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Abstract Experimental results on the Ellsberg paradox typically reveal behavior
that is commonly interpreted as ambiguity aversion. The experiments reported in
the current paper find the objective probabilities for drawing a red ball that make
subjects indifferent between various risky and uncertain Ellsberg bets. They allow
us to examine the predictive power of alternative principles of choice under uncer-
tainty, including the objective maximin and Hurwicz criteria, the sure-thing principle,
and the principle of insufficient reason. Contrary to our expectations, the principle
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of insufficient reason performed substantially better than rival theories in our
experiment, with ambiguity aversion appearing only as a secondary phenomenon.

Keywords Ambiguity aversion · Ellsberg paradox · Hurwicz criterion · Maximin
criterion · Principle of insufficient reason

JEL Classification C91 · D03

1 Ellsberg paradox

Ellsberg (1961) famously proposed an experiment the results of which have become
known as the “Ellsberg paradox” because they are inconsistent with the predictions
of expected utility theory.

In one version of Ellsberg’s experiment, a ball is drawn from an urn containing ten
red balls and twenty other balls, of which it is known only that each is either black
or white. The gambles J , K , L, and M in Fig. 1 represent various reward schedules
depending on the color of the ball that is drawn. Ellsberg predicted that most people
will strictly prefer J to K and L to M . However, if the probabilities of picking a red,
black, or white ball are respectively R, B, and W , then the first preference implies
that R > B and the second that B > R. So such behavior cannot be consistent with
maximizing expected utility relative to any subjective probability distribution.

Ellsberg’s explanation for such violations of Bayesian decision theory is that the
subjects’ choices show an aversion to ambiguity for which the theory makes no pro-
vision. The subjects know there is a probability that a black ball will be chosen, but
this probability might be anything between 0 and 2

3 . When they choose J over K ,
they reveal a preference for winning with a probability that is certain to be R = 1

3
rather than winning with a probability B that might be anything in the range [0, 2

3 ].
When they choose L over M , they reveal a preference for winning with a certain
probability of 1 − R = W + B = 2

3 to winning with a probability 1 − W = R + B

that might be anything in the range [ 1
3 , 1].

Previous experimental evidence For the version of the experiment outlined above,
Ellsberg’s prediction that a majority of subjects would display ambiguity aversion

Fig. 1 Ellsberg paradox: in the version illustrated an urn contains ten red balls and another twenty balls
of which it is only known that they are either black or white. A ball is chosen at random from the urn, the
color of which determines the award of a prize (which is here taken to be one dollar). Whether subjects
win or lose depends on which of the lottery tickets J , K , L, or M they are holding
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has generally been confirmed.1 However, when one varies the original set-up, the
picture is more complex. In the space of gains, ambiguity aversion is prevalent.
However, in the space of losses, some studies find that ambiguity-loving behavior
dominates (Wakker 2010, p. 354). The literature also finds that the extent and strength
of ambiguity aversion depends on whether the known probability of winning is high
or low (with ambiguity aversion being stronger for moderate to high probabilities)
and whether the ambiguous option is presented alone or juxtaposed to a risky option
(with the effect being stronger in the latter case).2 In sum, a great deal remains to be
learned about the impact of framing effects on human decision behavior in uncertain
situations.

New experiment Our experiment varies the classic design by changing the numbers
of balls so that the probability that a red ball is chosen is altered from 1

3 to R. We
then estimate the value r1 of R that makes a particular subject indifferent between J

and K . We also estimate the value r2 of R that makes the same subject indifferent
between L and M .3

A subject who honors Savage’s (1954, p. 21) sure-thing principle will have

r1 = r2. (1)

The rationale in our special case is that, in comparing J and K and in comparing
L and M , what happens if a white ball is drawn is irrelevant. The two comparisons
therefore depend only on what happens if a white ball is not drawn. But if a red or
black ball is sure to be drawn, then J is the same as M and K is the same as L. So J

and K should be regarded as being worth the same if and only if the same is true of
L and M .

Given the widespread finding of ambiguity aversion in the classic Ellsberg para-
dox, our aim in this paper was to examine the extent to which the Hurwicz criterion
discussed in the next section explains deviations from the sure-thing principle and
other tenets of Bayesian decision theory caused by ambiguity aversion.

2 Theories

We consider various theories of choice behavior under uncertainty. Figure 2 illus-
trates the behavior predicted by each of the principles reviewed. These all have

1See the overview of the evidence presented by Camerer and Weber (1992). See also Fox and Tversky
(1995), Keren and Gerritsen (1999), and Liu and Colman (2009).
2Ahn et al. (2010), Chow and Sarin (2001), Curley and Yates (1989), Hogarth and Einhorn (1990),
Etner et al. (2012), Fox and Tversky (1995), Halevy (2007), Hey et al. (2010), Hsu et al. (2005),
Trautmann et al. (2008), Wakker (2010), and Abdellaoui et al. (2011). The link http://
aversion-to-ambiguity.behaviouralfinance.net/ leads to many more papers on ambiguity aversion pub-
lished since the year 2000.
3In manipulating the number of red balls to determine the extent of ambiguity aversion, our approach
resembles that of MacCrimmon and Larsson (1979), Kahn and Sarin (1988), Viscusi and Magat (1992),
and Viscusi (1997), each of which finds substantial ambiguity aversion. Our approach differs from the
latter three studies in that rather than asking individuals outright how much the known probability would
need to be to render them indifferent between a risky and uncertain bet, we use their choices between bets
to estimate an indifference interval.

http://aversion-to-ambiguity.behaviouralfinance.net/
http://aversion-to-ambiguity.behaviouralfinance.net/
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Fig. 2 Theoretical possibilities: Bayesian decision theory predicts an outcome on the diagonal of the
square. The principle of insufficient reason says that the probabilities of a black or a white ball should be
taken to be equal, as there is no reason to suppose one more likely than the other. Bayesian decision theory
then predicts that r1 = r2 = 1

3 . An observation with r2 > r1 in the lightly shaded region is taken to be

a case of weak ambiguity aversion. An observation with r1 < 1
3 and r2 > 1

3 in the more deeply shaded
region is taken to be a case of strong ambiguity aversion

variants that apply when the outcomes are not merely winning or losing as in our
paper. For example, the Hurwicz criterion has been generalized to what is some-
times called alpha-max-min (Ghirardato and Marinacci 2002). Our case is simpler
because it leaves no room to maneuver about the nature of the utility function that
can be attributed to a subject. We need only consider the (Von Neumann and Morgen-
stern) utility function that assigns a value of 0 to losing and 1 to winning. Difficulties
about the level of a subject’s risk aversion and the like therefore do not arise in our
experiment.

