V p)− φ(V n)

) + πHπL
(
φ(V n)− φ(V p)

)

+πHπL
[
EU(ρH )−EU(ρL)

] (
πL 1 − pnL

λp
φ′(V p)− πLpnL

λn
φ′(V n)

)

+πHπL
[
EU(ρH )−EU(ρL)

] (
πH ppH

λp
φ′(V p)− πH 1 − ppH

λn
φ′(V n)

)

= πHπL
[
EU(ρH )−EU(ρL)

] (
φ′(V p)− φ′(V n)

)
,

which is negative due to the fact that utility for high risks is smaller than for low
risks and that prospects when testing positive are worse than when testing negative
and φ is concave. In this sense the value of unproductive genetic information is more
negative for generally more informative tests as the first-order stochastic shifts in the
beliefs induced by the test results are stronger. This is detrimental to individuals with
KMM-preferences. The results are summarized in the following proposition.

Proposition 3 With ambiguity aversion, the value of unproductive genetic infor-
mation is negative. The effects of increased sensitivity or specificity of the test are
indeterminate, but for generally more informative tests the value becomes more
negative.

It is worth pointing out that the last part of this proposition represents a direct
application of Theorems 1 and 2 of Snow (2010, p. 138). This follows because
a genetic test that is generally more informative than another represents a mean-
preserving spread in the subjective probability distribution over probabilities of
disease consistent with the set-up of Snow (2010). In our model, the case of unpro-
ductive information relates to situations in which there is no incentive to change
one’s decision as a result of a genetic test result, while in Snow (2010) individuals
choose decisions in advance of any information received and so information in his
model cannot be productive in the sense we use here. However, in Snow (2010), an
individual’s action or decision can depend on the degree of ambiguity and degree
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of ambiguity aversion. The innovations in our paper stem from the decision-making
context, the comparison of the case of unproductive and productive information in
the context of genetic tests, and the separate treatment of the dimensions of informa-
tional accuracy described by the sensitivity and specificity (or equivalently the false
negatives and false positives) of genetic tests.

4.2 Productive information

Let us now assume again that individuals can make better decisions if they acquire
information and can better design their life plan conditional on the information about
illness propensities. As before, let xi ∈ X be the choice of an individual who is
uninformed, has obtained a positive test result or a negative test result, respectively,
i ∈ {u, p, n}. Due to the fact that φ is increasing, the xi ∈ X also maximizes φ of the
maximand. Notice that x will be implemented after the resolution of ambiguity, i.e.,
after information from a genetic test has been obtained. As noted above, this is one
important respect in which we differ from Snow (2010) who assumes that an action
is taken before the ambiguity is resolved. In a situation of genetic testing it seems,
however, appropriate to incorporate actions that depend on the individual’s level of
information. This is motivated by the fact that individuals are likely to evaluate their
opportunities when tested positive (“What can I do in case of bad news?”) before
actually deciding to take a test and this will, of course, affect how they value the
genetic information contained in the test. We apply the φ-functional to formalize the
notion that individuals face uncertainty about their actual test result ex-ante. With
this in mind, expected welfare from taking a test is given by

λpφ
(
pHpEU

(
ρH , xp

)
+ pLpEU

(
ρL, xp

))

+ λnφ
(
pHnEU

(
ρH , xn

)
+ pLnEU

(
ρL, xn

))
.

As before this exceeds

λpφ
(
pHpEU

(
ρH , xu

)
+ pLpEU

(
ρL, xu

))

+ λnφ
(
pHnEU

(
ρH , xu

)
+ pLnEU

(
ρL, xu

))
,

due to the optimality of xp and xn. However, the last expression is smaller than the
individual’s welfare without taking a test due to concavity of φ. In other words, an
ambiguity-averse individual may not wish to submit to a genetic test even if infor-
mation is potentially productive. Still, if an ambiguity-averse person does obtain a
genetic test, she is of course better off if she adjusts her behavior in an optimal fashion
according to the test result that she receives.

In this situation, one cannot unambiguously conclude whether the informational
value from testing is positive or negative. On the one hand, the presence of ambigu-
ity aversion makes genetic testing unattractive due to the uncertainty of test results.
Having a lottery between a deterioration of beliefs and an improvement of beliefs is
detrimental in terms of ex-ante expected welfare for an ambiguity-averse decision-
maker. However, information facilitates better decision-making and if at least one
possibility promises a strictly larger expected utility than in the no-information case,
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this is what makes genetic testing potentially attractive. Therefore, in the most general
case of ambiguity aversion and endogenous action that affects individual well-being
and depends on the information at hand, we conclude that the interaction of the set
of actions X, their effect in terms of expected utility of the agent, and the presence of
ambiguity aversion together determine whether the informational value from genetic
testing is positive or negative.