Maximin criterion (MXN) The most widely discussed alternative to Bayesian deci-
sion theory was proposed by Wald (1950) and has been developed since that time by
numerous authors (see Gilboa 2004). It sometimes goes by the name of the maximin
criterion, because it predicts that subjects will proceed as though they are facing the
least favorable of all the probability distributions that ambiguity allows.

We consider Von Neumann’s version of the maximin criterion here.4 In this objec-
tive version, the decision-maker’s ambiguity is assumed to extend to all probability
distributions that are consistent with the objective data.

4The objective maximin criterion is often referred to as the minimax criterion. The confusion between
maximin and minimax presumably arises because minimax equals maximin in Von Neumann’s famous
minimax theorem. The confusion is sometimes compounded because Savage (1954) proposed a further
decision criterion called the minimax regret criterion, which happens to make the same predictions as the
maximin criterion in the special case considered in this paper. (Savage (1954, p. 16) distinguished between
large and small worlds, recommending his minimax regret criterion for the former. He variously describes
using Bayesian decision theory outside a small world as “preposterous” and “utterly ridiculous”.)
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Applying the objective maximin criterion to our example, we are led to seek to
maximize a utility function defined by u(J ) = R, u(K) = 0, u(L) = 1 − R, and
u(M) = R. So for 0 < R < 1

2 , J is preferred to K and L to M .
The literature also features a subjective version of the maximin criterion in which

the decision-maker may have internal reasons for excluding some of the probabil-
ity distributions taken into account by the objective version (Gilboa and Schmeidler
1989). Applying the subjective maximin criterion in the extreme case when the
decision-maker considers only a single probability distribution gives the same pre-
dictions as the sure-thing principle. If we insist on some ambiguity, the class of
subjective versions of the maximin criterion coincides with the notion of weak
ambiguity aversion to be considered later.

Hurwicz criterion (HWZ) The Hurwicz criterion (1951) goes back to the beginnings
of decision theory. Hurwicz’s proof was simplified by Arrow and Hurwicz (1972). As
a consequence, it is sometimes referred to as the Arrow–Hurwicz criterion. It features
in Luce and Raiffa’s (1957) discussion of decisions made under complete ignorance
in their book Games and Decisions. Ellsberg (2001) considers it at length in his
Risk, Ambiguity, and Decision, both as a normative criterion and as an explanation
for ambiguity-averse choices. Binmore (2009, p. 166) offers a normative defense of
a multiplicative version of the Hurwicz criterion, which would be indistinguishable
from the standard (additive) Hurwicz criterion in our experiment. For a review of the
criterion’s role in the literature, see Etner et al. (2012).

At an early stage, Milnor (1954) offered axioms that characterize several of the
decision criteria considered in this paper. In the case of the Hurwicz criterion, he
replaces a version of the standard independence axiom, which he calls column lin-
earity, by a new axiom that he calls column duplication. This axiom says that the
decision maker’s choice will remain unchanged if a new state is appended from which
the same consequences as an existing state would follow for every choice available to
the decision maker. The idea is that a completely ignorant decision maker will have
no reason not to assimilate the new state into the existing state that it duplicates.

We follow Milnor in regarding the Hurwicz criterion as applicable in situations of
partial ignorance only after the decision maker’s partial knowledge has been incor-
porated into her model in terms of objective upper and lower probabilities that bound
the possible range of the probability R that a red ball is drawn. Subjective versions
of the Hurwicz criterion are possible, but we only consider the objective version.

The standard Hurwicz criterion balances the pessimism of the objective maximin
criterion against the optimism of what might be called the objective maximax crite-
rion. The Hurwicz criterion values a gamble G offering a prize with probability P

with the utility function

u(G) = (1 − h)P + hP , (2)

where [P , P ] is the (objective) range of possible values of P , and the constant h

(0 ≤ h ≤ 1) registers how averse the subject is to ambiguity. The case h = 0 of
maximal aversion coincides with the objective maximin criterion. The case h = 1
corresponds to the objective maximax criterion. The case h = 1

2 is indistinguishable
from the principle of insufficient reason in our experiment.
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In our example, the Hurwicz criterion yields u(J ) = R, u(K) = h(1−R), u(L) =
1 − R, and u(M) = (1 − h)R + h. If a subject is indifferent between J and K when
R = r1, it follows that h = r1/(1−r1). Similarly, if the subject is indifferent between
L and M when R = r2, then h = (1 − 2r2)/(1 − r2). Assuming that the same value
of h applies in both cases, it follows that the Hurwicz criterion predicts that r1 and r2
are connected by the equation5

(3r1 − 2)(3r2 − 2) = 1 . (3)

Sure-Thing Principle (STP) The Hurwicz criterion needs to be compared with the
orthodox Bayesian approach (expected utility theory), which denies that subjects
might be unable to resolve ambiguities about what subjective probability to assign to
events. In this case, u(J ) = R, u(K) = B, u(L) = W + B, and u(M) = R + W .
So the criteria for indifference between J and K and between L and M are the same:
r1 = R = B = r2.

We have already seen that we need no more than the sure-thing principle to jus-
tify the conclusion that r1 = r2, which one might also categorize as representing
ambiguity neutrality.

Laplace’s Principle of Insufficient Reason (PIR) This principle says that events
should be assigned the same subjective probability if no reason can be given for
regarding one event as more likely than another. A subject who believes this to be
true of drawing a black or a white ball will therefore assign them equal probability,
so that W = B. When this result is combined with the equation r1 = R = B = r2,
we obtain that

r1 = r2 = 1

3
. (4)

This outcome is also predicted by the Hurwicz criterion with h = 1
2 .

Weak Ambiguity Aversion (WAA) We say that r1 < r2 indicates weak ambiguity
aversion, because it implies that J � K and L � M when the probability R of a red
ball being drawn lies between r1 and r2. Reversing the inequality generates a criterion
for weak ambiguity-loving behavior.

Outcomes that satisfy the Hurwicz criterion with h < 1
2 are ambiguity averse in

both the weak sense and the strong sense that follows.

Strong Ambiguity Aversion (SAA) We treat pairs (r1, r2) with r1 < 1
3 and r2 > 1

3 as
cases of strong ambiguity aversion. To see why, recall that a Bayesian subject will
express indifference between J and K when R = B. So if W = B, then r1 = 1

3 .
If one regards behaving as though B < W as a manifestation of strong ambiguity

5Binmore’s (2009, p. 166) multiplicative version of the Hurwicz criterion also yields Eq. 3 to a first order
of approximation. To a second order of approximation, it yields

(3r1 − 2)(3r2 − 2) = 1 + c(r1 − r2){2(1 − r1)(1 − r2) − 1} ,

for some small positive constant c.
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Fig. 3 A titration: the tree shows the questions asked about what happens when the probability of RED

is R in order to locate r1 in one of eight subintervals of [0, 1
2 ]. For example, someone who answers

KJJ is assigned a value of r1 satisfying 1
3 ≤ r1 ≤ 3

8 . The points dividing the subintervals are cho-
sen to be rational numbers so that the questions can be framed in terms of decks of cards. The pairs
(0, 1

2 ), ( 2
15 , 11

24 ), ( 2
9 , 5

12 ), ( 2
7 , 3

8 ), and ( 1
3 , 1

3 ) lie on the curve (3r1 −2)(3r2 −2) = 1. The same tree is used
to locate r2, except that L replaces K and M replaces J

aversion, then r1 < 1
3 . The requirement that r2 > 1

3 is derived similarly. Reversing
all inequalities generates a criterion for strong ambiguity-loving behavior.

3 Experiments

We followed the practice common in psychology of seeking to estimate the indif-
ference probabilities r1 and r2 using a titration.6 Subjects were asked a sequence of
questions about their choices between J and K , and between L and M for various
values of the probability R that a red ball will be drawn. The aim of this titration is
to locate the values of r1 and r2 within eight subintervals of [0, 1

2 ] using the scheme
illustrated in Fig. 3.7

Our titration locates an estimate of a subject’s (r1, r2) within one of 64 squares of
a chessboard. Figure 4 shows the regions on this chessboard that we shall regard as
providing support for the various decision theories we consider. The regions identi-
fied in the top row do not allow for subject error. The regions identified in the bottom

6Psychologists favor the use of a titration over simply asking subjects for their indifference probabilities,
but there is a risk that subjects might not always answer the titration questions truthfully because they
prefer being paid on Ellsberg bets that can only be reached by lying. The monetary payoffs associated with
each bet were chosen to make such misrepresentation unprofitable for risk-neutral subjects who honor the
principle of insufficient reason, but ambiguity-averse subjects could sometimes gain by lying. However, it
would be necessary for them first to learn what future questions would be asked before they could exploit
the opportunity for misrepresentation, and we found no significant evidence of learning in comparing
subjects’ behavior in later stages of the experiment.
7In this exercise, it is assumed that K � J when R = 0, and J � K when R ≥ 1

2 ; also L � M when

R = 0, and M � L when R ≥ 1
2 .
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Fig. 4 Regions of interest: the results are reported using chessboards showing the percentage of times that
(r1, r2) is observed in one of 64 possible squares. The chessboards in the top row of the figure correspond
to a strict interpretation of each region, which allows no margin for mistaken choices by the subjects.
(The regions of interest differ somewhat from Fig. 2 because the constituent squares of the table are not
drawn to scale.) The chessboards in the bottom row allow a margin for subject error. For each chessboard
in the left column, the whole shaded region corresponds to the Hurwicz criterion (hwz or HWZ) with an
ambiguity-averse coefficient. The more deeply shaded region corresponds to the maximin criterion (mxn
or MXN). In the middle column, the whole shaded region corresponds to weak ambiguity aversion (waa
or WAA). The more deeply shaded region corresponds to strong ambiguity aversion (saa or SAA). In the
right column, the whole shaded region corresponds to the sure-thing principle (stp or STP). The more
deeply shaded region in the lax chessboard corresponds to the principle of insufficient reason (PIR). There
is no corresponding exact region pir because this would be identical to PIR. Instead, we distinguish the
(neutral) part of stp that lies in PIR as nstp

row permit a margin for error that amounts to allowing a subject at most one careless
choice that results in either r1 or r2 (but not both) being placed in an interval adja-
cent to the interval in which it would have been placed if the choice had been made
carefully.8

The principle of insufficient reason (PIR) requires special treatment because 1
3 is

an endpoint of two of our intervals. Any value of (r1, r2) that lies in one of the four
squares of our chessboard with a corner at ( 1

3 , 1
3 ) is therefore treated as supporting

PIR. This region is not expanded to include subjects’ choices in intervals adjacent
to these four squares because subjects who intended to act in conformity with PIR

8For example, a subject who reveals values for r1 and r2 that both lie in the interval [ 1
3 , 3

8 ] (corresponding
to the choices KJJ and LMM) will be regarded as satisfying the sure-thing principle (stp or STP). But
our lax criterion also includes in STP a subject whose value of r1 is the same, but whose value of r2 lies
in the neighboring interval [ 2

7 , 1
3 ] corresponding to the choice MLL that might result if the subject made

a misjudgment at the first question but answered later questions accurately.
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would be indifferent between J and K (and between L and M) for r1 = 1
3 . It follows

that if their choices were to place them in a square adjacent to the four squares that
have [ 1

3 , 1
3 ] as a midpoint, then they would have strayed further from their true prefer-

ence than subjects who intended to act in accordance with one of the other principles
and who ended up in a square adjacent to a region permitted by that principle. For
similar reasons, we do not shrink PIR to obtain a smaller region pir. The region nstp
in Fig. 4 should be thought of only as the neutral part of stp.