The effect of increased sensitivity or increased specificity consists now of four
components. As before, V i = pHiEU(ρH , xi) + pLiEU(ρL, xi), i ∈ {p, n}, and
the ex-ante value of testing is V = λpφ(V p)+ λnφ(V n). Then,

dV

dppH

= πH
(
φ(V p)− φ(V n)

) + πHπL 1 − pnL

λp
φ′(V p)

×
[
EU

(
ρH , xp

)
− EU

(
ρL, xp

)]

+πHπLpnL

λn
φ′(V n)

[
EU

(
ρL, xn

)
−EU

(
ρH , xn

)]
+ ∂V

∂δ
.

The first summand is negative, as positive test results are “bad news”. The second and
third describe how priors are adjusted due to increased sensitivity of the test. The sec-
ond term is negative and the third one is positive. Lastly, higher sensitivity implies a
larger decision-making value of genetic information, i.e., the last summand is positive
again. This can be shown analogously as in Section 3.2. The overall effect is inde-
terminate. However, we can again employ the concept of generally more informative
tests as defined above. After some algebra, one obtains

∂vV = πHπL

(

φ′(V p)
[
EU(ρH , xp)−EU

(
ρL, xp

)]

︸ ︷︷ ︸
<0

+ φ′(V n)
[
EU

(
ρL, xn

)
−EU

(
ρH , xn

)]

︸ ︷︷ ︸
>0

)

+πL ∂V

∂δ
+ πH ∂V

∂ε
.

Now, V p < V n and therefore φ′(V p) > φ′(V n), as a positive test result always
implies that your beliefs shift more towards being high risk. However,

EU(ρH , xp)− EU
(
ρH , xn

)
+ EU

(
ρL, xn

)
− EU

(
ρL, xp

)
> 0,

as xp is the optimal decision when more weight is placed on the high-risk utility,
whereas xn is the optimal decision when more weight is placed on the low-risk util-
ity. Hence, the first summand is indeterminate. Note, however, that under sufficient
ambiguity aversion, so with φ sufficiently concave, the first summand will be nega-
tive as the spread in the probabilities is increasingly painful and not outweighed by
the gains through better decision-making.

When evaluated at (ppH , pnL) = (0.5, 0.5) the first summand is zero due to the
fact that for uninformative tests pHp = pHn = πH and pLp = pLn = πL, and
hence xp = xn and V p = V n. In this case, ∂νV is non-negative implying that agents



J Risk Uncertain (2014) 48:111–133 129

always want to obtain genetic tests that contain “a little bit” of information. This is
due to the fact that ambiguity aversion as modeled within the KMM framework is a
second-order phenomenon, so for small levels of ambiguity individuals behave as if
ambiguity-neutral.

Proposition 4 With ambiguity aversion, the value of productive genetic information
is indeterminate. It reflects the trade-off between aversion against ambiguity and
better informed decision-making. The effects of increased sensitivity or specificity
of the test are indeterminate. Generally more informative tests trade-off increased
ambiguity against more suitable decision-making and are valued less with sufficiently
strong ambiguity aversion. Tests containing a little bit of information are always
taken.

In this sense, ambiguity aversion represents one rationale to explain low take-up
rates of genetic tests.

5 Conclusion

Even when the private cost for genetic tests is zero, take-up rates are often very
low. Given the fact that an expected utility maximizing decision-maker attaches, at
worst, zero private value to genetic information (i.e., when it is unproductive in that
no possible result has any effect on her optimal decision) and positive private value
otherwise, this is surprising. In most instances, even if there are no preventive mea-
sures available against the disease, it is likely that people would adjust their life
plans according to some results derived from a genetic test (e.g., in terms of savings
decisions, occupational training, whether to have children etc.). In countries where
insurers are denied access to information received from genetic testing, people are
also likely to opportunistically adjust their insurance consumption. Hence, genetic
information should be productive and therefore low take-up rates may indeed seem
very surprising.

We demonstrate that if individuals display ambiguity aversion over test results,
then one can rationalize this observation within the context of rational decision-
making. In cases where genetic information is unproductive, an ambiguity-averse
decision-maker will never take a costless genetic test. This follows because, from
an ex-ante perspective, the test generates a lottery between a first-order stochastic
improvement of beliefs and a first-order stochastic deterioration of beliefs. Even if
information is productive, the uncertainty of test results attached to genetic testing is
unfavorable for the individual and might dominate utility gains from better informed
decisions. This downside is more pronounced with stronger ambiguity aversion and
with more precise tests (conditional on equivalent productiveness of a test). Paradox-
ically, the more accurate the test the more negatively is individual ex-ante valuation
of the test affected by the ambiguity which is in line with empirical observations.
In a similar spirit, individuals will always take a genetic test containing “a little
bit” of information as in this case the utility-enhancing informed decision-making
component prevails.
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In this paper, we model ambiguity attitudes utilizing the smooth model developed
by Klibanoff et al. (2005). However, the basic intuition carries over to other decision-
making models under ambiguity. Under maxmin expected utility as proposed by
Gilboa and Schmeidler (1989) individuals fear the ambiguity introduced by a test
due to the fact that in case of a positive test result they increase their belief in being
high risk. This is again detrimental to gains in expected utility from better decision-
making. Under α maxmin expected utility as proposed by Ghirardato et al. (2004)
sufficient pessimism again creates the result that the ex-ante uncertainty of test results
can discourage testing. In all cases, the basic intuition remains unchanged: Taking a
genetic test corresponds to a lottery between a first-order stochastic improvement of
beliefs and a first-order stochastic deterioration of beliefs from an ex-ante perspec-
tive, and so introduces ambiguity. Under ambiguity aversion decision-makers exhibit
a preference for sticking to their known perceived distribution over risk types and do
not want it to be challenged by a genetic test.