It will be necessary to consider the extent to which apparent support for one theory
needs to be assessed in the light of the support which the same data gives an alterna-
tive theory. For example, a fraction of the data that is consistent with weak ambiguity
aversion (WAA) also supports the principle of insufficient reason (PIR). In consider-
ing such issues, we use the notation WAA\PIR, which consists of all squares on the
chessboard in the region WAA but not in the region PIR.

Shuffling and dealing In our experiments, urns of colored balls were replaced by
decks of colored cards. Seated in front of a computer screen, subjects chose whether
to bet on J or K (or whether to bet on L or M) for various values of the probability
R of drawing a red card. For example, Fig. 5 shows the screen the subjects saw when
being asked whether they want to bet on J or K when R = 5

12 . For full details of
the experimental interface (and all the results) see the link (note that the preferred
browsers are Firefox [Version 12.0 or later] and Safari): http://alkami.org/ells/.

Allaying suspicion An on-screen introduction explained the structure of the experi-
ment and the nature of the choices subjects would face. Subjects were told that they
would choose between bets like J or K in ignorance of the mixture of BLACK and
WHITE cards. Special care was taken to illustrate the nature of this ignorance. Sub-
jects were given an illustrative deck of 6 RED cards and 15 BLACK OR WHITE cards,
the latter marked on the screen with a “?” on the back. They were then told that the
“?” cards could be any mixture of BLACK and WHITE cards, with three subsequent

Fig. 5 Experimental interface: when confronted with this particular interface, the subject is being asked
whether he or she prefers J or K when the probability of drawing a red card is R = 5

12

http://alkami.org/ells/
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screens inviting them to move the mouse over the “?” cards, revealing three illustra-
tive mixtures, under the headings: “It could be that all cards that are NOT RED are
BLACK”; “It could be that all cards that are NOT RED are WHITE”; and “It could be
that all cards that are NOT RED are any of the many possible mixtures of BLACK and
WHITE, for example . . . ”, with the example consisting of 5 WHITE and 10 BLACK

cards.
Inspired by Hey et al. (2010), we sought to allay any suspicion of deceit on our part

by making transparent the preparation of the decks from which a winning card would
be drawn. After making two practice choices, subjects were invited to the front of the
room to witness one of the practice bets being played for illustrative purposes only.
The experimenter opened a box of RED cards and box of BLACK OR WHITE cards,
and counted out the number of RED and BLACK OR WHITE cards in the first practice
choice (respectively 6 and 15). These were placed in a card-shuffling machine to
randomize the order of the deck. Finally, a subject exposed the third card from the
top in the shuffled deck, the color of which determined whether subjects had won
or lost. Subjects were told, truthfully, that of the subsequent 24 choices they faced
in the real experiment, two bets would be randomly selected by the computer to be
played for money in this manner at the end of the experiment, with the choices they
had made determining the winning color(s). (This randomization was done for each
subject individually, so that all subjects had tailor-made bets constructed and played
for them.)

This procedure may be relevant to the relatively low levels of ambiguity aver-
sion we observed. For example, Pulford (2009) reports significantly more ambiguity
aversion after drawing attention to the possibility of experimental deceit. If a subject
believes that the experimenter is deceitfully manipulating the shuffling-and-dealing
protocols to minimize payoffs (or for some other reason), then the problem faced by
the subject ceases to be a one-person decision problem and becomes instead a game
played between the subject and the experimenter (Brewer 1965; Schneeweiss 1968;
Kadane 1992). In an extreme case, the subject may (unconsciously?) perceive this
game as zero-sum, in which rational play (according to Bayesian decision theory)
requires the play of the subject’s maximin strategy (Schneeweiss 1968). Researchers
are then at risk of misinterpreting such play as the use of an ambiguity-averse strategy
in a one-person decision problem.9

Subjects Two types of subject were studied: on-site subjects and on-line subjects.
The on-site participants were recruited from lists of volunteers maintained by the
laboratories at which various versions of the experiment were run. These subjects
were paid according to their success in selecting winning cards. On-line subjects
participated from remote sites with negligible payment (and without the opportunity

9Savage (1954, p. 16) would perhaps have commented that leaving room for suspicion of dishonest manip-
ulation by the experimenter creates a large world for the subjects. Our design is intended to make the
subjects’ world small in this respect.
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to check up on how the cards were shuffled and dealt).10 The behavior of on-line
subjects turned out to resemble that of on-site subjects, but is much noisier. (The
hypothesis that on-line subjects paid less attention to their choice problem than on-
site subjects is supported by the fact that the mean response time of on-line subjects
to each choice was just over half the mean response time of on-site subjects.) The
discussion that follows therefore focuses on the on-site data.

3.1 Version 1

Following the practice choices and demonstration session, the subjects returned to
their screens and were taken through the experiment with the aid of a computerized
interface. The on-site edition of Version 1 of the experiment was run at the Har-
vard Decision Science Laboratory, using the Harvard Psychology Department subject
pool. A pilot that led to some minor design changes is not reported. The aim was
to elicit from each subject four pairs of observations for the indifference intervals in
which to locate r1 and r2. The experiment had five stages:

1. At the beginning of Round 1, subjects were told that the round had the following
four parts, with the choices in each part being constructed from the same decks.
Subjects were not told that the probability R of a red card would vary according
to the titration of Fig. 3.

(a) Three choices between J (RED wins) and K (BLACK wins).
(b) Three choices between J and K ′ (WHITE wins).
(c) Three choices between L (WHITE and BLACK win) and M (RED and

WHITE win). (Note that L was described as “NOT-RED wins”, and M

as “NOT-BLACK wins”.)
(d) Three choices between L and M ′ (RED and BLACK win). (Note that L

was described as “NOT-RED wins”, and M ′ as “NOT-WHITE wins”.)
Items (a) and (c) above determined one estimate of (r1, r2) to be
compared with Fig. 4. Items (b) and (d) determined a second estimate.

2. Round 2 was identical to Round 1, save that YELLOW replaced WHITE and
BLUE replaced BLACK. This round therefore provided a further two estimates of
(r1, r2).

3. Subjects were taken one-by-one through the questions from a Life Orientation
Test as revised by Scheier et al. (1994).

4. Subjects were asked five questions about whether the tasks and questions had
been clear, and whether any problems arose during the experiment.

5. Two gambles (one from each round) were chosen at random by the computer for
each subject to be played for real. (The prizes were chosen to render subjects
choosing according to the principle of insufficient reason indifferent about which

10We used Amazon’s Mechanical Turk (https://www.mturk.com), Psychological Research on the Net
(http://psych.hanover.edu/Research/exponnet.html), and the Research Subject Volunteer Program (http://
alkami.org http://alkami.org/). Participants recruited via Mechanical Turk were paid a token $0.05 for
completing the approximately six-minute study.

https://www.mturk.com
http://psych.hanover.edu/Research/exponnet.html
http://alkami.org
http://alkami.org
http://alkami.org/
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of their choices were played for real.) On-site subjects left the laboratory with an
average of $22.

The data from Version 1 are displayed in Fig. 6 and summarized in Table 1. A
detailed analysis follows below. Here, we note two things which surprised us. First,
though there was some evidence for ambiguity aversion, there was not as much as
our reading of the literature had led us to expect. Second, we were disappointed not
to find much support for the Hurwicz criterion for any value of h except those around
1
2 , for which the principle of insufficient reason offers a competing explanation.

Fig. 6 Summary of aggregate results. The on-site and on-line data for all observations for each version of
the experiment are shown. Shaded squares indicate a particularly high concentration of responses
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Table 1 Summary of aggregate percentages

The acronyms for different theories appear in Section 2. The upper part of the table for lax criteria shows
percentages for each region of Fig. 4 of the total data (POP). The first column (0) shows what the percent-
ages would be if all choices were made at random and the population were very large. The lower part of
the table for lax criteria shows percentages of the data exclusive of data that falls in STP (POP\STP). The
shaded squares indicate percentages that are statistically significant at the 1% and 5% levels. (The means
of the four observations from each subject are treated as independent for an application of the Normal
approximation to the Binomial distribution)

3.2 Version 2

One possible explanation we considered was that the framing of the choices between
L and M as between “NOT-BLACK WINS” and “ NOT-RED WINS” affected the sub-
jects. (The analogous ‘not’-description was given for the choices between L and M ′.)
In order to establish whether this was a key factor, we ran Version 2, which is exactly
the same as Version 1 except for a change in how the problems faced by the subjects
are framed, substituting the description “BLACK AND WHITE” for “NOT-RED”, “RED

AND WHITE” for “NOT-BLACK”, and so on. The on-site version of this new experi-
ment was carried out in the ELSE laboratory at University College London with 76
on-site subjects.11

Though, as our analysis in Section 5.2 shows, the results of the on-site subjects
for Version 2 differed significantly in some respects from the results of the on-site

11The prizes were approximately equal to their previous dollar values but were denominated in British
pounds. The average payout was around £13.



228 J Risk Uncertain (2012) 45:215–238

subjects for Version 1, they were similar in that they displayed only limited evidence
of ambiguity aversion and provided little support for the Hurwicz criterion other than
with h in the neighborhood of 1

2 .

3.3 Version 3

We remained surprised not to see more ambiguity aversion in Version 2. A possible
explanation proposed by Raiffa (1961) is that on-site subjects could theoretically
convert the problem into one in which an unambiguous distribution is available that
assigns BLACK and WHITE equal probabilities if they believed our (true) claims that:

1. They would face the same decision tree for the RED versus BLACK, RED versus
WHITE, and all subsequent versions of the J versus K and J versus K ′ choices
(and the iterations of the L versus M and L versus M ′ choices);

2. The decks involved in these choices would all be constructed from the same set
of BLACK OR WHITE (or BLUE OR YELLOW) decks;

3. Each of the subjects’ choices was equally likely to be played for real.

No appeal to the principle of insufficient reason is then necessary to justify playing
according to its tenets. To see why, consider the strategy of choosing BLACK when
offered the choice between RED and BLACK, and choosing WHITE when offered the
analogous choice between RED and WHITE. For a subject who held the aforemen-
tioned three beliefs, in Versions 1 and 2 of our experiment, this strategy is equivalent
to turning down RED in favor of an equiprobable lottery between BLACK and WHITE,
with a probability 1

3 of winning.
Consider next the strategy of choosing BLACK when offered the choice between

RED and BLACK, and choosing RED AND WHITE when offered the choice between
RED AND WHITE and BLACK AND WHITE. For a subject who held the afore-
mentioned three beliefs, this is equivalent to turning down an equiprobable lottery
between RED and BLACK AND WHITE in favor of an equiprobable lottery between
BLACK and RED AND WHITE. The latter has a probability 1

2 of winning.
Of these two strategies, the first seems simpler, as it merely involves observing

that in every lottery in which one chooses BLACK, one need only choose WHITE in
an otherwise identical subsequent lottery in order to eliminate ambiguity. The second
strategy, by contrast, requires seeing that one needs to pair one’s choices in one kind
of lottery (betting on a single color) with one’s choices in another kind of lottery
(with two winning colors).

We do not regard it as plausible that a significant number of subjects employed
either of these strategies, because neither strategy seems particularly easy for subjects
to grasp. Aside from other considerations, subjects who reason in this way would
need to apply some version of the Compound Lottery Axiom that Halevy (2007) has
found significant in distinguishing between those subjects classified as ambiguity
averse and those who are not.

Notwithstanding our doubts about the likelihood that subjects would form the req-
uisite beliefs and employ one of these strategies, we decided to check whether the
low level of ambiguity aversion might nonetheless be partly explained in this way.
We therefore ran Version 3 of the experiment, again in the ELSE lab at University
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College London. In this version, we eliminated the choices between J and K ′ and
L and M ′, thereby removing the possibility of a subject using the simpler of the
ambiguity-eliminating strategies mentioned above. Each round in the previous ver-
sions therefore became half as long. In order to keep the number of choices faced by
each subject identical to the previous versions, we added two further short rounds,
which repeated the first round with different colors. To be precise:

1. As before, in Round 1, the subjects were first navigated through the tree of Fig. 3
to estimate the interval in which to locate the value r1 that makes a subject indif-
ferent between J (RED wins) and K (BLACK wins). Subjects were then navigated
through a similar tree to estimate the value r2 that makes a subject indifferent
between L and M .