The conclusions to draw from that are at least twofold. If we believe that genetic
information is likely to improve or even to revolutionize the practice of medicine,
one must understand how individuals assess the value of genetic information. Genetic
information is useless if it is simply not obtained by individuals due to behavioral
reasons. Second, improving on accuracy of tests alone is not sufficient or might even
be counter-productive due to the trade-off between ambiguity aversion and the utility
gains from better decision-making. With more accurate tests, the ambiguity of tak-
ing a test is more pronounced and decreases consumer ex-ante valuation of taking a
test. Hence, if there is little to do with the information acquired, i.e., utility condi-
tional on any given test result cannot be increased by much, the fear of ambiguity
predominates and the test will not be taken. In this respect it is also important that
individuals do not underestimate the productivity of genetic information. One con-
sideration for policy is to offer genetic counseling which informs potential test-takers
about the productivity of genetic information and may reduce the sense of ambiguity
that can arise from lack of knowledge of the process of genetics. If one believes that
ambiguity aversion is a psychological tendency that inhibits “good” decision-making
and that expected utility calculations represent the appropriate “normative” frame-
work for assessing individual (and for that matter societal) well-being, then other
sorts of policy intervention would be in order. In the real world of (financially) costly
genetic tests, an obvious intervention would be to subsidize genetic tests. This may
tip the balance of individuals’ perceived (overall) costs of genetic testing—including
disutility from aversion to ambiguity created by the tests—and perceived bene-
fits of improved ex-post decision-making based on better information about risk of
disease.

We believe our paper is, of course, not the last word on explaining why people
seem to be surprisingly reticent to obtain genetic tests. There is an extensive literature
from clinical researchers and a nascent economic literature directed at understand-
ing individual attitudes and proclivities in regard to taking genetic tests. However,
at the present time there is little structure in the former literature and few results
in the latter literature. We hope that our modeling efforts in this paper will pro-
vide some impetus to develop a more systematic approach to this important research
area.
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Appendix: Changes in predictive power of the test

The predictive power of a genetic test is improved by either an increase in the sen-
sitivity (ppH ) or the specificity (pnL) of the test; that is, the greater rate at which
“correct classifications” are made. This is equivalent to reductions in the false nega-
tives or false positives of the test, respectively. If we write the rate of false negatives
and positives as εfn, and εfp, respectively, then it follows that ppH = 1 − εf n,
pnH = εf n, ppL = εfp, pnL = 1 − εfp. By substituting pnH = 1 − ppH and
ppL = 1 − pnL, we obtain the following:

λp = πHppH + πL(1 − pnL),

λn = πH (1 − ppH )+ πLpnL.

We will use the following results to derive our propositions.

∂λp

∂ppH

= πH ,
∂λp

∂pnL

= −πL,
∂λn

∂ppH

= −πH ,
∂λn

∂pnL

= πL.

Using the above, and the formulae for pji (repeated below), we get the following
derivatives.

pHp = πHppH

λp
, pLp = πLppL

λp
, pHn = πHpnH

λn
, pLn = πLpnL

λn
.

So, for example, writing pHp = πHppH (λp)−1, we have

∂pHp

∂ppH

= πH (λp)−1 + πHppH (−1)(λp)−2πH

= πH

λp
− (πH )2ppH

(λp)2
= πH (λp − πHppH )

(λp)2
= πHπL(1 − pnL)

(λp)2
.
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The remaining relevant derivatives are:

∂pHp

∂pnL

= πHπLppH

(λp)2 ,

∂pLp

∂ppH

= −πHπL(1 − pnL)

(λp)2
,

∂pLp

∂pnL

= −πHπLppH

(λp)2
,

∂pLn

∂pnL

= πHπL(1 − ppH )

(λn)2
,

∂pLn

∂ppH

= πHπL(pnL)

(λn)2 ,

∂pHn

∂pnL

= −πHπL(1 − ppH )

(λn)2
,

∂pHn

∂ppH

= −πHπLpnL

(λn)2
.
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