2. Subsequent rounds repeated this round with BLACK replaced by BLUE, YELLOW,
and GREEN, respectively.

4 Aggregate results

We had thought that the subjects might learn or otherwise adjust their behavior over
time, but the final round data is not significantly different from earlier rounds and
so we aggregate the data across all rounds in each version of the experiment. The
aggregated results of all three versions of the experiment both for on-site and on-line
subjects are given as percentages of the total number of observations in Fig. 6.

Table 1 summarizes our results. A crude criterion in assessing a theory is whether
it predicts better than the null hypothesis that subjects answer all questions at random.
The first column of the table therefore shows the percentage of times an observa-
tion would be made in the long run under this hypothesis. At first sight, all the
theories considered seem to pass this test except for the objective maximin criterion
(MXN). But how much does the sure-thing principle (STP) explain that is not already
explained by the principle of insufficient reason (PIR)? Since STP\PIR does no bet-
ter than the null hypothesis in the on-site versions of the experiment, the answer
would seem to be nothing at all in these versions.

The same reasoning also applies when one asks how much weak or strong ambi-
guity aversion (WAA or SAA) or the Hurwicz criterion (HWZ with h < 1

2 ) explain
that is not explained by STP (now interpreted as a measure of approximate ambigu-
ity neutrality). All of HWZ\STP, WAA\STP, and SAA\STP perform no better than
the null hypothesis. However, if all the data points in STP are excluded from the pop-
ulation (so that POP is replaced by POP\STP) as in the lower part of the table for
‘lax criteria’, then each of HWZ\STP, WAA\STP, and SAA\STP performs signifi-
cantly better than the null hypothesis in on-site Versions 2 and 3 of the experiment.
This provides some evidence for ambiguity aversion among subjects who are not
approximately ambiguity-neutral.

5 Statistics

This statistical section provides a fuller analysis to address three questions. By how
much did the differences in framing between the three versions of our experiment
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influence the behavior of the subjects? To what extent is it necessary to invoke ambi-
guity aversion to explain our data? And, connected to the latter, to what extent does
the data offer support for the Hurwicz criterion with a substantial degree of pessimism
(with h << 1

2 )?

5.1 Kolmogorov–Smirnov test

We answer the preceding questions by appealing to the Kolmogorov–Smirnov (K–S)
test, which provides a criterion for deciding whether two samples are generated by
the same probability distribution. It is important that the K–S test is non-parametric,
because its use shows that some of our data is not normally distributed, which rules
out various alternative approaches, including the Chi-Square test.

With one-dimensional data, the K–S statistic T is obtained by computing the
empirical cumulative distribution functions of the two samples to be compared. The
value of T is then the maximum of the absolute difference between these two cumu-
lative distribution functions. Low values of T indicate that the evidence is not good
enough to reject the null hypothesis that the two samples are from the same distribu-
tion. To say that the null hypothesis is rejected at the 10% significance level is to say
that there is one chance in ten that we are wrong to argue that the two samples do not
come from the same distribution.12

Lopes et al. (2007) review the problem of applying the K–S test with multi-
dimensional data. The problem arises because the manner in which the data points
are ordered then becomes significant. Their very severe recommendation requires
maximizing over all possible orderings of the data points. Such a procedure seems
appropriate when the data is otherwise unstructured, but we exploit the underlying
structure of our problem by applying the orthodox one-dimensional K–S test sepa-
rately to the sums of the columns, the sums of the rows, and the sums of both types
of diagonal in each of the 8 × 8 data matrices of Fig. 6. We thereby examine the
marginal distributions of r1, r2, r1 + r2, and r1 − r2. The final expression is of par-
ticular interest because it can serve as a measure of how far a point (r1, r2) lies from
the main diagonal r1 − r2 = 0, where all the data would lie if the subjects were all
ambiguity neutral. The K–S test is more reliable when applied to the diagonals than
to the rows and columns because the former data is sorted into 15 bins, and the latter
into only 8 bins.

5.2 Comparing distributions

Table 2 shows K–S statistics for our data.13 To save on space, we abuse notation by
using r1 and r2 in this section to refer to our binned data rather than the continuous
variables our experiment is intended to estimate.

12In computing critical values of T for the 1%, 5%, and 10% levels, it is necessary to take account of the
sample sizes, which vary between different versions of the experiment.
13The significance levels p have been computed from the K–S statistics using the formula p = k ×{(n1 +
n2)/n1n2}1/2, where n1 and n2 are the number of subjects in a population, and k = 1.22 for p = 0.1,
k = 1.36 for p = 0.05, and k = 1.63 for p = 0.01. We therefore treat as independent the means of the
four observations obtained from each subject.
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Table 2 Significantly different distributions?

The top-left tables show Kolmogorov–Smirnov statistics (K–S) that provide a measure of the difference
between the marginal distributions of r1 and r2 obtained in different treatments. Low values of K–S indi-
cate that there is inadequate evidence to suggest that the distributions are different. The top-right table
does the same thing for r1 + r2 and r1 − r2. The bottom table compares r1 and r2 in the same treatments
(which would be the same if the sure-thing principle held) and r1 and 1

2 − r2 (which would be the same if
the Hurwicz criterion were to hold)

The data in Table 2 supports the following conclusions.

1. The top-left and top-right tables show that the hypothesis that the on-site data
from Version 1 and Version 2 of our experiment come from the same probability
distribution is rejected. The hypothesis that the on-site data from Version 1 and
Version 3 come from the same distribution is also rejected. Our re-framing of
the experiment (and/or the different subject pool) therefore made a substantial
difference between Version 1 on the one hand and Versions 2 and 3 on the other.

2. By contrast, the hypothesis that the on-site data from Version 2 and Version 3 of
our experiment come from the same probability distribution passes our test. In
Section 5.3, we therefore aggregate only the data from Versions 2 and 3. Recall
that we have also aggregated the data from all the stages within each version for
similar reasons.

3. The first row of the bottom table reports our test of the hypothesis that r1 and
r2 are drawn from the same distribution, which would be the case if the sure-
thing principle held. It shows that in the on-site Versions 1 and 2, one cannot
confidently reject this hypothesis. In Version 3, one can reject this hypothesis
at the 10% level. This indicates that the data roughly conform to the sure-thing
principle, but that there may be other principles determining choice.
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4. The second row of the bottom table reports our test of the hypothesis that r1
and 1

2 − r2 are drawn from the same distribution, which would be the case if
the Hurwicz principle held. In all on-site versions, there is sufficient evidence
to confidently reject the hypothesis. This provides strong evidence against the
Hurwicz principle.

5.3 Modeling the data

This section fits a simple econometric model to the aggregated data from on-site
Versions 2 and 3. The model assumes that subjects basically follow the sure-thing
principle. All our data points would then lie on the main diagonal of Fig. 6 if it were
not for the further assumption that subjects sometimes diverge from the sure-thing
principle when answering the questions in the titration of Fig. 3. To be precise, we
assume that the baseline preferences of all subjects satisfy r1 = r2, and that r1 is
normally distributed14 with mean μ and standard deviation σ . When an answer con-
sistent with the baseline preference is in the direction of ambiguity-averse behavior,
the model assumes that subjects respond in line with this preference with probability
a, where a < 1. When an answer consistent with the baseline preference is in the
direction of ambiguity-loving behavior, we assume that subjects respond correctly
with probability d , where d < 1. We therefore have a model with four parameters:
μ, σ , a, d .15 Can the model be made to fit with no ambiguity aversion (a = d)? If
not, by how much must a exceed d?

To address these questions, we compute two Kolmogorov–Smirnov statistics, S

and T , using the observed data on the main diagonal for S, and the sums of data
points along parallels to the main diagonal for T . (The latter exercise is labeled r1 −
r2 in Table 2.) Low values of S indicate that the observed data points on the main
diagonal of our data matrix are consistent with our model. Low values of T indicate
that deviations from the sure-thing principle are consistent with our model. The 10%,
5%, and 1% significance levels in both cases are 0.10, 0.11, and 0.13. We say that
our model is rejected at a particular significance level p if S > p or T > p. (The
relevant spreadsheet is available at http://alkami.org/ells.)

The results of a hill-climbing exercise in parameter space are as follows. Our
model is not rejected at the 5% level when μ = 0.312, σ = 0.035, and a = d = 0.82.
However, it is rejected at the 10% level for all parameter values we examined with
a = d . This means that if one is very careful in rejecting a model (one allows only a
5% chance of wrongly rejecting the model), then a version of our model that does not
involve ambiguity aversion passes our test. However, if one is more willing to reject
a model (one allows up to a 10% chance of wrongly rejecting it), then no version
without ambiguity aversion passes our test.

By contrast, our model cannot be rejected at the 10% level when μ = 0.312,
σ = 0.035, a = 0.90, and d = 0.80 (S = 0.04, T = 0.05). The parameter range

14Although it makes no difference in practice, we further condition the distribution of r1 on the
requirement that 0 ≤ r1 ≤ 1

2 .
15Using different a and d for r1 and r2 has no significant effect.

http://alkami.org/ells
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within which the latter conclusion can be maintained is small. This means that only a
version of our model which posits a modest degree of ambiguity aversion passes the
more stringent version of our test.

Notice that the fitted value of μ = 0.312 is close to 1
3 and that σ = 0.035 is small.

Our assumption that the subjects’ basic preferences honor the sure-thing principle is
therefore sustained because the data is strongly concentrated in and around the area
predicted by the principle of insufficient reason. The analysis shows that we can-
not reconcile the model’s assumption about the subjects’ basic preferences without
assuming random deviations from these basic preferences. These deviations need to
be biased in the direction of risk-averse behavior, but the degree of bias is small.

For comparison, we also considered the same model with the Hurwicz criterion
replacing the sure-thing principle (so that subjects’ baseline preferences are assumed
normal along the Hurwicz curve of Fig. 2). For μ = 0.350 and σ = 0.050, the
hypothesis that the new model is consistent with the data cannot be rejected at the
5% level when a = d = 0.82 (S = 0.04, and T = 0.11). This result is not very
surprising when one notes that the Hurwicz criterion with h = 1

2 is indistinguishable
from the principle of insufficient reason.

In summary, our model best fits the data when it describes our population as if:

(i) Each subject’s baseline preferences approximate the principle of insufficient
reason;

(ii) Each subject has a modest tendency to randomly diverge from these baseline
preferences, with diversion in an ambiguity-averse direction being somewhat
more likely.

Indeed, this version of our model cannot confidently be rejected. Our model-
ing exercise therefore supports a modest degree of ambiguity aversion, but refutes
versions of the Hurwicz criterion with h significantly less than 1

2 .

6 Discussion

1. The principle of insufficient reason has the most predictive power in our experi-
ment. About one third of our observations lie in the shaded region corresponding
to PIR in Fig. 4.

2. Theories that postulate a large level of ambiguity aversion all perform badly com-
pared with PIR.16 The objective maximin criterion performs very badly indeed.17

However, as evidenced by the lower part of Table 1 and our model, the data do
provide evidence for a modest degree of ambiguity aversion.

16Recent working papers by Ahn et al. (2010) and Charness et al. (2012) report similar results with a
different experimental design.
17The same goes for the minimax regret criterion, since this coincides with the maximin criterion in our
experiment.
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Fig. 7 Histograms of aggregate on-site observations. Our criterion for strong ambiguity requires both
r1 < 1

3 and r2 > 1
3 . If attention were restricted to r1, more subjects in all three versions would count

as strongly ambiguity averse than we report (53%, 68%, 73%). The effect is considerably weaker for r2
(65%, 46%, 48%). Note also the significant alteration in behavior between Versions 1 and 2 in which
subjects were offered exactly the same problem but framed differently

3. Why do we not observe as much ambiguity aversion as is often reported? One
possible reason is that our experimental protocol reduces suspicion of deceit on
the part of the experimenter. A second potential reason is that Versions 1 and 2 of
our experiment allow sophisticated subjects to treat all probabilities as objective.
However, levels of ambiguity aversion remain slight in Version 3, where it is
harder to pull off the same trick. A third reason is that our ambiguity aversion
criteria are more demanding than in some studies, a point that we take up in the
next item.

4. Our criteria for ambiguity aversion require that a subject be consistently ambi-
guity averse in two different (but related) comparisons. By contrast, some
experiments that report high levels of ambiguity aversion require a preference
for a risky over an ambiguous option in only one comparison.18 But it is pre-
sumably uncontroversial that ambiguity aversion judgments need to be reliable
to be a useful predictive tool in real-life situations. Figure 7 illustrates that our
more demanding criteria make a difference. If one were to pay attention only to
estimates of r1, then one would find what would seem to be substantial evidence
for strong ambiguity aversion, especially in the case of Version 3 (where 73%
of observations are consistent with strong ambiguity aversion as opposed to the
60–70% commonly reported).

5. Figure 7 also shows that part of the reason that our criteria make a difference
is that there is more ambiguity aversion in our one-winning-color choices (for
which the indifference probability is r1) than in our two-winning-color choices
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(for which the indifference probability is r2). Our tentative conjecture is that to
some subjects, the ambiguous option is easier to discern in the one-winning-
color case than in the two-winning-color case. In the one-winning-color case,
the ambiguity present in betting on BLACK is marked, and the lack of ambiguity
in betting on RED is obvious. By contrast, in the two-winning-color case, the
ambiguity present in betting on RED AND WHITE may be less marked to some
(because subjects know the probability of part of the winning combination) and
the lack of ambiguity in betting on BLACK AND WHITE may not be obvious to
some (because it requires observing that while the individual component colors
are ambiguous, the compound is not).

6. The robustness issue also arises insofar as our experiment provides another
example of the kind of framing effects emphasized by Kahneman and Tversky
(1981). In particular, subjects responded differently in Versions 1 and 2 of the
experiment, even though the questions they were asked were logically identical.

7. Another potential explanation for the different pattern of response between Ver-
sions 1 and 2 also bears on this issue. These versions were conducted in different
laboratories with different subject pools. Version 1 was conducted in Harvard
with a pool of largely American subjects of whom about one third were students.
Version 2 was conducted at University College London with a pool of largely
British subjects of whom about two thirds were students. The mean age of the
British pool was about seven years younger than the American pool.19 Though
we therefore cannot be certain whether the difference is due to framing effects
or the composition of the subject pool, either way, this shift casts doubt on the
robustness of subjects’ pattern of response in conditions of uncertainty.

7 Psychological and demographic correlations

Psychologists define optimism and pessimism as positive and negative outcome
expectancies, and it has been proposed that people with a predisposition to expecting
things to turn out well might perceive an ambiguous situation differently from those
expecting things to turn out badly. Previous work has indicated an inverse relation-
ship between ambiguity aversion and pessimism within the paradigm of the Ellsberg
paradox (Pulford 2009; Lauriola et al. 2007). We therefore explored this relationship

18For example, Keren and Gerritsen (1999) ask subjects to choose between betting on a red ball drawn
from an urn which has a known probability of 1

3 of yielding a red ball and betting on a green ball or on
a blue ball drawn from a different, ambiguous urn, in which green and blue together make up slightly
more than 2

3 of the balls. They conclude that a large majority preference for betting on red is evidence of
ambiguity aversion. Liu and Colman (2009) similarly use a one-choice setup. They offer subjects a choice
between betting on a red ball drawn from an urn with a known probability of 1

2 of yielding a red ball and
betting on a red ball drawn from an urn containing red and green balls in an unknown proportion. The
prize from the uncertain urn was somewhat larger than the prize from the risky urn. They take a majority
preference to bet on red from the risky urn to be evidence of ambiguity aversion.
19Genders were roughly equal in each case.
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measuring the degree of pessimism/optimism with the Life Orientation Test, Revised
(LOT-R) of Scheier et al. (1994). A subject’s ambiguity aversion was measured by
averaging r2 − r1 for the subject’s four choice sets, with a negative score indicating
ambiguity-loving behavior, and a positive result indicating ambiguity-averse behav-
ior. These averaged scores ranged from −0.41 to 0.46 with a mean of 0.011 (.081).
LOT-R scores ranged from 0 (most pessimistic) to 24 (most optimistic), with a mean
of 14.5 (5.0).20

We compared these measures of ambiguity aversion and pessimism/optimism for
each version separately for on-line and on-site participants using the Kruskal–Wallis
test, Levenes’ test for equality of variances, independent samples t-tests, and scaled
JZS Bayes Factors (Rouder et al. 2009). Our measure of pessimism/optimism was
not associated with ambiguity aversion.

Some research suggests that ambiguity aversion differs across genders (Borghans
et al. 2009; Powell and Ansic 1997). However, no gender differences in mean
ambiguity aversion were identified.

Comparisons of our measure of ambiguity aversion with other personal and demo-
graphic variables also showed no robust correlation for any variable. A full report of
these comparative analyses is available at http://alkami.org/ells.

8 Conclusion

Ambiguity aversion has been regularly observed in a majority of subjects’ choices in
the standard Ellsberg experiment. It is also regarded as a prevailing phenomenon for
choices involving gains generally. We designed a new experiment to examine how
much of this phenomenon could be explained by behavior in accordance with the
Hurwicz criterion. However, ambiguity aversion was less pronounced than in many
other studies and we found little evidence of behavior in accordance with the Hurwicz
criterion. Indeed, the Hurwicz criterion with a substantial degree of pessimism is
clearly inconsistent with our findings. Only the principle of insufficient reason had
marked predictive power in our experiment. We twice changed the framing of our
experiment, which had a significant effect on some features of the subjects’ behavior,
but our basic conclusions were left unchanged.

We tentatively attribute our findings to two aspects of our study. First, we worked
hard to eliminate suspicion that the experimenter might be manipulating the gambles.
Second, our criteria for ambiguity aversion are more demanding than in some studies
because they require a subject to display aversion to the ambiguous option in two
different but related types of choices. Subjects whose choices do not meet such strict
criteria are not robustly ambiguity averse.

20These LOT-R results are consistent with the norms reported in Scheier et al. (1994).

http://alkami.org/ells
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